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Figure 1. PolarMatte extraction method. A modern polarization camera with a color polarization filter array (CPFA) is used to capture
four polarization states of a target scene and polarized background separately as input images. Our method extracts the alpha matte and
foreground color which can be composited onto an arbitrary background. The highlighted regions show fine-details, glasses, and motion
blur. We can computationally extract alpha mattes for dynamic scenes containing various materials without manual corrections.

Abstract

The creation of high-quality alpha mattes as ground-
truth data for video matting is typically a laborious task.
The trade-off between accuracy, manual corrections, and
capture constraints often produces erroneous results or is
cost prohibitive. We propose PolarMatte, a fully com-
putational alpha matte extraction method for images and
video without compromise between quality and practicality.
A single polarization camera is used to capture dynamic
scenes backlit by an off-the-shelf LCD monitor. PolarMatte
exploits the polarization channel to compute the per-pixel
opacity of the target scene, including the transparency of
fine-details, translucent objects, and optical/motion blur.
We leverage polarization clues to robustly detect indistin-
guishable pixels, and extract the alpha matte value at po-
larized foreground reflections with a polarimetric matting
Laplacian. Quantitative and qualitative evaluation demon-
strate our ability to computationally extract ground-truth-
quality alpha mattes without human labour.

1. Introduction

Video matting has progressed immensely in recent history
with the adoption of large neural networks [9, 11] trained on
user-annotated datasets. However, the quantity and quality
of dataset assets in the matting community restricts their

accuracy and generalization ability [12]. The considerable
effort required to accurately label alpha mattes for ground-
truth is the primary cause for the lack of assets. This paper
proposes a solution for the root cause and provides a path-
way towards building large-scale video matting datasets.

Ground-truth alpha mattes for prior matting datasets
have been created by photographing objects against mul-
tiple backgrounds [8, 21], extracting the mattes manually
using existing matting methods [30, 31], or with chroma
keying [8, 13, 28, 32]. These methods have a trade-off be-
tween quality and manual post-processing to produce the
final matte. Such methods are impractical at scale and are
prone to inherent errors. A recent work [24] can achieve
high-quality results without manual keying, but the con-
strained lighting environment makes this less accessible for
widespread use. These trade-offs impede the creation of ac-
curate ground-truth for video matting datasets at scale.

Inspired by an earlier work using polarization for mat-
ting [15, 16], we propose an improved video matte capture
method that eliminates the compromise between quality, ef-
fort, and setup. We present PolarMatte, a fully computa-
tional method for extracting ultra high-quality alpha mat-
tes of dynamic scenes using polarization. A camera with
a color polarization filter array (CPFA) is used to capture
polarization images of a target object backlit with polar-
ized light. While the foreground reflects the ambient light,
the background light is polarized. We formulate the mat-
ting problem in the polarization channel since less polar-
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ized light is observed from the foreground compared to the
polarized background.

Our PolarMatte method accounts for polarized light re-
flected from the foreground, polarized foreground reflec-
tions, that cause perceptible alpha matte errors in a previous
work that uses polarization [15]. Our method first detects
well-posed pixels in a robust manner, and then optimizes
the complete alpha matte using polarization clues and de-
tected high-confidence alpha values. Pixels that show re-
flected light from the foreground are defined as well-posed
if (1) the reflected light is unpolarized, or (2) the reflection
is polarized but the phase angle differs sufficiently from the
polarized backlight. Pixels are defined as ill-posed if the re-
flected light from the foreground is polarized and the phase
angle of the reflection is comparable to the backlight.

The output of our alpha matte extraction process can di-
rectly be used as ground-truth for training datasets without
manual post-processing. Our minimal setup uses a single
polarization camera with a CPFA to capture dynamic scenes
backlit by an off-the-shelf LCD monitor. This method al-
lows us to extract ultra high-quality alpha mattes includ-
ing fine-details, optical/motion blur, and translucent objects
(see Fig. 1) without overly constrained capture conditions.
We qualitatively and quantitatively compare our method
with standard practices for alpha matte creation.

2. Related Work
High-quality ground-truth data is required for training ac-
curate matting models. Matting datasets have been gener-
ated in several ways. The alphamatting.com dataset [21]
was created by photographing static objects against multi-
ple colored backgrounds to triangulate alpha values [25].
This provides accurate alpha mattes, though thresholding
edges can be seen in their ground-truth mattes. While this
has been applied to video [8], it requires stop-motion pho-
tography, which inherently does not support motion blur.

Manual extraction using existing matting methods has
also been used. Closed-form matting [10] and KNN mat-
ting [6] were used to label real images [23]. The Deep Im-
age Matting (DIM) dataset [31] extracted objects from im-
ages using Adobe Photoshop that can be composited onto
new backgrounds. Semantic Image Matting [27] expanded
DIM using the same method. While DIM has been used by
many learning-based matting methods (e.g., [5, 7, 14, 22,
29]), manually extracting mattes requires significant user
time and skill, is error prone, and is biased by the algo-
rithms used. Manual extraction was used for video to la-
bel 711 frames [30], an insufficient quantity for large-scale
learning.

The ground-truth alpha matte in video matting
datasets [13, 32] is often created by labeling green
screen footage using commercial keying tools. However,
chroma keying is an underconstrained problem that requires

careful setup of the capture environment and considerable
expertise for manual post-processing in the form of tweak-
ing parameters, rotoscoping, and further adjustments to
obtain a high-quality alpha matte.

While keying is less studied in the research commu-
nity [4], a new keying technique was recently proposed
called magenta green screen [24]. Similar to our method,
magenta green screen uses an emissive backlight to extract
the alpha matte. However, their constrained capture envi-
ronment sacrifices the green channel, so studio dependent
learning-based colorization is required to recover the fore-
ground color. In contrast, PolarMatte uses the polarization
channel, which does not modify the original color channels.

Our extraction method uses polarized screen matting,
which extracts the alpha matte of a target scene backlit with
a polarized screen. This setup was originally considered
in polarimetric triangulation matting (PTM) [15, 16]. This
approach uses a polarization camera system with a beam-
splitter to capture two polarization images of a target scene
in front of a polarized background screen. This formulates
the matting problem as a simple arithmetic operation by as-
suming that all the light reflected from the foreground is
unpolarized. However, in practice, the foreground can re-
flect polarized light depending on the material composition
and surface orientation [20], which can yield erroneous al-
pha matte values for the foreground. In contrast to PTM,
our method explicitly considers these polarized foreground
reflections using four polarization images captured with a
modern polarization camera that enables us to computation-
ally extract an ultra high-quality alpha matte.

3. Background
Our method is motivated by a limitation of PTM [15]. To
describe the issue theoretically, we briefly describe the re-
search thread of PTM.

Triangulation Matting Image matting for an ordinary
color image can be formulated as an inverse composition
problem [19] described in

I = ↵F+ (1� ↵)B, (1)

where the image intensities I 2 R3
+ are known, and

foreground intensities F 2 R3
+, background intensities

B 2 R3
+, and alpha matte ↵ 2 [0, 1] are unknown. Smith

and Blinn proposed triangulation matting [25] that takes
two images, I and I0, of the same foreground against dif-
ferent known backgrounds B and B0. It allows solving for
the triangulation matte ↵T as

↵T = 1� [I� I0]

[B�B0]
, (2)

where [·] is the averaging operator of a vector. While the tri-
angulation matting problem is well-posed if [B�B0

] 6= 0,
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Figure 2. The alpha matte of PTM is inaccurately fractional if the
foreground reflects polarized light, and the phase angle of the re-
flection is comparable to the polarized backlight. Zero and one of
DoP indicate completely unpolarized and polarized, respectively.

it is only applicable for static scenes since the two images
must be taken at different moments in time.

Polarimetric Triangulation Matting McGuire and Ma-
tusik [15] introduced passive polarization to acquire trian-
gulation mattes in real-time using a camera with a polariz-
ing beam-splitter and a polarized background. They assume
that all the light reflected from the foreground is unpolar-
ized under natural unpolarized illumination, and hence, the
polarization image intensity I� is described as

I� = ↵F+ (1� ↵)B�, (3)

where F is the unpolarized foreground intensity, B� is the
polarized background intensity, and � is the angle of the
polarizing filter in front of the camera. Their capture system
typically captures two ⇡

2 -shifted polarization images, and
the triangulation matte can be computed as

↵T = 1�
⇥
I�+⇡

2
� I�

⇤
⇥
B�+⇡

2
�B�

⇤ , (4)

similar to Eq. (2), but in a single-shot.

The assumption, that all the light reflected from the fore-
ground, is unpolarized is not observed in practice. The re-
flected light can be partially polarized depending on the sur-
face orientation and material composition [20] of the sub-
ject. This omission of polarized foreground reflections pro-
duces inaccuracies in the matte estimate that require correc-
tion and limit the practicality of the approach.

4. PolarMatte
We formulate the polarized screen matting problem using a
more detailed compositing equation than Eq. (3):

I� = ↵F� + (1� ↵)B�

= ↵
�
F+P� cos

2
(✓f � �1)

�

+ (1� ↵)
�
B+Q� cos

2
(✓b � �1)

�
,

(5)

where F� 2 R3
+ is the partially polarized foreground in-

tensity. The partially polarized foreground and background
intensities are further decomposed into unpolarized and po-
larized foreground intensities F,P 2 R3

+, and unpolarized
and polarized background intensities B,Q 2 R3

+, respec-
tively. The ✓f 2 R3 and ✓b 2 R3 are the phase angles of
the light from the foreground and background. The oper-
ation of � indicates element-wise multiplication. We call
Eq. (5) the polarimetric compositing equation.

Suppose we have two polarization images I� and I�+⇡
2

,
and corresponding polarized backgrounds B� and B�+⇡

2
.

Let ↵T and ↵ be matte estimates based on Eq. (3) and (5),
respectively. Then, the relation between ↵T and ↵ is

↵T = ↵

 
1 +

[P� cos 2 (✓f � �1)]⇥
B�+⇡

2
�B�

⇤
!
. (6)

Thus, if the foreground subject reflects polarized light,
and the phase angle of the reflection is in the range of
�+

⇡
4 < ✓f < �+

3⇡
4 , then the triangulation matte ↵T for

the foreground pixel will be less than 1, as highlighted in
Fig. 2. This theoretical analysis motivates us to explicitly
consider polarized foreground reflections for the extraction
of ground-truth-quality alpha mattes.
Problem Statement A modern polarization camera with
a color polarization filter array (CPFA) can capture four
polarization images I�,� 2 {0, ⇡

4 ,
⇡
2 ,

3⇡
4 } in a single-shot.

These polarization images are often transformed into the
Stokes parameters [26] for convenience. This paper only
considers linear polarization, and the Stokes parameters can
be described in the form of compositing equations:

s0 =
1
2

X

�

I� = ↵ (2F+P)
| {z }

f0

+(1� ↵) (2B+Q)
| {z }

b0

(7)

s1 = I0 � I⇡
2
= ↵P� cos 2✓f| {z }

f1

+(1� ↵)Q� cos 2✓b| {z }
b1

(8)

s2 = I⇡
4
� I 3⇡

4
= ↵P� sin 2✓f| {z }

f2

+(1� ↵)Q� sin 2✓b| {z }
b2

(9)

Here, Eq. (7) is equivalent to Eq. (1) as the compositing
equation for an ordinary image. Equations (8) and (9) are
the additional equations obtained by considering polariza-
tion. Our goal is to find the optimal alpha matte ↵ and fore-
ground intensities F or f0, given si and bi, i 2 {0, 1, 2}.
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4.1. Well-posed Pixel Detection
The PolarMatte problem is ill-posed; however, the problem
becomes well-posed if the foreground reflects unpolarized
light or the phase angles of light from the target scene and
known background differ significantly. Here, we describe a
robust method for finding the well-posed pixels and extract-
ing high-confidence alpha matte values for these pixels.

Least Squares Solution We formulate the PolarMatte
problem as a minimization problem of polarized fore-
ground intensity k↵Pk22. For clarification, we denote
s =

⇥
s>1 , s

>
2

⇤>, f =
⇥
f>1 , f>2

⇤>, b =
⇥
b>
1 ,b

>
2

⇤>. Since
k↵Pk22 = k↵fk22, the minimization problem of k↵Pk22 can
be described as

min
↵

k↵Pk22 = min
↵

ks� (1� ↵)bk22. (10)

This is a least squares problem and has a closed-form solu-
tion for ↵ as follows:

b↵ = 1� b>s

b>b
. (11)

The value of kb↵bPk2 = ks� (1� b↵)bk2 is zero if the
problem is well-posed. Therefore, we evaluate the uncer-
tainty of the estimated alpha matte by kb↵bPk2 and define
well-posed pixels as pixels that satisfy kb↵bPk2 < ⌧0.

In theory, the thresholding described above finds all
well-posed pixels. However, in practice, we found that the
value of kb↵bPk2 can be non-zero even at background pix-
els due to imaging noise, and a large threshold degrades the
reliability of the well-posed pixel detection. Therefore, we
introduce an extension to a Bayesian framework to increase
the robustness of well-posed pixel detection.

Extension to Robust Bayesian Framework Here, we re-
formulate the problem with a maximum a posteriori (MAP)
estimator. Although we assume that a background b is pre-
captured, the background intensity of s is always slightly
deviated from the pre-captured b in practice. Motivated by
this, we formulate the problem as the maximization prob-
lem of a probability distribution P (↵,b|s) described as

argmax
↵,b

P (↵,b|s) = argmax
↵,b

P (s|↵,b)P (↵)P (b)

P (s)

= argmax
↵,b

L (s|↵,b) + L (b) , (12)

where L (·) = logP (·) is the log likelihood. We drop the
terms of P (s) and P (↵) because we make no assumption
of the prior for s and ↵, and P (s) and P (↵) are constant.

The log likelihood L (s|↵,b) measures the fitness of the
estimates {↵,b} to an observed polarization intensity s by

L (s|↵,b) = � 1

2�2
s

ks� (1� ↵)bk22, (13)

where �s is a noise variance of s. We model P (b) with
a multivariate Gaussian distribution centered at the pre-
captured background, hence, the log likelihood can be de-
scribed as

L (b) = �1

2

�
b� b̄

�>
⌃�1

b

�
b� b̄

�
, (14)

where b̄ 2 R6 and ⌃b 2 R6⇥6 are the mean vector and di-
agonal covariance matrix. We pre-capture background im-
ages several times and compute the element-wise mean and
variance of b for b̄ and the diagonal elements of ⌃b, respec-
tively. Taking the partial derivative of Eq. (12) with respect
to ↵ and b and equating them to zero results in

↵ = 1� b>s

b>b
, (15)

b =

 
(1� ↵)2

�2
s

E6 +⌃�1
b

!�1✓
1� ↵

�2
s

s+⌃�1
b b̄

◆
,

(16)
where E6 is the 6 ⇥ 6 identity matrix. We iteratively com-
pute ↵ and b using Eqs. (15) and (16) and estimate alpha
matte b↵. We then evaluate the value of kb↵bPk2 to find well-
posed pixels.

Phase Angle Thresholding The thresholding of mini-
mized polarized foreground intensity finds well-posed pix-
els with approximately unpolarized foreground reflection,
and the remaining pixels likely contain polarized reflection.

Here, we introduce another thresholding based on the
phase angle deviation. When the phase angles of an ob-
served image I� and pre-captured background B� differ
significantly, the pixel is likely to be foreground. There-
fore, foreground pixels can be found by the thresholding,

1

2
cos

�1 s>b

ksk2kbk2
> ⌧1, (17)

where ⌧1 is a threshold. We make b↵ = 1 for the pixels that
satisfy this thresholding.

4.2. Alpha Matte Unification
We have discussed well-posed pixel detection thus far. This
section describes the complete alpha matte extraction by
unifying the alpha matte estimates for well-posed pixels,
polarization clues, and classic color clues using our pro-
posed polarimetric matting Laplacian.

Polarimetric Matting Laplacian Our polarimetric mat-
ting Laplacian is motivated by the original matting Lapla-
cian [10] that is derived from a local linear model:

↵i = a>k Ii + bk, 8i 2 Wk, (18)
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where ↵i and Ii 2 R3
+ are the alpha matte and image in-

tensities of the i-th pixel in a local window Wk. The coeffi-
cient vector ak 2 R3 and bias bk 2 R are constant over the
local window. By minimizing the squared error of the linear
model, Eq. (18), over every local window in an image using
the linear ridge regression model, Levin et al. proved that
the cost function can be summarized in the quadratic form,

J (↵) = ↵>L↵. (19)

Here, ↵ 2 RN is a vector of alpha matte values for all
N pixels in an image and L 2 RN⇥N is called a matting
Laplacian matrix, which can be computed solely from ob-
served image intensities.

To leverage the polarization clues, we design a Laplacian
matrix using the vector s. Similarly to the original matting
Laplacian, we assume the local linear model Eq. (18) with
si, which is the vector s of the i-th pixel in a local window,
instead of the vector Ii. Hence, our cost function can also
be described as

J (↵) = ↵>Lp↵. (20)

We refer to the matrix Lp 2 RN⇥N as polarimetric matting
Laplacian, whose (i, j)-th element is

X

k:(i,j)2Wk

 
�ij�

1
|Wk|

 
1+(si�µk)

>
✓
⌃k+

✏
|Wk|

E6

◆�1

(sj�µk)

!!
,

(21)
where µk 2 R6 and ⌃k 2 R6⇥6 are the mean vector and
covariance matrix of s in a local window Wk, respectively.
�ij is the Kronecker delta, and ✏ is a small positive constant.

While the original matting Laplacian implicitly assumes
foreground and background color vectors in a local window
lie in a low-dimensional space, e.g., color line model [18],
our model implicitly assumes the foreground and back-
ground Stokes parameters, f and b, in a local window lie in
a low-dimensional space, e.g., their color satisfies the color
line model, and phase angles are uniform (see the proof in
Sec. C). Although the matting Laplacian matrices are simi-
lar in concept, the matting accuracy of our polarimetric mat-
ting Laplacian is superior. The differences will be discussed
in Sec. 5.5 with a spectral analysis of the Laplacian matri-
ces.

Total Optimization We define our total cost function
with the polarimetric matting Laplacian, the constraint of
the well-posed alpha matte value estimates, and a weak su-
pervision of the least squares objective in Eq. (10), which
can be described as

↵ = argmin
↵

↵>Lp↵+ � (↵� b↵)
> D (↵� b↵)

+↵>WV↵+ 2v>W↵. (22)

The first term is the cost function with the polarimetric mat-
ting Laplacian. The second term constrains the solution to
match the well-posed alpha matte value estimates obtained
in Sec. 4.1, where � is a large positive number, b↵ is a vector
of well-posed alpha matte value estimates, and D 2 RN⇥N

is a diagonal matrix whose diagonal elements are 1 for well-
posed pixels and 0 for other pixels. The third term weakly
supervises the solution by the least squares solution in case
there are no clues from the first and second terms. Here,
W 2 RN⇥N is a diagonal weighing matrix whose diago-
nal elements are exp

⇣
�kb↵bPk2

⌘
per pixel and  is a large

number. V is a diagonal matrix whose diagonal elements
are b>b, and v is the vector of b>

(s� b) for each pixel.
The solution to this total cost function is obtained by solv-
ing the linear system,

(Lp + �D+WV)↵ = �Db↵�Wv. (23)

4.3. PolarIC Adjustment
Our method is based on the polarization image described in
Eq. (5), which implicitly assumes a linear constraint,

I0 � I⇡
4
+ I⇡

2
� I 3⇡

4
= 0. (24)

However, this constraint is rarely satisfied in real images
even after linearization of the camera’s response function as
illustrated in Fig. 3. Deviation from this constraint causes
errors in matte estimation. We introduce an adjustment step
called polarimetric intensity correction (PolarIC) to mini-
mally adjust the input polarization image intensities so that
the implicit constraint from Eq. (24) is satisfied.

We employ a pixel-wise linear correction model,

I 0� = c�I�, (25)

where c� is the correction coefficient for each polariza-
tion state, and I 0� is the corrected image intensity. The
desirable solution for the coefficients makes the mini-
mum correction on the image intensities to satisfy the

constraint. With denoting c =

h
c0, c⇡

4
, c⇡

2
, c 3⇡

4

i>
and

m =

h
I0,�I⇡

4
, I⇡

2
,�I 3⇡

4

i>
, we define the objective func-

tion as

c⇤ = argmin
c

k1� ck22 s.t. m>c = 0. (26)

This objective is a linear regression problem with an equal-
ity constraint and has the closed-form solution described as

c⇤ = 1�
�
1> em

�
em (27)

with denoting em = m/kmk2. The proof is described in
Sec. B. We perform this PolarIC adjustment on all color
channels independently.
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Before PolarIC After PolarIC
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Figure 3. The values of d = |I0 � I⇡
4
+ I⇡

2
� I 3⇡

4
| before and

after applying our PolarIC adjustment.

5. Experimental Evaluation
We present visual results of our PolarMatte method along
with quantitative and qualitative comparisons with existing
matting and keying techniques on various subjects. We fur-
ther discuss the role of each step in our process, including
a spectral analysis of our polarimetric matting Laplacian.
Additional experimental results (Sec. G, H, and I), three-
channel alpha matte extraction (Sec. J), and video results
can be found in the supplementary materials.

5.1. Implementation Details
Hardware Setup We use the Blackfly® S USB3 color po-
larization camera [1] and an LCD monitor [3] as a polarized
screen as shown in Fig. 1. The camera’s configuration was
set to 30 frames per second, 1/30 second exposure time, and
f/1.4. We measured the camera’s response function once
using a color checker board [2] to linearize the response
function.

Initial Adjustment Given a RAW image, we perform po-
larization demosaicing tailored for CPFAs [17] and our Po-
larIC adjustment. We capture background images 30 times
and compute the mean vector b̄ and covariance matrix ⌃b

for the Bayesian framework before capturing a target scene.

Parameters For our well-posed pixel detection, we set
�s =

5
255 , ⌧0 =

3
255 , and ⌧1 =

⇡
4 . We compute the polari-

metric matting Laplacian with ✏ = 10
�7 and 3 ⇥ 3 local

window. The parameters � and  for the total optimization
are set to 100 and 1000, respectively.

Test Data For quantitative evaluations, we collected 12

static scene test data including fur, solid and translucent ob-
jects, and objects with optical blur. We captured three sets
of polarization images with white, black, and blue back-
grounds for each scene. The baseline alpha matte was ob-
tained with triangulation matting [25] using the white and
black backgrounds. While the triangulation matte may de-
viate from the true alpha matte due to imaging noise and
backlight reflection on the foreground, it is a well-posed so-
lution with strong results, so we use it as the reference for
evaluations. The polarization image with a blue background
is used for chroma keying. See Sec. E in the supplementary
material for more details of the test data collection.

Comparative methods We use polarimetric triangulation
matting (PTM) [15], background matting (BGM) [13], and
Keylight implemented in Adobe After Effects for the com-
parison with our PolarMatte method. For PTM, we use the
two images with the brightest and darkest background from
the four polarization images. For BGM, we use s0 and b0

as input. While Keylight has several interactively adjustable
parameters, we only specify the key color and leave the
other parameters set to their default value for comparison
with our computational matting method.

Evaluation Metrics We employ three commonly used
metrics for evaluating the estimated alpha matte: mean ab-
solute error (MAE), mean squared error (MSE), and gradi-
ent error (GRAD).

Table 1. Quantitative evaluations of PTM [15], BGM [13], chroma
keying in Keylight, and PolarMatte on the static scene test data.

MAE # MSE # GRAD #
PTM 8.38 0.33 1.03
BGM 137.75 110.43 21.96

Keylight 84.45 84.45 6.13
PolarMatte 7.65 0.28 0.72

5.2. Comparison on Static Scene Test Data

Table 1 shows the quantitative evaluations of PTM, BGM,
Keylight, and our PolarMatte method. Our method outper-
forms the comparative methods across all metrics. As stated
in Eq. (6), the error in PTM is caused by foreground pixels
where the light reflected is polarized and the phase angle of
the reflection is comparable to the phase angle of the polar-
ized backlight. This error in PTM is observed in the visual
results shown in Fig. 4. In contrast to PTM, PolarMatte
correctly extracts alpha matte values by explicitly consider-
ing the polarized foreground reflection. The errors in BGM
are mainly caused by complex cases such as translucent
objects and fine-details as shown in Fig. 4. BGM strug-
gles with these cases because matting on an ordinary color
image is heavily ill-posed at every pixel even if the back-
ground is known. In contrast, PolarMatte accurately es-
timates the alpha matte on these scenes by leveraging the
polarization clues. A typical failure with Keylight can be
observed around the boundary of objects, particularly fine-
details. Since common chroma keying tools including Key-
light do not use a known background, they struggle to esti-
mate accurate fractional alpha matte values. Keylight alpha
mattes may be improved with manual adjustments, partic-
ularly errors due to background non-uniformity; however,
the primary advantage of PolarMatte is how the results are
produced without any human interaction.
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Scene TM PTM BGM Keylight PolarMatte

Figure 4. Visual results of the baseline alpha matte computed by triangulation matting (TM) [25], polarimetric triangulation mat-
ting (PTM) [15], background matting (BGM) [13], chroma keying in Keylight, and our PolarMatte method on the static scene test data.

Scene PTM BGM PolarMatte

Figure 5. Visual result of PTM [15], BGM [13], and PolarMatte
on a dynamic scene.

5.3. Comparison on Dynamic Scenes

The matting capability of our PolarMatte method is not lim-
ited to static scenes. Figure 5 shows a visual result of PTM,
BGM, and PolarMatte on a dynamic scene. These results
demonstrate that our method can extract accurate alpha mat-
tes for motion blur, while BGM fails with motion blur. PTM
also successfully extracts the alpha matte for motion blur,
however, PTM inaccurately shows fractional alpha matte
values in solid regions as shown in Figs. 4 and 5.

Figure 6 shows visual results of Keylight and PolarMatte
on dynamic scenes. While Keylight offers favorable alpha
mattes for motion blur, the tool struggles with balancing
accuracy between foreground, background, and mixed pix-
els without manual post-processing. More importantly, the
fractional alpha matte values from Keylight are not guaran-
teed to be physically correct since, like BGM, chroma key-
ing is similarly ill-posed. The dynamic scene experiment
demonstrates the superior matting ability of our PolarMatte
method on fine-details, translucent objects, and motion blur
for video. Additional video results can be found in the sup-
plementary material.

Scene Keylight PolarMatte

Figure 6. Visual results of chroma keying in Keylight and Polar-
Matte on dynamic scenes.

5.4. Ablation Study
We investigate the role of each step in our process, includ-
ing PolarIC adjustment, Bayesian framework, phase angle
thresholding, and total optimization with the polarimetric
matting Laplacian. We conduct an ablation study on the test
data, where we run our method without each component.

Table 2 shows the results of the ablation study. These
results indicate that every step of our method contributes
to the matting accuracy. The phase angle thresholding sig-
nificantly contributes to the MAE and MSE because a large
number of pixels can be classified as foreground in this step.
The use of the polarimetric matting Laplacian contributes
to the GRAD score since the total optimization with po-
larimetric matting Laplacian can correct noisy foreground
alpha matte values due to polarized foreground reflections.

5.5. Matting Laplacian Comparison
As validated in Sec. 5.4, the polarimetric matting Laplacian
is a key component of our method. While the polarimetric
matting Laplacian is inspired by the original matting Lapla-
cian [10], our Laplacian produces superior results.

We first compare the matting accuracy of each Laplacian
in our matting optimization Eq. (23). Table 3 shows the re-
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Table 2. Ablation study of PolarMatte on the test data. The exper-
iments are performed without one of our method’s components:
PolarIC adjustment, Bayesian framework, phase angle threshold-
ing (PA thresh.), and polarimetric matting Laplacian (PML).

MAE # MSE # GRAD #
PolarMatte w/o PolarIC 8.78 0.45 0.93

PolarMatte w/o Bayesian 8.53 0.43 0.89
PolarMatte w/o PA thresh. 8.85 0.49 1.00

PolarMatte w/o PML 8.41 0.34 1.04
PolarMatte 7.65 0.28 0.72

Table 3. Comparison between our polarimetric matting Laplacian
Lp and the original matting Laplacian L on the test data.

MAE # MSE # GRAD #
PolarMatte w/ L 9.89 0.62 2.22

PolarMatte w/ Lp 7.65 0.28 0.72

Scene #2 #3 #4
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Figure 7. Spectral analysis of our polarimetric matting Laplacian
and the original matting Laplacian [10]. Figures show the second,
third, and fourth smallest eigenvectors of each matting Laplacian
(the first smallest eigenvector is constant for both matrices).

sults on the test data, which indicate the improvement of
our polarimetric matting Laplacian to the original matting
Laplacian. The difference in matting accuracy can be ex-
plained by a spectral analysis of both matrices. Figure 7
shows the second, third, and fourth smallest eigenvectors
of our polarimetric matting Laplacian and the original mat-
ting Laplacian that primarily affect the final matte estimate.
The second smallest eigenvector of our polarimetric matting
Laplacian shows nearly correct alpha matte features, which
indicates the well-posedness of the PolarMatte problem. In
contrast, the eigenvectors of the original matting Laplacian
show the texture of the foreground subject, which suggests
that the original matting Laplacian requires known alpha
matte values at many pixels. This spectral analysis validates
that the use of polarization clues improves matting accuracy.

5.6. Limitations

The experiments so far have shown the ability of our
method to extract ultra high-quality alpha mattes for dy-

Scene TM PolarMatte

Figure 8. A failure case of backlight-based matting methods in-
cluding triangulation matting (TM) [25] and PolarMatte. The al-
pha matte estimate can be incorrectly fractional when background
light is reflected on the foreground subject.

namic scenes containing diverse subjects without manual
corrections. However, our method may estimate incorrect
alpha matte values if the capturing environment is unsuit-
able. Specifically, if the polarized foreground reflection
resembles the polarized backlight, Eq. (10) can be solved
with kb↵bPk2 = 0, resulting with an incorrect alpha matte
value that is less than 1. This undesirable case may oc-
cur when the foreground subject and polarized background
screen are close in proximity. This type of error is com-
mon in backlight-based matting [4], including triangulation
matting and PolarMatte, as shown in Fig. 8. We encour-
age anyone who implements PolarMatte to maintain suffi-
cient distance between the foreground subject and polarized
background screen to avoid this phenomenon.

Another limitation of our method is its computational
cost. We measured processing time on Intel® Xeon® Plat-
inum 8275CL CPU @ 3.00GHz, and PolarMatte required
several tens of seconds to extract the alpha matte of each
image in the test data, while PTM took only one second or
less to process. While the computational cost of PolarMatte
is acceptable for creating a matting dataset, it is unrealistic
for real-time background replacement. We seek to improve
the computational cost of our method in the future.

6. Conclusion
In this paper, we presented PolarMatte, a fully computa-
tional alpha matte extraction method that produces ultra
high-quality alpha mattes for images and video that can
directly be used as ground-truth for training datasets. By
leveraging the polarization clues from our minimal setup,
we can robustly detect indistinguishable pixels, and over-
come the issue of polarized foreground reflections with the
proposed polarimetric matting Laplacian. The evaluation
of our method with standard practices and other matting
techniques on real-world static and dynamic scenes demon-
strates our ability to computationally extract ultra high-
quality alpha mattes for fine-details, motion and optical
blur, and translucent objects without any manual operations.
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