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Figure 1. Object reconstruction using SHINOBI. SHINOBI decomposes challenging in-the-wild image collections into shape, material
and illumination using a neural field representation while also optimizing camera parameters. Visit the project page at Project page:
https://shinobi.aengelhardt.com

Abstract

We present SHINOBI, an end-to-end framework for the re-
construction of shape, material, and illumination from object
images captured with varying lighting, pose, and background.
Inverse rendering of an object based on unconstrained image
collections is a long-standing challenge in computer vision
and graphics and requires a joint optimization over shape,
radiance, and pose. We show that an implicit shape repre-
sentation based on a multi-resolution hash encoding enables
faster and robust shape reconstruction with joint camera
alignment optimization that outperforms prior work. Further,
to enable the editing of illumination and object reflectance

*Current affiliation is Stability AI.
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(i.e. material) we jointly optimize BRDF and illumination to-
gether with the object’s shape. Our method is class-agnostic
and works on in-the-wild image collections of objects to
produce relightable 3D assets for several use cases such as
AR/VR, movies, games, etc.

1. Introduction
We present a category-agnostic technique to jointly recon-
struct 3D shape and material properties of objects from un-
constrained in-the-wild image collections. This data regime
poses multiple challenges as images are captured in different
environments using a variety of devices resulting in vary-
ing backgrounds, illumination, camera poses, and intrinsics.
In addition, camera baselines tend to be large. Fig. 1 (left)
shows examples from an input image set. Many graphics
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applications in AR/VR, games, and movies depend on high-
quality 3D assets of real-world objects. Physically based
materials are essential to integrate objects into new environ-
ments. The conventional acquisition involves laborious tasks
like 3D modeling, texture painting, and light calibration or
use controlled setups [6, 47] that are hard to scale. It is eas-
ier to obtain casually captured images from smartphones or
image collections from the internet for a large number of
objects.

Conventional structure-from-motion techniques like
COLMAP [54, 55] fail to reconstruct image collections un-
der these challenging circumstances [14, 28]. Despite con-
straining the correspondences to lie within object bounds,
specifically in the context of the NAVI [28] in-the-wild
scenes, less than half of the views are registered on aver-
age with half the scenes failing completely. Consequently,
we observe that camera pose optimization has the largest
impact on the reconstruction quality in this setting. Many
existing works on shape and material estimation [6, 13, 58,
67, 69, 74, 77] assume constant camera intrinsics and initial-
ization of camera poses close to the true poses. We support
360° multiview data with a rough quadrant-based pose ini-
tialization with poses potentially far from the ground truth, as
in SAMURAI [14] and NeRS [71]. For challenging data this
can be annotated in only a few minutes per image collection.
Even though in SAMURAI [14], camera poses can be ini-
tialized from very coarse directions slight offsets often lead
to overly smooth textures and shapes in the final reconstruc-
tions. Further, existing methods for material decomposition
with camera pose optimization are slow, often running more
than 12 hours on a single object [14, 32]. In contrast, we
propose a pipeline based on multiresolution hash grids [45]
which allows us to process more rays in a shorter time during
optimization. Using this advantage we are able to improve
reconstruction quality compared to SAMURAI while still
keeping a competitive run-time (Tab. 1).

Naive integration of multi-resolution hash grids is not
well suited to camera pose estimation due to discontinuities
in the gradients with respect to the input positions. We pro-
pose several components that work together to stabilize the
camera pose optimization and encourage sharp features. The
key distinguishing features of SHINOBI include:

• Hybrid Multiresolution Hash Encoding with level anneal-
ing. We combine the multiresolution hash-based encod-
ing [45] with regular Fourier feature transformation of the
input coordinates to regularize the low-frequency gradi-
ent propagation. This makes the optimization significantly
more robust while only adding a small overhead. A similar
approach has been recently proposed by Zhu et al. [79]
for a different task. We show that it is also beneficial for
camera pose optimization.

• Camera multiplex constraint. We modify the cam-
era parameterization of SAMURAI to avoid over-

parameterization of the camera rotations. Furthermore,
we constrain the camera optimization with a projection-
based loss to enforce consistency over the camera propos-
als inside a multiplex which further helps to smooth the
optimization in the initial phase.

• Per-view importance weighting. We propose a per-view im-
portance weighting to leverage the important observation
that some views are more useful for optimization than oth-
ers. Specifically, we use well-working cameras to anchor
the reconstruction during the optimization.

• Patch-based alignment losses. SHINOBI proposes a novel
patch level loss to aid in camera alignment and additionally
introduces a silhouette loss inspired by Lensch et al. [33]
for better image to 3D alignment.
Experiments on NAVI [28] in-the-wild datasets demon-

strate better view synthesis and relighting results with SHI-
NOBI compared to existing works with a reduced run-time.
Compared to SAMURAI the results look sharper and the av-
erage runtime is cut in half. Fig. 1 (right) shows some sample
application results with 3D assets generated by SHINOBI .
Our representation enables editing of appearance parameters,
illumination and based on the mesh extraction also shape,
facilitating various tasks in a downstream graphics pipeline.

2. Related works
Neural fields have emerged as a popular technique of late
to encode spatial information in the network weights of e.g.
an MLP, which can be retrieved by simply querying the co-
ordinates [16, 43, 50, 59]. Works like NeRF [44] leverage
this neural volume rendering to achieve photo-realistic view
synthesis results with view-dependent appearance variations.
Rapid research in neural fields followed, which alternated the
surface representations [49, 61–63, 65, 68], allowed recon-
struction from sparse data [8, 27, 40, 48, 52, 60, 66], enabled
extraction of 3D geometry and materials [12, 32, 46, 71], or
enabled relighting of scenes [5, 12–14, 37, 41, 69]. However,
most prior works rely on pose information extracted from
COLMAP [54, 55], which can be inaccurate or completely
fail in complex settings or sparse data regimes. SHINOBI is
independent of any pose reconstruction that relies on feature
matching and robust to very coarse initialization.
Instant Neural Graphics Primitives (I-NGP) [45] is a pop-
ular geometric representation that enables fast optimization
with improved memory utilization by using an encoding
scheme based on multi-resolution hash tables. Despite the im-
provement in speed, I-NGP suffers from discontinuous and
oscillating gradient flow through the hash-based encoding,
which complicates camera pose optimization [26, 79, 79].
To enable reconstruction with camera pose fine-tuning using
hash grids, Heo et al. [26] propose a modification to the
interpolation weighting, BAA-NGP [39] dynamically repli-
cates low-resolution features and CAMP [51] pairs a robust
sampling scheme [4] with camera preconditioning. These
methods however are sensitive to camera initialization and
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Figure 2. The SHINOBI pipeline. Two resolution annealed encoding branches, the multiresolution hash grid H(x) and the Fourier
embedding γ(x) are used to learn a neural volume conditioned on the input coordinates. This enables robust optimization of camera
parameters jointly with the shape, material and illumination.

lighting conditions. In contrast to these works, SHINOBI
is able to reconstruct consistent objects from images cap-
tured under varying illuminations and backgrounds besides
supporting coarser poses.

Joint camera and shape estimation is a highly ambiguous
task, traditionally relying on accurate poses for precise shape
reconstruction and vice versa. Often techniques rely on corre-
spondences across images to estimate camera poses [54, 55].
Recent approaches integrate camera calibration with neural
volume training; SCNeRF [29] and NopeNeRF [8] use corre-
spondences and monocular depth images, respectively. Other
recent methods rely on rough initialization of the camera,
global alignment, or a template shape for joint optimiza-
tion [15, 38, 64, 71]. Other methods use transformer-based
models[21] to predict the initial pose from image collection
[57, 72]. In comparison, SHINOBI works on unconstrained
image collections, including various camera parameters and
object environments, where existing methods struggle to
generalize or require additional input data like depth.

BRDF and illumination estimation is a challenging and am-
biguous problem. Casual BRDF estimation enables on-site
material acquisition with simple cameras and a co-located
camera flash. These techniques often constrain the problem
to planar surfaces with either a single shot [2, 9, 18, 25, 34,
53], few-shot [2] or multi-shot [3, 10, 19, 20, 22] captures.
Casual capture can also be extended to a joint BRDF and
shape reconstruction [5–7, 11, 30, 47, 53, 70], even on entire
scenes [35, 56]. Most of these methods, however, require a
known active illumination. Recovering a BRDF under un-
known passive illumination is significantly more challenging
as it requires disentangling the BRDF from the illumination.
Recently, neural field-based decomposition achieved decom-
position of scenes under varying illumination [12, 13] or
fixed illumination [37, 73, 74, 76, 77]. IntrinsicNeRF [69]

extends decomposition to larger scenes at the cost of a simpli-
fied reflectance model. However, all these approaches require
known, near-perfect camera poses, whereas SHINOBI can
work with unposed image collection to recover per-image
illumination.

3. Method
The aim of SHINOBI is to convert 2D image collections into
a 3D representation with minimal manual work. The repre-
sentation includes shape, material parameters and per-view
illumination, allowing for view synthesis with relighting.
Problem setup. We define in-the-wild data as a collection
of q images Cj ∈ Rsj×3; j ∈ {1, . . . , q} that show the
same object captured with different backgrounds, illumina-
tions and cameras with potentially varying resolutions sj .
In addition, we assume a rough camera initialization. For
our experiments we annotate camera pose quadrants as in
SAMURAI [14]. Foreground masks can be added if avail-
able or automatically generated and might be imperfect at
this point. At each point x ∈ R3 in the neural volume V ,
we estimate the BRDF parameters for the Cook-Torrance
model [17] b ∈ R5 (basecolor bc ∈ R3, metallic bm ∈ R,
roughness br ∈ R), unit-length surface normal n ∈ R3 and
volume density σ ∈ R (Fig. 1). To enable the decomposition
we also estimate the latent per-image illumination vectors
zl
j ∈ R128; j ∈ {1, . . . , q} [13]. Furthermore, we estimate

per-image camera poses and intrinsics. Next, we provide a
brief overview of prerequisites: NeRF [44], InstantNGP [45]
and SAMURAI [14].
Coordinate-based MLPs and NeRF [44] uses a dense neu-
ral network to model a continuous function that takes 3D
location x ∈ R3 and view direction d ∈ R3 and outputs a
view-dependent output color c ∈ R3 and volume density
σ ∈ R. Mildenhall et al. [44] overcome the spectral bias of
the MLPs by transforming the input coordinates by a second
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function; A frequency encoding γ that maps from R to R2L

[44, 59]:

γ(x) = (sin(20πx), cos(20πx),

. . . , sin(2L−1πx), cos(2L−1πx))
(1)

InstantNGP [45] speed up the NeRF optimization drasti-
cally by replacing the MLP-based volume representation by
a multiresolution voxel hash grid that is tailored to current
GPU hardware. For a hash-size T , grid vertices are indexed

by a spatial hash function h(x) =

(
d⊕

i=1

xiπi

)
mod T us-

ing large unique prime numbers πi [45]. At each voxel ver-
tex a d-dimensional embedding is optimized. Instead of the
Fourier embedding, the 3D coordinates x are directly used
to tri-linearly interpolate between neighboring vertices at
each level. The results are concatenated and fed to a MLP
to decode the representation. We denote the full encoding
function including interpolation and concatenation as H(x).
Brief overview of SAMURAI. SAMURAI is a method for
joint optimization of 3D shape, BRDF, per-image camera
parameters, and illuminations for a given in-the-wild image
collection. SAMURAI [14] follows the NeRF idea outlined
above but uses the Neural-PIL [13] method for physically-
based differentiable rendering. It takes 3D locations as input
and outputs volume density and BRDF parameters. An ad-
ditional GLO (generative latent optimization) embedding
models the changes in appearances (due to different illumi-
nations) across images. Neural-PIL [13] introduced the use
of per-image latent illumination embedding zl

j and a spe-
cialized illumination pre-integration (PIL) network for fast
rendering, which we refer to as ‘PIL rendering’. Neural-PIL
optimizes a per-image embedding to model image-specific
illumination. The rendered output color ĉ is equivalent to
NeRF’s output c, but due to the explicit BRDF decomposi-
tion and illumination modeling, it enables relighting and ma-
terial editing. To address the unavailability of accurate cam-
era parameters for in-the-wild images, SAMURAI jointly
optimizes camera extrinsics and per-view intrinsics from
a very coarse initialization. In addition to a coarse-to-fine
annealing [38], this is achieved with a multiplexed optimiza-
tion scheme where multiple camera proposals per view are
kept and weighted according to their performance on the
loss over time.

3.1. SHINOBI Optimization with Hash Encoding
We identify misaligned and inconsistent camera poses as the
main limiting factor for in-the-wild reconstructions. Joint
shape and camera optimization is a severely underdeter-
mined problem. Reconstruction is typically slow and often
lacks high-frequency detail in textures and shape. Multireso-
lution hash grids from Instant-NGP [45] have the potential to
speed up the reconstruction while simultaneously allowing
for larger ray counts to be processed and thereby improving

visual quality and alignment (see Tab. 1). However, the naive
replacement of the point encoding with Hash grids reduces
the reconstruction quality and robustness of the joint camera
and shape optimization.
Hash grids adapt to individual views faster resulting in a
noisy shape in the presence of misaligned cameras. As re-
ported previously [26, 36, 39, 79] multi-resolution hash grids
with the default linear interpolation backpropagate noisy and
discontinuous gradients with respect to the input position.
Additionally, the coarse-to-fine scheme from BARF [38] of-
ten used for camera fine-tuning cannot be directly transferred
to hash grids. Therefore, we propose an approach that makes
use of a camera multiplex, adds additional geometrical con-
straints, and a new encoding scheme to be able to improve
both reconstruction speed and quality. Next, we explain each
of the components in detail.
Architecture overview. A high-level overview of the SHI-
NOBI architecture is shown in Fig. 2, which follows the
skeleton of SAMURAI [14] with the ‘PIL renderer’ [13].
However, we map the input coordinates x using a new hybrid
encoding. The combined embedding is processed by a small
MLP like in I-NGP [45] to predict the density σ, and the
view and appearance conditioned radiance for a given image
patch. We also predict a regular direction-dependent radi-
ance c̃ to stabilize the early training stages as in [12, 14]. The
BRDF decoder operates as in SAMURAI [14], expanding
the feature representation to the BRDF (base color, metallic,
roughness). Per sample, we estimate normal direction from
the first order derivative of the density w.r.t. the input position
∂σ
∂x . From there the volumetric rendering from NeRF [44]
is performed and the shading for the given pixel coordinate
is determined using BRDF, normals and the pre-integrated
illumination estimated by the NeuralPIL network. See sup-
plementary material for further details on the architecture.
Camera pose initialization and parameterization. Camera
pose optimization is a highly non-convex problem and tends
to quickly get stuck in local minima. Our initial camera poses
are much noisier and feature larger distances between initial
and true poses compared to many related works [32, 64]. To
combat this, we assume a rough initialization in the form
of camera pose quadrants in line with SAMURAI [14] and
NeRS [71]. We use a ‘lookat + direction’ representation for
the camera parameters, storing initial values and offsets for
an eye position peye ∈ R3, lookat direction ∆dϕθ ∈ R2. and
up rotation angle dup ∈ R as well as the focal length f ∈ R
per camera. We notice that this removes the overparameteri-
zation regarding the rotation component encoded in eye and
center position of the regular ‘lookat’ parameterization. This
formulation performs best in our setting also compared to
other recently proposed representations [51, 78].
Hybrid positional encoding. We use a hash grid hybrid as
coordinate encoding to improve the gradient flow w.r.t. the in-
put coordinates x. A Fourier-based coordinate mapping γ(x)
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Figure 3. Constrained camera multiplex. We optimize multiple
camera proposals per image and weight the contribution to the
reconstruction according to a camera’s performance on the loss.
Between cameras of a multiplex we add a projection based regular-
ization: Points from all members are projected into the currently
best camera and then compared against a new render to enforce a
consistent geometry.

followed by a small MLP generates a base embedding that is
concatenated with the output of the multiresolution hash grid
H(x) resulting in the following formulation of the neural
volume F⊕ ((H(x), γ(x))). On γ, we apply BARF’s [38]
Fourier annealing. Similarly, we progressively add resolu-
tion levels to the hash grid encoding. Starting with only the
features from a low resolution dense grid we increase the
weights of the higher resolution levels gradually over time
(cf. [36, 39].

Camera multiplexes. An effective way to reduce the chance
of camera pose optimization to be stuck in local minima is
the camera multiplex [14, 23]. For each image, m cameras
are jittered around the initial camera and simultaneously
optimized. Over time the worst performing camera is repeat-
edly faded out until m = 1. This process is visualized in
Fig. 3. Since we render multiple proposals for a given image
anyway, we see an opportunity to further constrain the opti-
mization using projective geometry. Specifically, we project
the 2D point sets Xi rendered by the m−1 members into the
currently highest ranking camera Θ0 of the multiplex using
the estimated depth Di from the volumetric rendering. Then
we render the projected coordinates using Θ0 and compare
the rendered color ci and alpha values αi of all cameras in
the multiplex to the ones originally rendered at Θ1...m−1.

Lmultiplex =

m−1∑
i=1

Limage(ci, F ĉV (Pi,0(Xi, Di,Θi,Θ0)))

+ Lmask(αi, FαV (Pi,0(Xi, Di,Θi,Θ0))) (2)

where Pi,0 is the perspective warp from image coordinates in
camera i to the reference camera. FV is the rendering func-
tion connected to the neural field outputting color ĉ and mask
value α, respectively. This regularization comes roughly at
the cost of adding a camera to the multiplex. Subsampling
of Xi can decrease the memory footprint if needed. Limage

and Lmask are the optimization losses active at the time as
outlined in Sec. 3.2. Naturally, this component is only active
while there are multiple cameras rendered during the first
part of the overall schedule. Used as an additional loss it
turns out to be surprisingly effective in constraining the cam-
era optimization and therefore increasing the robustness of
the overall optimization. Essentially, we are enforcing a con-
sistent surface to be generated and smooth the optimization
landscape around an initial camera pose.
View importance scaling of input images. Not every input
might contribute to the reconstruction in the same way and in-
dividual views that are not aligned with the current 3D shape
might have a negative impact on the overall optimization
progress. To improve high-frequency detail in the reconstruc-
tion we reduce the impact of potentially misaligned cameras
while anchoring the optimization using cameras that work
well given the loss. We keep a circular buffer of around 1000
elements with the recent per-image losses. Like in SAMU-
RAI, this is used to re-weigh images in the given collection
according to: L(j)

network = spj L(j)
network, where

spj = max

(
tanh

(
µl − (L(j)

mask + L(j)
image)

σl

)
+ 1, 1

)
, (3)

with the mean µl and standard deviation σl of the loss buffer.
This limits the influence of badly aligned camera poses on
the shape reconstruction. In addition, we also apply an impor-
tance weighting on Lcamera that reduces the gradient magni-
tude for views that are performing well given the loss history.
Specifically, at step t we compute: L(j)

camera = sqj,t L
(j)
camera,

with

sqj,t =sqj,t−1λp max

(
tanh

(
µl − (L(j)

mask + L(j)
image)

σl

)
+1, 1

)
+(1− λp)sqj,t−1 (4)

In practice, we set the hyperparameter λp to 0.05.

3.2. Losses and Optimization
Multiscale patch loss. After a short initial phase of random
ray sampling, we render randomly sampled patches of size
16x16 to 32x32. The goal is to constrain the updates and
especially the alignment to be consistent on local neighbor-
hoods. Therefore, we add a multi-scale patch loss on the
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(a) Reference silhouette (b) Rendered silhouette (c) Loss map

Figure 4. Our silhouette based alignment loss penalizes the un-
aligned pixels given a reference and the rendered gray scale masks.

rendered color ĉ which computes a Charbonnier loss at four
different resolution levels, by simple bilinear resampling. We
weigh each level to compensate for the different pixel counts
and enforce the low-resolution version to align first.
Mask losses. We add a silhouette loss LSilhouette whenever
patch-based sampling is active. Here, we penalize the area be-
tween the two silhouettes which can be interpreted as the re-
sult of an xor operation on the rendered and input mask [33].
Both masks are filtered using a Gaussian blur where the ra-
dius is heuristically chosen based on the patch size. Fig. 4
visualizes how the loss helps with the alignment task. We
combine this loss with a regular binary-cross-entropy loss
on the mask value as well as a loss enforcing a transparent
background.
Regularization losses. To regularize the hash grid encoding
we apply a normalized weight decay as proposed in [4] to
put a higher penalty on coarser grid levels compared to naive
weight decay. Additionally, we apply regularization to the
camera poses and normal output. Refer to the supplements
for details and the hyperparameters used.
Optimization. In total, we use three optimizers: One
ADAM [31] optimizer for the networks, hash grid embed-
dings and cameras, respectively. The learning rate is decayed
exponentially on all optimizers. In addition to the camera rep-
resentation and constraints mentioned above we use ADAM
with the β1 value reduced to 0.2 to smooth out the noise
in the camera updates. The learning rate is tuned between
1e-3 to 2e-3 depending on scene size. Render resolution is
continuously increased over the first half of the optimization
while the number of active multiplex cameras is reduced.
The direct color optimization is faded to the BRDF optimiza-
tion and the encoding annealing is performed over the first
third of the optimization. Focal length updates and the view
importance weighting are delayed until an initial shape has
been formed. See the supplementary material for a detailed
description and visualization of the optimization scheduling.

Implementation. We implement the multi-resolution hash
grid encoding as a custom CUDA extension for Tensor-
flow [1]. The implementation roughly follows the official
CUDA implementation [45]. We enable first- and second-
order gradients for the encoding to allow for computing
analytical surface normals. The remaining components are
implemented in Tensorflow.

Method PSNR↑ SSIM↑ LPIPS↓ Runtime
SC ∼ SC SC ∼ SC SC ∼ SC

NeROIC [32] 22.75 21.31 0.91 0.90 0.0984 0.0845 18 hours (4 GPUs)
NeRS [71] 17.92 18.02 0.92 0.93 0.114 0.1098 3 hours (1 GPU)
SAMURAI [14] 25.34 24.61 0.92 0.91 0.0958 0.1054 12 hours (1 GPU)
SHINOBI 27.69 27.79 0.94 0.94 0.0607 0.0578 4 hours (1 GPU)

Table 1. Metrics for view synthesis on NAVI. View synthesis
metrics are computed over two subsets from all wild-sets depending
on the success of COLMAP (SC / ∼ SC). Rendering quality is
evaluated on a holdout set of test views. We initialize with the GT
poses provided by NAVI [28].

Method PSNR↑ SSIM↑ Transl.↓ Rot. °↓
w/o Multiplex Consistency Loss 25.80 0.93 0.29 23.12
w/o Per View Importance 22.43 0.90 0.36 35.10
w/o Coarse-to-fine (annealing) 21.47 0.90 0.37 30.44
w/o Hybrid Encoding 25.31 0.93 0.30 23.33
w/o Patch-based Training 20.60 0.89 0.45 41.30
Full 25.87 0.93 0.30 22.90

Table 3. Ablation study. Ablating components of our framework
results in worse view synthesis and relighting results (averaged over
”Keywest” and ”School Bus” scenes from NAVI) demonstrating
their importance.

4. Experiments
Dataset For evaluations, we use the in-the-wild collections
from the NAVI dataset [28] which feature objects captured in
diverse environments using multiple mobile devices. High-
quality annotated camera poses allow us to ablate and per-
form quantitative evaluation of our pose estimation.
Baselines. The closest prior work that can tackle our task
outline in Sec. 3 is SAMURAI [14] on which our method
is based. We compare against SAMURAI as a baseline and
also conduct experiments using NeROIC [32], GNeRF [42],
and a modified version of NeRS [71] (details in the supple-
ment). For experiments on joint shape and pose estimation,
we use the same quadrant-based pose initialization for NeRS,
SAMURAI and SHINOBI (ours); and we use the the meth-
ods’ default pose initializations for NeROIC (COLMAP)
and GNeRF (Random).
Evaluation. We use two strategies for evaluation. First, the
standard novel view synthesis metrics using the learned vol-
umes that measure PSNR, SSIM, and LPIPS [75] scores
on held-out test images. Second, to evaluate camera poses
w.r.t GT poses, we use Procrustes analysis [24] to align the
cameras and then compute the mean absolute rotation and
translation differences in camera pose estimations for all
available views. For evaluation purposes, we optimize the
cameras and illuminations on the test images but do not al-
low the test images to affect the other network parts or hash
grid embedding. For a fair comparison, we use the ground
truth masks as input to all methods although our method also
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Method Pose Init PSNR↑ SSIM↑ LPIPS↓ Translation↓ Rotation ◦ ↓

SC ∼ SC SC ∼ SC SC ∼ SC SC ∼ SC SC ∼ SC

GNeRF [42] Random 8.30 6.25 0.64 0.63 0.52 0.57 1.02± 0.16 1.04± 0.09 93.15± 26.54 80.22± 27.64

NeROIC [32] COLMAP 19.77 - 0.88 - 0.150 - 0.09± 0.12 - 42.11± 17.19 -
NeRS [71] Directions 18.67 18.66 0.92 0.93 0.108 0.107 0.49± 0.21 0.52± 0.19 122.41± 10.61 123.63 ± 8.80
SAMURAI [14] Directions 25.34 24.61 0.92 0.91 0.096 0.105 0.24± 0.17 0.35± 0.24 26.16± 22.72 36.59± 29.98

SHINOBI Directions 25.15 24.77 0.92 0.92 0.090 0.095 0.250±0.085 0.28± 0.09 22.84± 16.19 33.00± 19.97

Table 2. Metrics for 3D shape and pose on NAVI. View synthesis and pose metrics over two subsets from all wild-sets depending
on the success of COLMAP (SC / ∼ SC). Rendering quality is evaluated on a holdout set of test views that are aligned as part of the
optimization without contributing to the shape recovery. We include GNeRF as a separate baseline although this method is not designed for
multi-illumination data. We report metrics with the methods’ default camera initialization and evaluate against the annotation provided in
NAVI [28].
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Figure 5. Comparison with SAMURAI decomposition for joint pose and object reconstruction. Due to the improved alignment and
representation higher frequency details are reconstructed in shape and the BRDF components compared to SAMURAI. Notice the improved
texture detail and silhouettes of ours. Both methods optimize camera poses jointly initialized from rough quadrants.

includes functionality to automatically generate segmenta-
tion masks. We run experiments on a single Nvidia A100 or
V100 GPU per scene.
Results. Tab. 1 shows the performance of different methods
for in-the-wild reconstruction when using GT poses from
NAVI. Following NAVI [28], we divide the scenes into two
subsets based on whether the COLMAP works (SC) or not
(∼ SC) as some techniques like NeROIC need COLMAP
poses to work on unposed image collections. Using the pro-
vided annotated poses SHINOBI clearly performs best on
the view synthesis task (Tab. 1). This shows the advantage
of our hybrid encoding scheme and the patch-based losses
over previous methods for in-the-wild scenes. Optimization
runtimes of different techniques show that we are 3 times
faster than the next-best SAMURAI approach.
Tab. 2 shows results of joint shape and pose optimization

from in-the-wild image collections when the GT camera
poses are not given as input. SHINOBI outperforms both
NeROIC and NeRS by a healthy margin while being on-par
with SAMURAI. While PSNR of SHINOBI is similar to
SAMURAI, our method is able to reconstruct scenes consis-
tently with lower translation and rotation pose errors (with
also lower standard deviation in pose metrics). This results
in SHINOBI obtaining better LPIPS perceptual metrics com-
pared to SAMURAI. The on-par mean PSNR compared to
SAMURAI mostly stems from individual test cameras not

being aligned properly. This also happens for other meth-
ods but seems to be emphasized by the faster optimization
scheduling in SHINOBI. NeROIC can also achieve good
results if camera poses are close to the ground truth but
fails for many scenes where a COLMAP-based initializa-
tion is not possible. NeRS also succeeds in reconstructing
all scenes. However, it achieves lower-quality camera align-
ments. Fig. 6 visually compares view synthesis results from
different methods, which visually confirms that SHINOBI
can produce sharper results that are more faithful to the in-
put images. Further results on the NAVI dataset are shown
in Fig. 7, where we show novel views predicted by SHI-
NOBI initialized with either GT poses or rough quadrants.
Visual results clearly show that SHINOBI can recover the
pose and provide a consistent illumination w.r.t the ground-
truth target views in both settings.
Decomposition results. Fig 5 compares the BRDF and illu-
mination decomposition of SHINOBI to SAMURAI where
the same output modalities are available. Visual results show
significantly more high-frequency detail and plausible mate-
rial parameters with SHINOBI compared to SAMURAI.
Ablation study. We ablate different aspects of SHINOBI in
terms of reconstruction metrics using the “Keywest” and
“School Bus”, two in-the-wild sets from NAVI [28] of
medium complexity. Metrics in Tab. 3 show that the res-
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SHINOBIGT Test View SAMURAI

NeRS
NeROIC

Figure 6. Novel view synthesis compared to existing meth-
ods. Compared to other methods on an example view from the
NAVI [28] in-the-wild test set, SHINOBI preserves fine detail and
recreates the lighting realistically.

olution annealing coarse-to-fine scheme and the patch-based
losses contribute most significantly to the final quality. The
latter improves local details and registration accuracy com-
pared to a simple pixel-wise loss. The view importance
weighting is another important factor for improved sharp-
ness. It helps to stabilize the optimization after the initial
resolution annealing schedule has ended. While the hybrid
encoding and camera multiplex consistency do not seem to
have a large impact quantitatively, they play a critical role in
stabilizing the optimization over different scene types and
scales. Without them, the optimization might take longer
or diverge depending on the initialization. Visual examples
of the specific ablations are compared in the supplementary
material.
Applications. In addition to novel view synthesis using the
NeRF [44] representation, the parametric material model
allows for controlled editing of the object’s appearance. Also
the illumination can be adjusted, e.g. for realistic composites.
A mesh extraction allows further editing and integration in
the standard graphics pipeline including real-time rendering.
SHINOBI can help in obtaining relightable 3D assets for
e-commerce applications as well as 3D AR and VR for
entertainment and education. Refer to the supplementary
material for sample visual results on relighting, material
editing etc.
Limitations. Joint pose and shape reconstruction is an in-
herently ill-posed problem. While SHINOBI improves over
previous work, especially symmetric objects and highly spec-
ular materials can lead to failure cases as shown in Fig. 8.
The coarse-to-fine scheme is not able to resolve the disam-
biguities and the camera poses are stuck in a local mini-
mum. All existing methods show these limitations to some
extent. In some regions, high-frequency detail is still not
reconstructed properly due to misaligned views and the band
limited capabilities of the illumination representation [13].
Furthermore, our BRDF and illumination decomposition is
not capable of modeling shadowing and inter-reflections. As

(a) GT Novel View (b) GT pose init. (c) Direction pose init.

Figure 7. View synthesis on NAVI. Renderings from SHINOBI us-
ing models initialized with camera pose quadrants only or the GT
provided by NAVI [28] compared to the input image.

(a) Kitchen sink (rgb, normals) (b) Water gun (rgb, normals)

Figure 8. Failure cases. Unconstrained image collections featuring
highly symmetric objects or homogenous surfaces still pose a chal-
lenge and potentially require additional assistance.

we are mainly concerned with single-object decomposition,
these are not crucial. Extending this method to more complex
light transport modeling forms an important future work.

5. Conclusion
We present SHINOBI, a framework for shape, pose, and
illumination estimation of objects from unposed in-the-wild
image collections. Using a hybrid hash grid encoding scheme
we enable easier camera pose optimization using a multires-
olution hash grid. Additionally, our choice of camera pa-
rameterization along with per-view importance weighting
and patch-based alignment loss allows for a better image-to-
3D alignment resulting in better reconstruction with high-
frequency details. Although SHINOBI is able to recover the
geometry of objects from any category, its performance is
limited on thin/transparent structures and fails to recover
high-frequency details under extreme illumination changes,
which we leave as exploration for future work.
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