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Abstract

One-shot medical image segmentation (MIS) aims to
cope with the expensive, time-consuming, and inherent hu-
man bias annotations. One prevalent method to address
one-shot MIS is joint registration and segmentation (JRS)
with a shared encoder, which mainly explores the voxel-wise
correspondence between the labeled data and unlabeled
data for better segmentation. However, this method omits
underlying connections between task-specific decoders for
segmentation and registration, leading to unstable train-
ing. In this paper, we propose a novel Bi-level Learning
of Task-Specific Decoders for one-shot MIS, employing a
pretrained fixed shared encoder that is proved to be more
quickly adapted to brand-new datasets than existing JRS
without fixed shared encoder paradigm. To be more spe-
cific, we introduce a bi-level optimization training strategy
considering registration as a major objective and segmenta-
tion as a learnable constraint by leveraging inter-task cou-
pling dependencies. Furthermore, we design an appear-
ance conformity constraint strategy that learns the back-
ward transformations generating the fake labeled data used
to perform data augmentation instead of the labeled image,
to avoid performance degradation caused by inconsistent
styles between unlabeled data and labeled data in previ-
ous methods. Extensive experiments on the brain MRI task
across ABIDE, ADNI, and PPMI datasets demonstrate that
the proposed Bi-JROS outperforms state-of-the-art one-shot
MIS methods for both segmentation and registration tasks.
The code will be available at https://github.com/
Coradlut/Bi-JROS.

1. Introduction
Medical image segmentation (MIS), playing a key role in
medical image analysis, is widely used in clinical scenar-
ios, such as tumor detection, atlas construction, and organ
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quantification analysis [10, 12, 33, 34, 37]. One-shot MIS
has demonstrated considerable potential for alleviating the
need for extensive manual labeling. Zhao et al. [42] employ
registration techniques to learn the spatial transformations
offline between a single annotated template image and all
unannotated images. This approach enables the model to
propagate annotations from one image to multiple unanno-
tated images, thereby reducing the dependency on extensive
manual annotation. Conversely, many registration methods
[3, 13, 25] incorporate segmentation maps as auxiliary in-
formation to aid the registration model in aligning anatom-
ical features more accurately, particularly in areas where
these features are less discernible in original images. These
methods consider registration and segmentation as two in-
dependent tasks, and how to effectively combine these two
tasks remains a challenge.

Recent methods [18, 23, 36, 41] have introduced a novel
Joint Registration and Segmentation (JRS) paradigm, which
combines medical image registration with segmentation,
fostering a reciprocal enhancement of both tasks. Specif-
ically, the output of registration serves as an input to the
segmentation model, and conversely, the output from seg-
mentation guides and constrains the learning trajectory of
the registration model. This symbiosis enhances the seg-
mentation accuracy through improved spatial consistency
afforded by registration, while precise segmentation yields
additional structured information to direct the registration
model toward a more accurate alignment of anatomical fea-
tures. However, most JRS methods [18, 39, 41, 44] tend
to build two independent encoder-decoder structures to per-
form the registration and segmentation tasks, leading to a
large increase in the overall parameters of the model and
structural redundancy. Several methods [1, 11, 43] have
proposed the use of a shared encoder to concurrently learn
both tasks, enabling rapid and accurate registration and seg-
mentation in a single inference.

However, the approach of employing a shared encoder
still encounters two challenges: i) Inadequate use of de-
formed image features: existing shared encoder meth-
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Figure 1. (a) The bi-level optimization framework which establishes the coupling dependencies between registration- and segmentation-
specific decoders. (b) Illustrating the bi-level optimization process with the feedback of segmentation optimization to the registration
learning process. (c) Visualization of segmentation results.

ods [11, 43] all utilize the deformed segmentation map to
guide the learning of the segmentation decoder, which lim-
its the potential of the registration task to increase data
diversity. ii) Training stability: existing methods [1, 43]
mainly use a naive jointly or an alternative optimization
training strategy and fall short in precisely characterizing or
acknowledging the intricate coupling relationships between
tasks, e.g., alternate training optimizes network parameters
of a task while fixing another. It hinders the model’s capac-
ity to adequately capture and exploit the dynamic changes
and interrelationships between tasks and leads to a continual
adaptation to inaccurately misaligned areas, thereby initiat-
ing an unstable learning process.

In this paper, we propose a bi-level optimization learn-
ing framework to model the coupled dependencies be-
tween task-specific decoders for registration and segmen-
tation, thereby guiding a collaborative optimization process
to stably converge to an optimum. Our framework, com-
prising a fixed shared encoder and two task-specific de-
coders, leverages a fixed shared encoder in multi-task learn-
ing to markedly boost computational efficiency and speed
up training upon transitioning to new datasets. In Fig. 1(a),
with the registration decoder positioned as the upper-level
task and the segmentation decoder as the lower-level task.
Simultaneously, we introduce an appearance conformity
constraint that indirectly utilizes the template image to in-
crease data diversity and integrate the constraint into the
segmentation task. Our bi-level optimization framework
is capable of deriving a cooperative training algorithm that
encapsulates step-wise coupled gradient responses, as op-
posed to the traditional simple alternating iterative method
without inter-task interaction. Fig. 1(b) illustrates the opti-
mization process with the gradient response from the lower
level. Fig. 1(c) presents the visual results of our method
compared with those obtained using a simple alternating ap-
proach. Our contributions can be summarized as follows:

• We propose a Bi-level optimization-based framework for
Joint registration and One-shot Segmentation, termed
as Bi-JROS, which precisely characterizes the coupling
constraints between decoders specific to registration and
segmentation tasks.

• We design an iterative Gradient Response (GR) algo-
rithm to tackle the nested bi-level optimization challenge.
It leverages the gradient response of the segmentation
decoder to the registration decoder during each step of
the optimization process, ensuring more effective and
stable training compared to simple alternating learning
strategy.

• We propose an Appearance Conformity Constraint
(ACC) to avoid the texture gap between target and atlas
images and increase the diversity of the data. This is inte-
grated into the segmentation task to strengthen the inter-
connection between registration and segmentation.

2. Related Works

2.1. One-shot medical image segmentation

The primary aim of one-shot Medical Image Segmenta-
tion (MIS) [15, 16, 18, 38, 41, 42] is to leverage the un-
supervised registration to help the supervised segmenta-
tion task. Such methods learn the voxel-wise correspon-
dence from the labeled to the unlabeled data, thereby indi-
rectly constructing the fake label for unlabeled data to per-
form segmentation, which is a promising MIS paradigm and
many studies have emerged. Zhao et al. [42] introduced
DataAug, which incorporates an appearance transformation
within this paradigm to generate diverse data. Xu et al. [41]
employed the segmentation model to constrain the registra-
tion generating higher-quality data. Wang et al. [38] pro-
posed LT-Net, which improved spatial transformations for
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Figure 2. Overall framework of the proposed Bi-JROS. (a) demonstrates the pretraining process of the shared encoder, (b) and (c) together
constitute the bi-level optimization learning phase and (d) illustrates the mechanism of gradient updating.

data augmentation and adds forward-backward consistency
to boost registration. Ding et al. [9] modeled the proba-
bility distribution of unlabeled medical images using VAEs
for one-shot image segmentation. He et al. [17] enhanced
model pre-training in an unlabeled setting by exploring geo-
metric visual similarity in medical images, significantly im-
pacting subsequent tasks like segmentation. More recently,
He et al. [18] proposed BRBS from the perspective of au-
thenticity, diversity, and robustness of the one-shot MIS,
achieving a remarkable improvement.

Despite promising performance achieved, the inherent
issue with these existing methods is that different encoder is
employed in their framework to extract similar feature rep-
resentations resulting in time-consuming. To alleviate this
problem, Zhao et al. [43] first proposed to learn shared fea-
tures for both registration and segmentation tasks by one en-
coder module achieving favorable performance. Recently,
Andresen et al. [1] proposed the joint non-correspondence
segmentation and image registration network to handle the
problem of missing correspondences caused by inter-patient
variations. Different from the previous methods, we adopt a
fixed encoder trained by datasets with various styles to learn
shared features for both tasks, which can find the optimal
solution faster when using other datasets.

2.2. Bi-level optimization

Bi-level Optimization is the hierarchical mathematical pro-
gram where the feasible region of the upper-level task
is restricted by the solution set mapping of the lower-
level task and the two tasks are mutually reinforced [24,
27]. Subsequently, the bi-level optimization framework
has been investigated in view of many important applica-
tions in the fields of machine learning and computer vision

e.g., hyper-parameter optimization [21, 28], multi-task and
meta-learning [26, 28]. Motivated by the above observa-
tions, we construct a bi-level optimization that can help ad-
dress mutual learning by explicitly considering the impact
of the follower segmentation task on the leader registration
task during the optimization process.

3. Method

3.1. Overview

In one-shot medical image segmentation (MIS) scenario,
the training data comprises a single labeled image pair, de-
noted by (xl, yl), and a substantial volume of unlabeled
data, denoted by Dse = (xu)

N
i=1 for the shared encoder

and Dde = (xu)
M for the task-specific decoders, where N

and M denote the medical volumes with N ≫ M and yl
being the ground truth. Our goal is to improve registration
and segmentation accuracy and facilitate rapid adaptation
of the model to new datasets by adopting joint registration
and segmentation (JRS) paradigm with a shared encoder. To
this end, we proposed a Bi-level optimization-based frame-
work for Joint Registration and One-shot medical image
Segmentation, termed as Bi-JROS. The training process of
Bi-JROS is shown in Fig. 2 (a) to (c), consisting of two
phases: we first train the shared encoder by using datasets
Dse with different styles in a joint training way as shown in
Fig. 2 (a). Then, we employ the pretrained shared encoder
with fixed parameters Ω to train two task-specific decoders
for segmentation and registration as shown in Fig. 2 (b) and
(c). Moreover, we proposed a bi-level modeling to enable
stable training for these two task-specific decoders, which
has been proven to be effective through the broad range of
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experiments mentioned in Sec. 4.3.
Appearance conformity constraint strategy. In JRS

paradigm, registration serves as an auxiliary learning pro-
cess to produce a deformation filed ψi from xl to an
unlabeled image xiu and generates a pseudo-labeled pair{
xip,y

i
p

}
by applying ψi to warp the labeled image pair.

However, the appearance gap between labeled image and
unlabeled data will result in a mismatch between deformed
labeled and unlabeled data. Such mismatch, if not han-
dled appropriately, will be further magnified by the sub-
sequent segmentation. Inspired by [18, 22, 38], we pro-
pose an appearance conformity constraint strategy (ACC) to
generate robust pseudo-labeled pairs, aiming to simplify the
operational process while ensuring algorithm performance,
which predicts bidirectional deformation avoiding directly
using labeled image to perform data augmentation. Specif-
ically, We first predict the deformation filed ψi from the la-
beled image to unlabeled data. Different from the previous
methods that directly perform data augmentation on labeled
image, we re-perform registration to obtain the reverse de-
formation field (ψi)−1 to obtain the pseudo-labeled image,
then perform spatial transformation on the fake labeled im-
age instead of directly using labeled image. Regarding the
inevitable noise in the re-warped fake labeled image, we
employ a weighted fusion operation that integrates infor-
mation with the unlabeled data xu. The above process can
be summarized as

ψi = frd(F
i
l ;F

i
u), (ψ

i)−1 = frd(F
i
u;F

i
l ), (1)

xip = γ ·xiu ◦ (ψi)−1 ◦ψi+(1−γ) ·xiu,yip = yl ◦ψi, (2)

where F il and F iu are features of the labeled image and unla-
beled data generated from the fixed share encoder fse and γ
is a random number. Finally, the generated pseudo-labeled
pair

{
xip,y

i
p

}
is used for constraint segmentation. Such a

simple design not only can alleviate the appearance gap be-
tween labeled data and unlabeled data, but also generate di-
versity distribution data for subsequent segmentation.

3.2. Bi-level learning

Existing JRS-based methods treat registration and segmen-
tation as two independent optimization tasks, alternatively
updating parameters for one task with those for the other
frozen. However, we find that registration and segmenta-
tion are two tightly coupled learning tasks by scrupulously
reviewing a large number of experimental results (see Fig. 3
and the appendix). We further find Stackelberg game theory
[29], which is a strategic model in economics where partic-
ipants make sequential decisions, with one player acting as
a leader who anticipates and influences the subsequent ac-
tions of the follower.

Motivated by the above exploration, we provide a bi-
level formulation to explicitly characterize the coupling de-

pendency between two task-specific decoders for registra-
tion and segmentation, which can be formulated as

min
w

Φr
[
(w,Ω, θ∗); {xl,xiu}

]
, s.t., θ∗ ∈ Cs(ω),

Cs(w) := argmin
θ

Φs
[
(θ,Ω, w);

{
xip,x

i
u,y

i
p

}]
, i ∈M.

(3)
where w and θ denote the parameters of frd and fsd, ◦
denotes the warp operation, Φr and Φs represent the en-
ergies of the leader (upper) and follower (lower) levels
of registration decoder and segmentation decoder, respec-
tively. The leader task aims to optimize the parameters of
frd, with respect to w, where θ∗ is the best response con-
straint drawn from the constraint set Cs representing the so-
lution set of the follower-level segmentation decoder prob-
lem. The follower-level sub-problem becomes optimizing
Φs with respect to θ given pseudo-labeled pairs

{
xip,y

i
p

}
.

Equation 3 explicitly formulates such a coupling rela-
tionship between two task-specific decoders that the opti-
mization of θ in the follower-level constraints that of w in
the leader level through the set Cs shown as vertical dashes.

3.3. Gradient Response Algorithm

Training the two task-specific decoders, frd and fsd, turns
out to resolve the bi-level optimization tasks w.r.t. w and θ
in Eq. 3. We develop a numerical solution to the compli-
cated optimization problem and start from the leader objec-
tive, computing its gradient w.r.t. w

∇wΦr
(
w, θ∗(w)

)
= ∇wΦr

(
w, ·

)
+∇θΦr

(
·, θ∗(w)

)
. (4)

The first term is a direct gradient in terms of w and the
second term depicts the latent coupled connection with
the follow-up segmentation decoder which is a challeng-
ing problem. Motivated by the Gaussian-Newton approx-
imation that provides a first-order computation to address
continuous learning [18], we propose a gradient response
(GR) Algorithm, since the best response θ∗ couples θ with
w, which can be written as

∇θΦr = ∇θΦr
(
w, θ∗(w)

)
∇wθ

∗(w). (5)

The cross gradient term ∇wθ
∗(w) inevitably evokes opti-

mizing Φs in the follower level of Eq. 3. Previous studies
in the context of bi-level optimization employ an explicit
scheme to approximate the gradient by recurrent products
of second-order Hessian matrices that are computationally
expensive [14, 26].

We resort to the implicit function theorem targeting
the optimal solution to the follower-level task. Letting
∂Φs/∂w = 0, we obtain

∇wθ
∗(w) = −

[
∇2
θθΦs (w, θ

∗(w))
]−1 · WHes, (6)

where ∇2 denotes the second-order partial derivatives and
the Hessian WHes = ∇2

θ,wΦs
(
w, θ∗(w)

)
. Hence, this gra-

dient computation demands an inversion of second-order
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Algorithm 1 Bi-level optimization learning

Require: The features of labeled and unlabeled data: Fl,
Fu. Two parameterized registration and segmentation
decoders for w and θ. Initialize w, θ, and necessary
hyper-parameters(α and β : learning rate)

1: repeat
2: % Perform transformation
3: ψi = frd(w;F

i
l , F

i
u), (ψ

i)−1 = frd(w;F
i
u, F

i
l )

4: % Generate a random number γ
5: xip = γ · xiu ◦ (ψi)−1 ◦ ψi + (1− γ) · xiu
6: yip = yl ◦ ψi
7: % Supervised learning segmentation
8: Update θ to obtain approximation θ̂.
9: θ̂(θ) := θ − β∇θΦs(θ, w)

10: Calculate ∇wΦs, ∇θ̂Φs(θ, w), and ∇θ̂Φr
11: Calculate ∇wΦr(w) by Eq. 4 with θ̂ and w
12: w := w − α∇wΦr(w)
13: until training convergence
14: return (w∗, θ∗) (Optimal solution)

derivatives and a Hessian matrix. Leveraging the outer
product approximation in the Gauss-Newton method, we
can further simplify calculating GR as products of first-
order derivatives. Based on the above formula, we have
derived an optimization algorithm in Alg. 1.

3.4. Loss function

In this part, we will elaborate on the concrete loss function
to define Φr and Φs.

Leader-level loss for registration. We first adopt a
smoothness loss function Lsmo to constrain the deforma-
tion field, ensuring its smoothness

Lsmo(ψ) =
∑
p∈ϕ

∥∇ψ(p)∥2, (7)

where ∇ψ(p) represents the gradient of the deformation
field ψ at point p. Subsequently, we employ normalized
cross-correlations as the similarity loss function Lsim to
constrain the similarity of post-image registration, ensur-
ing the precision and reliability of the registration outcomes.
Thus, our complete registration loss Lreg is

Lreg = λ1
(
Lsim(xl,xu ◦ ψ−1) + Lsim(xu,xl ◦ ψ)

)
+ λ2

(
Lsim(xl,xl ◦ ψ ◦ ψ−1) + Lsim(xu,xu ◦ ψ−1 ◦ ψ)

)
+ λ3

(
Lsmo(ψ) + Lsmo(ψ−1)

)
,

(8)
where λ1, λ2 and λ3 are the weights of the losses in Lreg .

Considering the challenge in fully revealing the details
of anatomical structures with registration methods based on
image intensity, especially in blurred or structurally similar
areas, we further utilize segmentation maps generated by

the segmentation decoder fsd to explicitly delineate struc-
tural boundaries and regional information and then Φr is

Φr = Lreg + λ4Ldice(ŷi,yip), (9)

where ŷi represents the predicted segmentation result and
λ4 signifies the weight of the corresponding loss term.

Follower-level loss for segmentation. With the pro-
posed ACC strategy, we can not only perform data aug-
mentation but also maintain its appearance conformity by
indirectly using labeled data. The segmentation decoder is
trained with the generating pseudo-labeled pairs

{
xip,y

i
p

}
in Eq. 2 , and generates the predicted mask ŷi. Φs is

Φs = Ldice(ŷi,yip). (10)

4. Experiments
Our proposed method is validated on brain MR image regis-
tration and segmentation tasks. A series of comparative ex-
periments are detailed in Sec. 4.2 to reveal the exceptional
performance of our method. The ablation experiments in
Sec. 4.3 demonstrate the efficacy of our ACC strategy, bi-
level modeling, and gradient response and validate the sta-
bility of our proposed Bi-JROS.

4.1. Experiments configurations

Data preparation: The proposed method and compari-
son methods are evaluated on mixed brain MRI datasets
(ABIDE [8], ANDI [32] and PPMI [28]) and OASIS [30].
The publicly available atlas from [3] is the single labeled
template image in training.

Mixed dataset: We divide our data into 295, 114 vol-
umes for training and testing. All test volumes are anatomi-
cally segmented with FreeSurfer, resulting in 13 anatomical
structures.

OASIS: To assess our method’s capability for rapid
adaptation, we conducted experiments on an entirely new
dataset, and we split the data into 86, 25 for training and
testing. The dataset has the same segmentation labels as the
mixed dataset mentioned above.

Standard preprocessing steps including motion correc-
tion, NU intensity correction, normalization and affine nor-
malization are done with FreeSurfer and FSL [40]. All
scans are cropped and resized to 128 × 128 × 128 with
1 mm isotropic resolution.

Implementation details and metrics: The training pro-
cess is divided into two phases: a) the pre-training phase,
which draws on the optimization method of [11] as baseline,
i.e., pre-training the network by combining multiple loss
functions, and b) the bi-level optimization phase, we take
the encoder weights derived from pre-training on a mixed
dataset with different styles as initial values and freeze them
to optimize the decoder for a specific task from scratch.
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Figure 3. Boxplots of performance towards various segmentation methods of Dice scores with 13 categories of brain anatomical structures.

Our framework is implemented using PyTorch on a
NVIDIA A40 with 48 GB of RAM. During training, we set
the trade-off factor λ1 = 1, λ2 = 10, λ3 = 1 and λ4 = 1.
We evaluate the performance using two widely used met-
rics, including Dice and NCC. Higher values of the Dice
coefficient implies an increase in region overlap, which is
indicative of superior alignment or segmentation. Corre-
spondingly, a higher Normalized Correlation Count (NCC)
indicates a higher degree of similarity between the defor-
mation image and the target image, indicative of superior
alignment performance.

4.2. Comparison Experiments

Comparison settings: To evaluate the excellence of the
proposed Bi-JROS, we conducted comparative analyses
with 14 prevalent medical image registration and segmen-
tation algorithms under a one-shot setting, including a)
traditional registration methods: SyN [2], NiftyReg [31],
and deedsBCV [19]; b) deep learning-based registration
approaches such as VoxelMorph [3], LKU-Net [20], and
TransMorph [4]; c) deep learning-driven segmentation al-
gorithms like U-Net [7], MASSL [5], and CPS [6]; and d)
state-of-the-art (SOTA) JRS methodologies, namely Deep-
Atlas [41], SST [35], DataAug [42], UReSNet [11], and
BRBS [18].

Comparison results: Tab. 1 reports the performance
of our Bi-JROS with other methods in medical image reg-
istration and segmentation tasks. We can conclude that
firstly, most JRS methods outperform standalone registra-
tion or segmentation approaches, underscoring the signifi-
cance of implementing combined registration and segmen-
tation. Secondly, the employment of a bi-level optimiza-
tion framework facilitates the effective establishment of
task-specific decoder interdependencies. Consequently, our
framework achieved the highest segmentation Dice coeffi-
cient at 82.8%, the highest registration Dice coefficient at
80.8%, and the highest registration NCC value at 0.387, sur-
passing other JRS methods.

Fig. 3 illustrates the segmentation performance of the
JRS method across various anatomical structures. For the
segmentation task, our approach exhibited the best seg-

Methods Segmentation Registration

Dice(%) ↑ Dice(%) ↑ Ncc ↑
Initial - 63.8 ± 5.4 0.133 ± 0.009

SyN[2] - 65.1 ± 6.0 0.232 ± 0.007
NiftyReg[31] - 73.6 ± 3.0 0.238 ± 0.008
deedsBCV[19] - 75.0 ± 2.7 0.238 ± 0.008

VoxelMorph[3] - 76.5 ± 2.2 0.328 ± 0.006
LKU-Net[20] - 76.6 ± 2.5 0.295 ± 0.008
TransMorph[4] - 77.4 ± 2.1 0.341 ± 0.005

UNet[7] 45.0 ± 12.2 - -
MASSL[5] 63.4 ± 6.8 - -

CPS[6] 75.1 ± 4.2 - -

SST[35] 75.8 ± 2.8 75.4 ± 5.4 0.364 ± 0.005
DeepAtlas[41] 78.1 ± 1.9 77.5 ± 2.8 0.293 ± 0.007
DataAug[42] 78.4 ± 2.5 77.7 ± 2.5 0.358 ± 0.008
UReSNet[11] 81.2 ± 2.1 79.1 ± 2.0 0.353 ± 0.008

BRBS[18] 81.8 ± 2.4 80.0 ± 2.4 0.324 ± 0.008

Ours 82.8 ± 2.2 80.8 ± 2.0 0.387 ± 0.007

Table 1. Quantitative comparison among various methods for reg-
istration and segmentation tasks on the mixed dataset. The top-
ranked method is highlighted in bolded form.

mentation performance in 10 out of 13 structures, matched
the performance of BRBS in 2 structures, and secured the
second rank in one structure. The registration results are
largely consistent with the segmentation results and are pro-
vided in the supplementary material.

We further show the segmentation results and registra-
tion results of six representative methods in Figs. 4 and 5
from three perspectives. In the segmentation task, our
method achieves the segmentation effect with the highest
overlap with GT on both the large structure Cerebral White
Matter and the small tissue Lateral Ventricle. Due to the
lack of supervisor information, CPS shows significant er-
rors in the segmentation task. Most JRS methods enhance
image diversity by employing style transformation or ap-
pearance transformation, and the ensuing image intensity
transformation may lead to mismatches between deformed
images and deformed labels, which in turn suppresses seg-
mentation performance. Our proposed loss indirectly uses
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Figure 4. Segmentation visualization results of different methods on large brain structure Cerebral White Matte (CrWM) and small brain
tissue 3rd/4th Ventricle (Ven). The red arrows point to the segmentation errors.

Figure 5. Visual results of performance comparison towards various registration methods of brain anatomical structures. The red arrows
point to the segmentation errors.

atlas, which skillfully avoids the problem of mismatch be-
tween deformation images and deformation labels by apply-
ing two deformation transformations to the target image. In
the registration task, we achieve the best alignment on the
3rd/4th Ventricle, Lateral Ventricle and Thalamus Proper
compared to other methods.TransMorph, SST and DataAug
do not introduce segmentation map information during the

training alignment process, resulting in obvious misalign-
ment. DeepAtlas and BRBS significantly improved the
alignment error thanks to the introduction of segmentation
maps as auxiliary information for alignment learning, which
we likewise took into account. In addition, we consider the
dynamic response of segmentation to alignment in each it-
eration, further improving the accuracy of alignment.
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(a) Segmentation results in terms of dice scores. (b) Registration results in terms of dice scores. (c) Registration results in terms of ncc scores.

Figure 6. Illustrating the change in performance with the iterative process.

Baseline FE ACC GR S-Dice(%) R-Dice(%)Alter Alter

✓ 81.2 ± 2.1 79.1 ± 2.0
✓ ✓ 81.5 ± 1.9 79.8 ± 2.0
✓ ✓ ✓ 82.1 ± 2.1 80.2 ± 2.1
✓ ✓ ✓ ✓ 82.8 ± 2.2 80.8 ± 2.0

Table 2. The ablation study demonstrates the contribution of our
innovations.

4.3. Ablation Experiments

Effectiveness of our innovations. Tab. 2 precisely displays
the results of the ablation experiments, effectively demon-
strating the efficacy of each component in our study. In
the first row of the table, we present the baseline results
obtained by training the encoder and two decoders using
a joint training approach. By comparing different experi-
mental setups, we can observe three significant findings: i)
adopting a strategy of freezing the encoder and starting from
scratch to alternately train the two decoders, we achieved
a 0.7% improvement in registration performance; ii) when
introducing the ACC strategy for segmentation tasks un-
der the same experimental settings, we observed a 0.6% in-
crease in segmentation performance; and iii) by implement-
ing a bi-level optimization strategy to model the interaction
between decoders and applying Gradient Response tech-
niques, we further enhanced the registration performance
by 0.6% and the segmentation performance by 0.7%. Com-
pared to the baseline, our method ultimately achieved per-
formance improvements of 1.7% and 1.6% in two tasks.

Stability and rapid adaptability of our Bi-JROS. To
validate the stability and rapid adaptability of our bi-level
optimization, we conducted a series of experiments on a
new dataset. In these experiments, we kept the encoder
learned from the mixed dataset in a frozen state and fine-
tuned the decoder. The experimental setup consisted of
three different comparison methods: 1) the BRBS method
retrained on OASIS, 2) naive alternative training (with the
same frozen encoder parameters as ours, but without the bi-
level optimization and GR), and 3): our Bi-JROS model.

Methods Seg Reg Time

Dice(%) Dice(%) Ncc (hours)

Initial - 62.1 ± 2.7 0.130 ± 0.007 -

Naive 80.1 ± 1.0 79.4 ± 0.6 0.356 ± 0.004 6Alter

BRBS 80.3 ± 1.1 79.5 ± 1.0 0.342 ± 0.006 9.6

Ours 81.4 ± 0.6 80.0 ± 0.6 0.362 ± 0.004 7.8

Table 3. Results among BRBS, naive alternative training and our
Bi-JROS for registration (Reg) and segmentation (Seg) tasks.

As can be seen in Tab. 3, our Bi-JROS achieves the highest
Dice scores and Ncc values on both tasks and our adaptation
to new datasets is markedly swifter than BRBS. Fig. 6 fur-
ther depicts the performance variation of Bi-JROS, BRBS,
and naive alternating training on both tasks during the itera-
tion process. From these graphs, we can intuitively observe
that our model exhibits higher stability compared to sim-
ple alternative training, which shows a trend of performance
degradation in the later part of the iteration.

5. Conclusion
In this paper, we present a bi-level optimization formula-
tion for registration-specific and segmentation-specific de-
coders. By integrating the ACC strategy into the segmen-
tation task, we effectively mitigate the risk of overfitting to
homogeneous data styles, thereby improving the model’s
rapid adaptability. We introduce the Response Gradient
(RG) to replace the naive alternating learning approach,
ensuring efficient and stable training. Our extensive ex-
periments, which yield state-of-the-art results on various
datasets, demonstrate our excellent performance in both
registration and segmentation tasks.
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