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Abstract
Diffusion MRI (dMRI) non-invasively maps brain white

matter, yet necessitates denoising due to low signal-to-noise
ratios. Patch2Self (P2S), employing self-supervised tech-
niques and regression on a Casorati matrix, effectively de-
noises dMRI images and has become the new de-facto stan-
dard in this field. P2S however is resource intensive, both
in terms of running time and memory usage, as it uses all
voxels (n) from all-but-one held-in volumes (d− 1) to learn
a linear mapping Φ : Rn×(d−1) 7→ Rn for denoising the
held-out volume. The increasing size and dimensionality of
higher resolution dMRI acquisitions can make P2S infeasi-
ble for large-scale analyses. This work exploits the redun-
dancy imposed by P2S to alleviate its performance issues
and inspect regions that influence the noise disproportion-
ately. Specifically, this study makes a three-fold contribu-
tion: (1) We present Patch2Self2 (P2S2), a method that uses
matrix sketching to perform self-supervised denoising. By
solving a sub-problem on a smaller sub-space, so called,
coreset, we show how P2S2 can yield a significant speedup
in training time while using less memory. (2) We present a
theoretical analysis of P2S2, focusing on determining the
optimal sketch size through rank estimation, a key step in
achieving a balance between denoising accuracy and com-
putational efficiency. (3) We show how the so-called statis-
tical leverage scores can be used to interpret the denoising
of dMRI data, a process that was traditionally treated as a
black-box. Experimental results on both simulated and real
data affirm that P2S2 maintains denoising quality while sig-
nificantly enhancing speed and memory efficiency, achieved
by training on a reduced data subset.

1. Introduction
Patch2Self (P2S) [23] is currently a leading denoising tech-
nique for diffusion MRI (dMRI), mainly due to its broad

applicability and parameter-free nature. This method is
increasingly used in applications, ranging from strongly-
encoded acquisitions [52] and imaging of small (low SNR)
structures such as the spinal cord [59] to delineating and
measuring treatment responses in cancer [15] and high-field
imaging [56]. Additionally, it is also useful in relaxome-
try for myelin water imaging [9], pediatric/neonatal imag-
ing [61], and neuroimaging in animals, including mice and
macaques [8]. Patch2Self serves as a preliminary step in
super-resolution processes [10, 33, 41] and is a building-
block component in generative diffusion model-based de-
noising techniques [68]. Not surprisingly, Patch2Self has
been integrated into widely-used open-source packages like
DIPY [25], QSIPrep [11], and Spinal Cord Toolbox [14].

Diffusion MRI is a 4D acquisition method that gen-
erates a series of 3D volumes each corresponding to dif-
ferent gradient directions [4, 34]. Each 3D volume pro-
vides unique information about the underlying diffusion
processes in the brain. This information is used to probe
the tissue microstructure in the living brain by modeling
the signal per voxel using a variety of biophysical mod-
els [50, 51]. This derived information can however be
corrupted due to low signal-to-noise ratio (SNR). Multiple
sources of noise are apparent in dMRI that reduce SNR.
Furthermore, with new acquisition schemes, high-field MR
gradients [47, 62] and multi-dimensional diffusion encod-
ing strategies [30, 55] the effect of noise sources is exagger-
ated and affects image conspicuity.

Self-supervised learning, as a sub-domain of unsuper-
vised learning algorithms, has been rapidly gaining traction
over the past years. Novel strategies of self-supervision are
being developed and employed for different problems such
as multi-modal learning [48, 69], self-labeling [36, 44],
learning semantic context [16] and contrastive predictive
coding [3]. Denoising strategies based on self-supervision
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have revolutionized image denoising performance across
different scientific domains[29, 35]. Leveraging statisti-
cal independence of noise, first introduced in the work of
Noise2Noise (N2N) [40] was given a theoretical ground-
ing in the work of Noise2Self by posing it under a self-
supervised framework [6]. Other approaches similar to N2S
and N2N (such as Noise2Void, etc.) were also proposed
around the same time [37, 38]. P2S belongs to this same
family of algorithms and leverages the statistical indepen-
dence of noise. In a way, P2S combines N2N and N2S
and recasts the 4D self-supervised denoising of dMRI as
an image in-painting problem [7]. Instead of holding out a
part of the same 3D volume, P2S holds out the entire 3D
volume itself and learns to predict a denoised version of
the held-out volume as a linear combination of the remain-
ing 3D volumes. P2S relies on the theory of J -invariance
[6, 23] to perform the denoising, which can be seen as a
way of performing 4D image in-painting in the q-space [5].
In the case of dMRI data, denoising is typically done on a
single subject and P2S showed how one can get state-of-
the-art denoising performance using linear regression as its
backbone. Self-supervised denoisers (typically making as-
sumptions on the noise) outperform traditional methods of
denoising, but can be computationally expensive as they do
not place assumptions on signal properties such as sparsity,
compressibility, repetition, etc. In pursuit of acquiring data
at a higher resolution and to extract detailed diffusion in-
formation, the dimensionality of the data increases rapidly
(per-volume and per-scan). Moreover, due to the advent of
high-field scanners, more noise is induced in the signal due
to the use of stronger magnetic gradients. Along with the
dimensionality of a single scan, the number of scans ac-
quired and released for analyses is also increasing rapidly,
requiring fast and efficient denoising algorithms.

In this work we introduce Patch2Self2 (P2S2), which
proposes the sketching of the large matrix A [23] con-
structed for training the denoiser via P2S to create a coreset.
A is constructed by vectorizing each 3D volume and con-
catenating it along the columns of A. This is called a Ca-
sorati matrix where each independent measurement forms
a column of A [47]. So, instead of performing the self-
supervised denoising on the over-determined set of con-
straints (A ∈ Rn×d, where n ≫ d), P2S2 samples and
rescales the matrix to a much smaller subset of the con-
straints (A ∈ Rs×d, where n ≫ s ≈ d). By training the
self-supervised denoiser on this much smaller induced sub-
problem, we show that one can achieve the same level of
denoising performance as P2S with a highly reduced time
complexity and a much smaller memory footprint. We show
the speedup gains both via the theoretical complexity anal-
ysis and the empirical comparisons on simulated and real
datasets of different dimensionalities. To ensure that P2S2
does not hamper the denoising performance, we compare

P2S2 against P2S on both simulated and real data using
the root mean squared error (RMSE) and the R2 metrics.
We also evaluate the performance on the downstream tasks
of microstructure modeling and tractography. While the
sketch size required for sketching and solving the linear sys-
tem within P2S2 may vary, our experiments suggest at least
a 60% redundancy in the training set. We compared the
performance of P2S2 via different sketching methods such
as CountSketch, leverage score sampling, and the Subsam-
pled Randomized Fourier Transform (SRFT). Our results
show that leverage score sampling yielded the best perfor-
mance. We discuss how leverage scores can be used for
interpretability of P2S2, revealing which regions of the data
have a higher influence on the denoising algorithm. This
enables interpretability (crucial to medical imaging) of the
self-supervised denoising, which is otherwise treated as a
black-box approach. With the help of the Rank Revealing
QR (RRQR) decomposition, we also show how one can cal-
ibrate the optimal sketch size to construct the coreset for
P2S2 via a self-supervised loss.

2. Preliminaries and Approach
Leveraging the fact that each 3D volume of the 4D data
can be assumed to be an independent measurement of the
same underlying object, P2S proposes constructing a large
Casorati matrix wherein each column can be assumed to
be linearly independent of the other columns. P2S sets
up the self-supervised regression task so that each column
is denoised by representing it as a combination of the re-
maining columns. P2S relies on the self-supervised loss:
L (ΦJ) = E ∥ΦJ (A−j)−Aj∥22. Here Aj refers to the
voxels corresponding to the volume that were held-out and
used as target for training the rest of the voxels from the
remaining 3D volumes A−j . P2S showed that this J -
invariant function was in fact a linear map ΦJ : A−j 7→ Aj

that achieved the optimal denoising performance. This al-
lows re-writing the P2S as a linear regression problem:

min
w

∥A−jw −Aj∥2, (1)

where A−j = [a1 . . . ,an]
⊤ ∈ Rn×d−1 is the design ma-

trix without the held-out j-th column, denoted by Aj =

[a1, . . . , an]
⊤ ∈ Rn. Aj is the target 3D volume for learn-

ing ΦJ . Here ai ∈ Rd−1 and ai ∈ R, for i = 1, . . . , n.

2.1. Coresets for Regression via Matrix Sketching
The self-supervised denoising performed in P2S relies on
least squares regression as described in Sec. 2. Linear re-
gression typically performed via Cholesky, SVD or QR de-
composition needs O

(
nd2

)
time. In the case of P2S, the

problem setup via the Casorati matrix A is massively over-
constrained, i.e., n ≫ d with full-column rank1, and has an

1Similar results also apply to a rank-deficient system.
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Figure 1. We show how Patch2Self2 works in the case of Diffusion MRI data. The Casorati Matrix A is constructed by flattening each
gradient direction. A is then sketched via a randomized algorithm to generate the smaller sketched Casorati Matrix C. The J -invariant
training is then performed on C to learn Φ̂J and predict the denoised volume.

Figure 2. (A) An exemplary point-plot of row leverage scores from
the Casorati matrix of a real dataset is depicted. (B) Axial slices
of 3D leverage score maps on two datasets are shown, highlighting
structured artifacts (marked by red arrows) across gradient direc-
tions in the HCP 7T data.

added time complexity, since the regression is performed
d times given that each volume needs to be separately de-
noised. Therefore, in P2S2, instead of computing the exact
solution vector w∗= argminw ∥A−jw−Aj∥22, we propose
to approximate it using tools from randomized matrix mul-
tiplication and subspace embeddings. The key idea here is
to solve a sub-problem w̃ = argminw ∥SA−jw − SAj∥22
such that:

∥A−jw̃ −Aj∥2 ≤ (1 + ϵ)∥A−jw
∗ −Aj∥2 , (2)

where ϵ is the desired level of accuracy and S ∈ Rs×n with
d ≈ s ≪ n is the so-called sketching matrix 2. Given the
linear sketch SA−j of A−j , note that computing w̃ takes
O(sd2) time, which is indeed much faster than the classical
computation of w∗. Therefore, our goal is to work with a
suitable S such that the sketch SA−j can be computed ef-

2For ease of exposition we use S in place of Sj .

ficiently and satisfies eqn. (2) with high probability. There
are several such choices for S:
Count-sketch [12]: In this case, S is a sparse embedding
matrix with s = O(d

2
/ϵ) rows and has exactly one non-zero

entry per column, which is chosen randomly and set to ±1
independently. The product SA−j can be computed in time
O(nnz(A−j)). Assuming the failure probability to be a
constant, the overall running time to compute w̃ is given by
O(nnz(A−j))+ poly(d/ϵ). Here, nnz(·) denotes the spar-
sity of the underlying matrix.
Fast Johnson-Lindenstrauss transformations [13, 21]:
Other choices for the sketching matrix S include struc-
tured random matrices such as the subsampled randomized
Fourier transform (SRFT) or the subsampled randomized
Hadamard transform (SRHT). In these cases, the sketching
matrix S is typically of the form S =

√
n
sRHD, where

D ∈ Rn×n is a random diagonal matrix with the entries set
to ±1 independently; R ∈ Rs×n is a subset of s rows of the
n×n identity matrix chosen uniformly at random, indepen-
dently, without replacement; and H ∈ Rn×n is either a nor-
malized discrete Fourier transform (for SRFT) or a normal-
ized Walsh-Hadamard matrix (for SRHT). Note that both
SRFT and SRHT are based on randomized linear transfor-
mations, which can be applied rapidly to arbitrary vectors.
Indeed, we can compute the matrix-matrix product SA−j

in O(nd log n) time exploiting the structure of the underly-
ing Fourier/Hadamard matrix; if s = O(d+ log 1/ϵ log d/ϵ),
then the resulting sketching matrix satisfies eqn. (2). The
overall running time is O(nd log n) + Õ(d3/ϵ2).
Sampling-based sketching [20]: A third way of achiev-
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ing a subspace embedding that satisfies eqn. (2) is data-
dependent, and can be obtained by sampling rows of a ma-
trix proportional to their leverage scores ℓi = ∥Ui∗∥22 for
i = 1 . . . n, where Ui∗ ∈ Rn is the i-th row of the ma-
trix of the left singular vectors of A−j that are computed
using the thin SVD of A−j . In this context, the sketching
matrix S is the so-called sampling-and-rescaling matrix of
[19] with the sampling probabilities pi = ℓi/d, i = 1 . . . n,
and the sample complexity is given by s = O(d log d/ϵ2).
We note that computing ℓi s exactly needs access to the
matrix U which is expensive. Therefore, in practice, ap-
proximate leverage scores also suffice and they can be effi-
ciently computed without computing the matrix U [12, 22].
We also note that there is another line of work [2, 58] that
used sketching as a randomized preconditioner to come up
with high precision solutions for overconstrained regression
problems. However, in context of P2S2, we can achieve
the desired accuracy in denoising performance, even with a
sketch-and-solve approach as discussed above. Finally, we
refer the interested reader to the surveys [17, 18, 42, 46, 67]
for background on Randomized Linear Algebra.

2.2. Statistical Leverage for Interpretability

In the previous section, we described how leverage scores
can be used to perform importance sampling in order to gen-
erate the coreset for P2S2. Here we show how to use the
statistical leverage scores of the underlying linear model for
interpreting areas of the data that influence the noise. From
a statistical perspective, an alternative formulation of lever-
age scores are the diagonal entries of the projection matrix
constructed to solve the linear regression [17, 43]. Typi-
cally, one looks at the standard deviation of the noise de-
rived from the models used to perform the denoising [63].
Since P2S and consequently P2S2 are set up to denoise in
a predictive setting via self-supervision, we can use statisti-
cal leverage to get a more detailed view of the factors that
would influence the denoising performance.

In Fig. 2A, we show the leverage scores computed on a
subject from the PPMI dataset [45]. As one can see in the
plot, some voxels in the data exhibit considerably higher
statistical leverage. Voxels where an anatomical signal from
the brain is captured exhibit higher leverage when compared
to the voxels in the background, which have very small
leverage scores. In Fig. 2B, we show the spatial map of
leverage scores for two example datasets, PPMI and HCP
7T [62]. In the case of the PPMI data, we note that the re-
gions of the white matter, such as the corpus callosum, have
higher statistical leverage compared to the rest of the brain.
Strikingly, we also see that a slanting structured pattern (in-
dicated with red arrows) appears in the leverage scores map
of the HCP 7T data. This structure can also be seen in the
noise map of Fig. 3A in the residual map. Leverage score
maps of the same HCP 7T subject also highlighted a struc-

tured artefact at the bottom of the axial slice (depicted as a
white-dotted bounding box). It could be a ghost or a struc-
tured artefact added to the 7T data.

3. Patch2Self2 Algorithm
P2S2 extends the idea of P2S (see Sec. 2) by performing
self-supervised training on coresets. In case of dMRI, we
have d number of 3D volumes each with dimensionality:
l × w × h. Each of the volumes is flattened to a 1D ar-
ray (n = l × w × h) to form a column of the Casorati
matrix A ∈ Rn×d. Next, we sketch this matrix A using
the sketching matrix S(∈ Rs×n) to get a sketched Casorati
matrix C = SA (see Sec. 2.1). We perform a self super-
vised denoising on this sketched matrix C by solving the
sub-problem: minw̃ ∥C−jw−Cj∥2. As shown in 1, this de-
noising is performed on a volume-by-volume basis as pro-
posed in P2S, where j corresponds to the volume held out
for denoising3.

Thus, P2S2 learns a linear map ΦJ : Rs×(d−1) 7→ Rs,
which is a much smaller sub-problem to solve since s ≪ n.
After the training is done, the approximate solution vector
w̃ learned via ΦJ is used to predict the held out volume
of Aj . In order to predict the denoised volume, the full
Casorati matrix A−j with all rows is given as input to the
function ΦJ . In P2S2, we allow switching between differ-
ent sketching methods such as SRFT, leverage scores, and
CountSketch (see Sec. 2.1 for details of each). Our results
show that sketching via leverage scores outperforms other
sketching methods (detailed comparison in Sec. 5).

As per the above procedure, P2S2 introduces using a new
hyperparameter - the sketch size that needs to be tuned. We
propose a J -invariant self-supervised calibration procedure
to find an optimal sketch size s based on the QR decompo-
sition and leverage score sketching. Leverage scores are a
univariate statistic. When two rows of A have identical or
similar leverage scores, it implies that the rows are highly
correlated and therefore redundant in the construction of the
sketched Casorati matrix C. Thus, a redundancy removal
step is often useful to reduce the sketch size s while retain-
ing denoising performance. Towards that end, P2S2 em-
ploys the Rank Revealing QR (RRQR) factorization [28],
to flag such redundancies by ranking the rows of the matrix
in order of independence. In other words, highly linearly in-
dependent rows are given priority after the RRQR has been
computed. In P2S2, to calibrate the sketch size, we start
with s < 50% of the number of rows in A and compute the
rank-revealing QR (RRQR) decomposition [28] of C. The
RRQR ranks the rows of C in order of importance and can
be used to remove redundant rows from the sketched matrix.
Next, as shown in Fig. 4A, we select the top k-ranked rows
from C and compute the self-supervised loss. Gradually, by

3In Algorithm 1, we use * to represent matrix dimensions for clarity.
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Figure 3. Depicts (A) Suppression of noisy band-like patterns in residual maps by P2S2 (green arrow). (B) In-painting of signal voids in
original data and predicted signal in residual map (red arrows). (C) Application of P2S2 to other organs like the heart (Porcine Cardiac
Data). (D) Reduction of ghosting artifacts (blue arrows).

Algorithm 1 Patch2Self2
1: Input 4D data X of dimension l × w × h × d
for volume j = 1, 2, . . . d [where d is the number of volumes] do

2: Flatten volume vj into an n-sized feature vector [m = l × w × h].
3: Stack feature vectors into a n × d matrix to form the Casorati matrix A.
for volume j = 1, 2, . . . d do

4: Generate Sj ∈ Rs×n from row leverage scores of A∗,−j .
5: Compute a sketched Casorati matrix C∗,−j = SjA∗,−j ∈ Rs×d−1

6: [Q, R, rank] = RRQR(C∗,−j ).
7: Select top k rows from C∗,−j post-RRQR for Ĉ∗,−j ∈ Rk×(d−1).
8: Hold-out features of volume j to form a k × (d − 1) matrix Ĉ∗,−j .
9: Select the target volume j to be denoised Ĉ∗,j of dimension k × 1.
10: Train a linear regressor Φ : Ĉ∗,−j 7→ Ĉ∗,j .
11: Set the denoised volume X̂∗,∗,∗,j to the unraveled output Φ̂(A∗,−j).

12: Return denoised 4D data X̂

increasing the size of k in each iteration we compute the
self-supervised loss for each iteration. The self-supervised
loss for each value of k is computed as:∥ΦJ(A−j)−Aj∥2.
As shown in Fig. 4B, the loss eventually converges to a min-
imum with minimal change in the denoising performance.
At that point, the elbow in the error plot (shown by the
red box) reveals the number of redundant rows of the data,
which allows us to estimate the (approximately) optimal s.
Leverage Score Sampling Strategies: We can obtain the
sketched matrix C via leverage score sampling using the
following two procedures: (1) Deterministically choosing
top s leverage scores; (2) Randomized sampling based on
leverage scores. From Fig. 2A, it is evident that only a few
rows of the Casorati matrix have a very high leverage score
in comparison with the remaining ones. These rows seem
to have a higher influence on the denoising performance.
As shown in Fig. 6A, the deterministic selection of the
highest leverage scores consistently performs worse at all
sketch sizes when compared to randomly sampling leverage
scores. To investigate this effect, we compared the distribu-
tion of the rows corresponding to deterministically chosen

Figure 4. (A) Iterative self-supervised calibration procedure to
obtain the optimal sketch size s to be used within P2S2 using a
RRQR decomposition. the self-supervised loss is computed, by
iteratively reducing the size of s until convergence. (B) We depict
an example loss plot of the self-supervised calibration with exem-
plary PPMI data.

top 20K leverage scores against the randomly sampled 20K
rows. From the joint plot obtained by fitting a kernel den-
sity estimation shown in Fig. 6B, it can be seen that the dis-
tribution of the randomly sampled leverage scores forms a
bi-modal distribution as opposed to the uni-modal distribu-
tion obtained from a deterministic selection of the top 20K
leverage scores. This implies that the randomization in the
sampling procedure helps denoising by using values that do
not have a "high leverage".

4. Theoretical Analysis of Sketch Size
As mentioned in Sec. 2.1, if ρ represents the rank of A−j

with ρ ≤ d − 1 ≪ n, eqn. (2) holds with high proba-
bility through leverage score-based sampling with a sam-
ple size of k = O (ρ log ρ/ϵ2). Utilizing standard nota-
tions, let the mean squared errors (MSEs) resulting from
the exact solution w∗ and the sampling-based solution w̃

be expressed as MSE∗ = ∥A−jw
∗ −Aj∥22/n and M̃SE =

∥A−jw̃ − Aj∥22/n, respectively. From eqn. (2), we can
straightforwardly derive the following:
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Proposition 1 If the sketching matrix S satisfies eqn. (2),
then M̃SE ≤ (1 + ϵ)MSE∗.

Proof Squaring and dividing both sides of eqn. (2) by n

readily yields M̃SE ≤ (1+ϵ)2 MSE∗. Given that ϵ ≤ 1, this
further simplifies to M̃SE ≤ (1+3ϵ)MSE∗. Therefore, with
a simple change of variables (using ϵ/3 instead of ϵ) and
sample size k = O(ρ log ρ/ϵ2), we can indeed observe that
the M̃SE closely approximates MSE∗. Now, the question
is how to obtain a precise estimate of ρ to determine an
accurate sketch size k that approximates the optimal MSE.

To this end, the following discussion aims to narrow
the theory-practice gap and validate that Steps 5-7 in Al-
gorithm 1 are indeed a theoretically relevant approach to
determining the optimal k. Let A−j = UΣVT represent
the thin SVD of A−j , where the matrices U ∈ Rn×ρ,
V ∈ Rd−1×ρ, and Σ ∈ Rρ×ρ follow standard notational
convention. For our purpose, we can start with an initial
sketch size s = O(d log d/ϵ2) (which is always greater than
k) and compute C−j from Step 5 in Algorithm 1. Now, we
already have the following result:
Proposition 2 (Lemma 4.1 of [20]) If S satisfies the ℓ2-
subspace embedding property, we have rank(SU) = ρ.
Similar to eqn. (2), it can also be shown that our lever-
age score-based sampling matrix S indeed satisfies the
aforementioned ℓ2-subspace embedding property with high
probability using O (ρ log ρ/ϵ2) samples (e.g., see [67]). Next
result is a well-known, provable fact from linear algebra lit-
erature about matrix products and their rank.

Fact 3 For any two matrices A and B, rank(AB) =
rank(A) if B is of full row-rank.
Now, note that Σ is non-singular and V is of full-column-
rank. Therefore, applying Fact 3 sequentially on SU
and combining with Proposition 2, we have rank(C−j) =
rank(SUΣVT) = rank(SU) = ρ. This implies that
we can actually determine ρ directly through C−j using
RRQR in Step 6, and consequently, obtain the optimal
sketch size k from Step 7 of Algorithm 1. Here note that
as s = O(d log d), the worst case complexity of Step 6 is
given by O(d3 log d). When ρ ≪ d − 1, the RRQR al-
gorithm can be even more efficient, and the actual compu-
tational cost may be much lower than O(d3 log d) in prac-
tice. In this context, it’s also worth mentioning that approx-
imate leverage scores are sufficient for satisfying eqn. (2) as
well as the aforementioned ℓ2-subspace embedding prop-
erty. Their computation can be efficiently done without
the need to compute U, achieving a time complexity of
O
(
nnz(A−j) log n+ d3 log2 d+ d2 log n

)
due to [12].

5. Evaluation on Real Data
To evaluate the performance on real data, we qualitatively
and quantitatively compare the effects of P2S2 denoising on
the residual maps, microstructure modeling [50] and trac-
tography [31]. We quantify the effect of different sketch

sizes on the speed and accuracy of the approximate solution
(w̃) in comparison with the P2S solution (w∗).

5.1. Noise suppression and artefact removal

Visual conspicuity of the data (i.e. image quality) is crucial
to any form of medical imaging, especially dMRI where
the images are inherently limited by SNR. While thermal
noise is known to dominate the sources of noise that cor-
rupt the underlying signal [63], different acquisition strate-
gies tend to induce different types of artefacts that ham-
per the signal structure. We show that the self-supervised
setup of P2S2 deals with these artefacts without loss of sig-
nal corresponding to anatomical structure. In Fig. 3A, we
denoised a subject HCP 7T dataset [62] using only 50K
out of 61M (0.083%) training samples obtained via lever-
age score sampling. Noise mapping from this type of high-
field imaging data (acquired using 7 Tesla scanner) is still
under-investigated. We show that P2S2 suppressed band-
like structured noise, which may be correlated across some
volumes, but is largely uncorrelated across all 3D volumes.
One of the main motives of high-field 7T scanners is to ac-
quire data at a much higher resolution. With a zoomed-in
cross-section in Fig. 3A, we show how P2S2 uncovers much
more anatomical detail without loss of information.

Signal voids are a common issue in MRI that occur
due to certain voxels not emitting any radio-frequency sig-
nal due to a lack of activated protons in that region [65].
Since P2S, and consequently P2S2, are similar to image in-
painting [7], where an entire 3D volume is predicted as a
combination of the rest of the volumes, this signal void can
be imputed with context learned from the rest of the vol-
umes. This setup resolves a unique issue for dMRI data
which was not addressed by any other denoising algorithm
in the past. In Fig. 3B we show how P2S2 fills the signal
void present in the Stanford HARDI [57] data in gradient
direction 33, without removing or smoothing the signal in
the rest of the image. In Fig. 3C,D we show how P2S2 does
not cause any signal loss even in the presence of physiolog-
ical noise (porcine cardiac data) [24, 49] and ghost artefacts
[39, 54], which are ubiquitous in MRI acquisitions. Note
that in either case, P2S2 strictly only suppresses noise and
does not lead to signal loss or smoothing. [In the supple-
ment, we compare the P2S2 residuals with P2S].

Table 1: Quantitative comparison via MSE and R2 metrics.
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Figure 5. (A) Demonstrates the impact of P2S and P2S2 denoising on HCP 7T data using Diffusion Kurtosis Imaging (DKI), comparing
Radial Kurtosis and Mean Kurtosis metrics for both. (B) Compares P2S2, P2S, and noisy data performance through fiber-to-bundle
coherence in optic radiation and corpus callosum, including cross-sections of spherical harmonic representations (FODs).

5.2. Comparison of Sketching Methods
The P2S2 algorithm follows a sketch-and-solve [20, 64] ap-
proach and therefore the sketch size can affect the denois-
ing performance. In order to quantify this effect, we chose a
random subject from the PPMI dataset which was acquired
with a widely used 64-directions DTI protocol. A random
volume (here vol. #11) from this data was first denoised
with P2S and the solution w∗ obtained from it was treated
as the optimal solution. Each volume of this subject con-
tained around 960K voxels. Starting with a sketch size of
500 samples, P2S2 denoising was performed on the data
with sketches computed using CountSketch, leverage score
sampling and SRFT algorithms explained in Sec. 2.1. The
sketch size was then increased iteratively until the approx-
imate solution w̃ was numerically very close to w∗. The
relative error for each iteration and method was computed
as: ∥w∗−w̃∥2

∥w∗∥2
.This procedure was repeated ten times to cap-

ture the variance of denoising performance since the under-
lying algorithms used to approximate the solution are ran-
domized. The variance with a 95% confidence interval was
plotted at each iteration (i.e., for each sketch size).

We also compared the performance of the sketching
methods with uniform sampling and with the determinis-
tic choice of the rows corresponding to the top leverage
scores, for the same sketching sizes. As shown in Fig. 6A,
the variance of all the sampling algorithms is reduced as the
sketch size increases. Uniform sampling and deterministic
leverage scores perform worse than the randomized algo-
rithms at each sketch size. While CountSketch and leverage
score sampling perform approximately the same, leverage
score sampling performs slightly better and offers the added
advantage of interpretability. In Fig. 6C, we also empiri-
cally compare the speedup obtained from P2S2 in compari-
son with P2S. This supplements our theoretical complexity
analysis in Sec. 2.1. With experiments on three different

datasets we note that the speedup obtained increases as the
sketch size reduces. We also find that the speedup obtained
via P2S2 increases in proportion to the dimensionality of the
data. As one can see in Fig. 6C, the speedup on the Stan-
ford HARDI data (shape: 81 × 106 × 76 × 160) is much
more than simulated (shape: 256 × 256 × ×4 × 63) and
PPMI data (shape: 116× 116× 72× 65). The QR decom-
position computed as a part of self-supervised calibration
in P2S2 does not add a significant computational overhead.
The wall-clock time on an i7 CPU with 16GB RAM for
the QR decomposition took 0.0904s on a sketch-size of 20k
which amounts to 20% of the PPMI data [45] that the cal-
ibration was run on (see Fig.4). If repeated 10 times for
calibration, the QR computation would take < 1s due to
fewer than 20k rows in subsequent runs.
5.3. Impacts on Microstructure and Tractography
To estimate the underlying tissue microstructure in the
living brain one typically fits a biophysical model to each
voxel of the dMRI data to capture tissue heterogeneity. Dif-
fusion kurtosis imaging (DKI) [32] is one such modeling
scheme that quantifies the degree of non-Gaussian diffu-
sion. DKI is however sensitive to noise and can often lead
to fitting degeneracy in the derived maps. In Fig. 5A, we
show that P2S alleviates this issue by significantly reduc-
ing the failures of model fitting in the data. We demonstrate
that both P2S and P2S2 methods offer comparable estimates
of radial (RK) and mean (MK) kurtosis derived from DKI
metrics, using the same HCP 7T dataset. This data, which
exhibited band-like structured noise, showed that noise af-
fects the DKI metrics, particularly visible in the raw noisy
data. To assess the impact of denoising on these metrics,
RK and MK were analyzed. Notably, P2S2, trained on just
0.083% of the 61M raw data samples, delivered results sim-
ilar to P2S. The process involves modeling the signal for
each voxel in dMRI data, aiding in white matter tract recon-
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Figure 6. (A) Compares error variance in P2S2’s solution approximation to P2S using three randomized algorithms (CountSketch, leverage
score sampling, SRFT) against uniform sampling and deterministic selection of highest leverage score rows. (B) Presents a joint kernel
density estimate plot for 20K voxels sampled randomly by leverage scores versus deterministic choice. (C) Displays empirical speedup
comparisons with P2S across three datasets, varying the sketch size.

struction (tractography).
However, noise in the data can lead to inaccurate tractog-

raphy, creating spurious tracts. Denoising helps in obtain-
ing more accurate signal representations, thereby reducing
the occurrence of false-positive tracts. In order to evaluate
this, probabilistic tractography was performed on the Stan-
ford HARDI dataset [57]. The tracking was performed us-
ing Constrained Spherical Deconvolution (CSD) model [60]
(implementation using DIPY [26]). In Fig. 5B we show the
effect of denoising via P2S and P2S2 on the fiber orientation
distribution (FOD) plotted via the CSD model. To denoise
via P2S2, only 50K samples out of the 6M (8.3%) samples
were used in the training process. Note that both P2S and
P2S2 suppress noisy lobes uncovering the underlying fiber
crossings. The generalized fractional anisotropy obtained
from the constrained solid angle algorithm [1] was used as
the stopping criterion of the probabilistic tracking. Next, the
streamlines tracking the optic radiation and corpus callo-
sum bundles, obtained from noisy, P2S denoised and P2S2
denoised data, were quantified using the fiber-to-bundle co-
herence metric [53] shown in Fig. 5B. Red-yellow stream-
lines show erratic flows; blue streamlines indicate consis-
tent flows. Despite the probabilistic tracking algorithm’s
stochastic nature, P2S and P2S2 yield similar results.

5.4. Evaluation on Simulated Data
In a performance comparison on simulated data, follow-
ing the P2S methodology [23, 27, 66], data with 2 b0
(non-dMRI) and 60 diffusion-weighted dMRI volumes (30
at 1000 s/mm2 and 30 at 2000 s/mm2) was generated.
Gaussian noise was added using an 8-channel coil sensitiv-
ity map to mimic realistic Rician noise. Six datasets were
simulated: one noise-free and others with SNR of 10, 15,
20, 25, and 30. Both P2S and P2S2 were used for denoising.
Their performance, as seen in Fig. 7A, was visually similar.
Quantitative analysis using root mean squared error and the

R2 metric (Table 1) showed both methods closely matched
in denoising efficiency, improving with higher SNR. Scatter
plots at SNRs of 15 and 20 (Fig. 7B) further demonstrated
the near-perfect overlap between P2S and P2S2 results.

Figure 7. Shows (A) Qualitative comparison of denoising perfor-
mance between P2S and P2S2 (trained on 20K samples, i.e. 7%
of the data). (B) P2S2 closely approximates P2S via scatter plots
at SNRs 15&20.

6. Conclusion
In this work, we introduced Patch2Self2, a self-supervised
denoising technique using coresets created through matrix
sketching, achieving notable speedups and reduced mem-
ory usage. We found that sampling-based sketching with
leverage scores yielded the best results. Interestingly, lever-
age scores can also serve as a statistic to identify influ-
ential regions affecting denoising performance. Further-
more, we provided theoretical evidence demonstrating that
Patch2Self2 can automatically detect the optimal sketch
size with high probability. Patch2Self2 will be released as
part of DIPY (dipy.org).
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