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Abstract

Quantization for model compression can efficiently re-
duce the network complexity and storage requirement, but
the original training data is necessary to remedy the perfor-
mance loss caused by quantization. The Data-Free Quan-
tization (DFQ) methods have been proposed to handle the
absence of original training data with synthetic data. How-
ever, there are differences between the synthetic and orig-
inal training data, which affects the performance of the
quantized network, but none of the existing methods con-
siders the differences. In this paper, we propose an efficient
data-free quantization via pseudo-label filtering, which is
the first to evaluate the synthetic data before quantization.
We design a new metric for evaluating synthetic data us-
ing self-entropy, which indicates the reliability of synthetic
data. The synthetic data can be categorized with the met-
ric into high- and low-reliable datasets for the following
training process. Besides, the multiple pseudo-labels are
designed to label the synthetic data with different reliabil-
ity, which can provide valuable supervision information and
avoid misleading training by low-reliable samples. Exten-
sive experiments are implemented on several datasets, in-
cluding CIFAR-10, CIFAR-100, and ImageNet with various
models. The experimental results show that our method can
perform excellently and outperform existing methods in ac-
curacy.

1. Introduction

Deep Neural Networks (DNNs) [26] have shown tremen-
dous potential in a number of fields, but their high com-
puting costs and storage requirements make the implemen-
tation complex, especially on embedded systems and edge
devices [9, 36]. In recent years, many model compression
methods [7] have been proposed to decrease the computa-
tional and memory requirements while keeping the perfor-
mance. The existing methods can be divided into network
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Figure 1. The self-entropy of the prediction results on the origi-
nal and synthetic data using pre-trained network. The prediction
results on the synthetic dataset always have a higher self-entropy
than that on the original dataset, owing to different reliability.

pruning [41, 45], model quantization [2, 21], knowledge
distillation [18, 31], and neural architecture search (NAS)
[33, 39]. Among these techniques, quantization uses finite
approximations to represent the full-precision values in the
pre-trained network, which needs to be quantized. It can
efficiently reduce the network complexity for acceleration
and storage, but the approximate operation inevitably af-
fects the network performance, resulting in accuracy drops
after quantization.

To reduce the performance loss caused by quantiza-
tion, many methods propose to optimize the quantizer
[1, 2, 10, 11, 35] or retrain the pre-trained network with
quantization constraint [4, 15, 27]. In these methods, the
original training data is very helpful for maintaining model
performance, but it may not be feasible due to data privacy
concerns in specific scenarios. The Data-Free Quantization
(DFQ) methods [3, 5, 28, 30, 42, 47, 48] have been pro-
posed to deal with the absence of original training data. In
principle, the batch normalization (BN) [20] layers in the
pre-trained model contain the statistical information of the
original training data, i.e. mean and variance, which can
be regarded as prior information for data synthesis [46].
Thus, the synthetic data can be generated from random ini-
tial data by guiding its distribution closer to the original data
with the full-precision pre-trained model. Generally, exsit-
ing DFQ methods can be divided into Generator-Based Ap-
proach (GBA) [5, 22, 37, 42] and Distill-Based Approach
(DBA) [3, 28, 30, 47].

The GBA trains a specific generative network (e.g., GAN
[12] or VAE [24]) to generate the synthetic data, which re-
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Figure 2. The difference between existing data-free methods and
our method. The existing methods optimize the quantizer or re-
train the pre-trained network with quantization constraint directly
without evaluating the synthetic data. We propose to evaluate the
synthetic data with self-entropy and divide the synthetic data into
high- and low-reliable datasets before training the quantized net-
work for better performance.

quires a complex training process for the generative net-
work. The DBA regards the synthetic data as trainable,
and iterates them to fit the original data distribution us-
ing the back-propagation of the pre-trained model, avoid-
ing the training process for the generative network. How-
ever, although many exquisite technologies are designed in
these existing methods, a noticeable difference still exists
between the synthetic and original training data, which af-
fects the performance of the quantized network. Thus, it
is necessary to evaluate the synthetic training data before
quantization.

In this paper, we propose to evaluate the synthetic data
before quantization as shown in Figure 2. To complete this
goal, we aim to deal with three problems: 1) How to eval-
uate the synthetic data? In existing frameworks, the syn-
thetic training data is generated with the information in the
pre-trained model, and it lacks clear evaluation indicators
for the synthetic data. 2) How to label the evaluated syn-
thetic data? After evaluating the synthetic data, it is nec-
essary to assign suitable labels to the synthetic data accord-
ing to different evaluation results, which aims to further im-
prove the reliability of synthetic data and avoid mislead-
ing caused by inappropriate labels. 3) How to design the
training process with evaluated synthetic data? The train-
ing process needs to be able to learn supervision informa-
tion from the synthetic data with different labels, and more
importantly, avoid misleading caused by the data with low
evaluation results.

To overcome the problems above, we propose an effi-
cient Data-Free Quantization via Pseudo-label Filtering as
follows: 1) The self-entropy [23] is used as a metric for
synthetic data to evaluate the reliability of the pre-trained
network on it. We notice that the pre-trained network has a
relatively higher self-entropy on the synthetic dataset than

the original dataset, as shown in Figure.1, owing to different
reliability performance, so the self-entropy can be used as
a metric to evaluate the reliability of synthetic data before
quantization. 2) The synthetic data is labeled using multiple
pseudo-labels, which include major and auxiliary pseudo-
labels, to reflect its reliability. Major pseudo-labels are as-
signed to high-reliable samples, providing valuable super-
vision information. In contrast, low-reliable samples are
labeled with auxiliary pseudo-labels to give a soften super-
vised learning for enhancing the robustness of the quantized
network and avoiding misled by low-reliable samples. 3)
The pseudo-label training is designed to integrate the super-
vision information provided by major and auxiliary pseudo-
labels. The knowledge distillation is selected as the basic
framework to train the quantized model, which has simi-
lar performance and intermediate features as the pre-trained
network using the proposed synthetic data evaluation.

The main contributions of this work can be summarized
as follows:
• We propose an efficient data-free quantization via

pseudo-label filtering, which is the first to evaluate the
synthetic data before quantization, so that the samples
with different reliability can provide different information
and improve the performance.

• The self-entropy is used as the metric for the synthetic
data evaluation, which represents the reliability of syn-
thetic data under a specific label. With the metric, the syn-
thetic data can be categorized into high- and low-reliable
samples for the following training process.

• The multiple pseudo-labels are designed in our method
to label the synthetic data with different reliability. It
incorporates major and auxiliary pseudo-labels for the
high- and low-reliable samples, providing valuable super-
vision information and avoiding misleading quantization
by low-reliable samples.

• Extensive experiments are conducted on the CIFAR-
10, CIFAR-100, and ImageNet in various models. Our
method can achieve superior performances compared
with existing DFQ methods.

2. Related Work
Quantization. Quantization is widely used in the model

compression for neural networks to represent the full-
precision model with low-bit approximations. To allevi-
ate the performance loss caused by approximate operations,
many methods have been proposed, which can be grouped
into post-training quantization (PTQ) [1, 13, 34, 35] and
quantization-aware training (QAT) [2, 4, 10, 11]. The PTQ
methods take calibration data to optimize the parameters in
the quantizer, and the QAT methods retrain the pre-trained
network with a quantization constraint. However, the origi-
nal training data is necessary for these methods, it may not
be feasible in specific scenarios. To deal with the challenge
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Figure 3. The framework of the proposed method. In the proposed method, synthetic data is evaluated with self-entropy of the pre-trained
network on the synthetic data, which is divided into high- and low-reliable data. Then, the multiple pseudo-labels are used to label the
evaluated synthetic data according to its reliability. The high-reliable samples are assigned with major pseudo-labels, and the low-reliable
samples use auxiliary pseudo-labels. With these multiple pseudo-labels, the pseudo-labels cross-entropy loss can be obtained and combined
with the MSE loss function to guide the quantized network has similar prediction ability with pre-trained network.

without original training data, the Data-Free Quantization
(DFQ) is proposed.

Data-free Quantization. Many works [14, 34, 43] at-
tempt to optimize the quantized network solely relying on
the information inherent in the pre-trained network itself
without the demand for training data. D-FQ [34] proposes
the method of weight equalization and bias correction to
make the network more suitable to quantize. SQuant [14]
adopts a new rounding metric based on a diagonal Hessian
approximation to improve the performance of the quantized
network. However, owing to the absence of training data
to adjust the pre-trained network, these methods can hardly
achieve a significant performance improvement.

Many methods propose to utilize generated data, and
can be divided into Generator-Based Approach (GBA) [5,
32, 37, 38, 42, 44, 48] and Distill-Based Approach (DBA)
[3, 30, 30, 47]. (1) GBA proposes to use a generator for syn-
thesizing training data. GDFQ [42] constructs informative
data from the pre-trained model and generates data approx-
imating the original dataset. Qimera [5] proposes to use su-
perposed latent embeddings to generate higher-quality sam-
ples. These methods always demand much time and re-
sources to generate high-quality data. (2) DBA utilizes the
pre-trained model to directly optimize the generated data,
thereby eliminating the need for the generator. ZeroQ [3]
matches the statistics of batch normalization to optimize for
a distilled dataset. IntraQ [47] attempts to synthesize im-
ages with intra-class heterogeneity. HAST [28] generates
more hard samples to enhance model training effectiveness.

However, even with many ingenious designs, there is
a difference between the generated synthetic data and the
original training data, but none of the existing methods takes
this into account, and the synthetic data is directly used
for the training of the quantized network. In the proposed
method, we propose to evaluate the generated synthetic data
and label different samples according to the evaluation re-
sults to enhance the performance of the quantized network.

3. Proposed Method
The framework of our proposed method is illustrated in

Figure 3, including Reliability Filtering, Multiple Pseudo-
Labels, and Pseudo-Label Training.

3.1. Reliability Filtering

In principle, the mean and variance in BN layers of the
pre-trained model are affected by the original training data.
Thus, the synthetic data can be generated from random ini-
tial samples by adapting the output distribution of BN layers
the same as that stored in the pre-trained model with:

LBN =

L∑
l=1

(
||µp

l − µs
l ||22 + ||σp

l − σs
l ||22
)
, (1)

where L denotes the layer number of the model. µp
l and σp

l

are the mean and variance stored in l-th BN layer of the pre-
trained model, and µs

l and σs
l are the mean and variance

of synthetic data batch in l-th layer. The synthetic data is
generated by minimize LDATA as,

LDATA = LBN + γ · LIL, (2)

where LIL =
∑N

i=1 CE (P (x̂i), ŷi) is the loss to improve
the predicted probability of pre-trained network for the as-
signed label [16]. N denotes the number of samples for
the synthetic data, and CE(·) represents the cross-entropy
loss. x̂i denotes the generated synthetic sample and P (x̂i)
represents its predicted probability after the softmax layer.
ŷi denotes the assigned label. γ is a hyper-parameters to
balance two losses of LBN and LIL.

However, the synthetic data can hardly have precisely
the same features as the original data. As discussed above,
we notice that the synthetic dataset always has a higher self-
entropy compared with the original dataset as shown in Fig-
ure 1. The reason is that the pre-trained network is trained
on the original dataset, which can have high reliability on
most samples. Owing to the difference between the original

5591



and synthetic data, it is impossible for the pre-trained net-
work to have high reliability on the whole synthetic data,
and the low-reliable data may lead to incorrect guidance
during training and seriously influence the quantization per-
formance.

Thus, we apply self-entropy as a metric to evaluate the
reliability of the pre-trained network on the synthetic data
as in Eq. 3:

Hself(x̂i) = − 1

logNc

Nc∑
c=1

(P(x̂i, c) · log (P(x̂i, c))), (3)

where Nc refers to the number of prediction classes, and
P (x̂i, c) denotes the predicted probability of the class c ob-
tained by the pre-trained network.

In principle, Hself indicates the uncertainty, whereas a
low self-entropy for the predicted results can refer to a reli-
able prediction with high confidence [23]. In other words,
low Hself means the pre-trained network can have a high
possibility for the specific label on the synthetic data, which
means it has high reliability for the samples, so it can
provide adequate supervision information for training the
quantized network to fit the performance of the pre-trained
network.

Based on the reliability evaluation, the samples in the
synthetic dataset X̂ can be divided into high-reliable dataset
X̂h and low-reliable dataset X̂ l with a reliable threshold t
as,

X̂h =
{
x̂h
∣∣∣x̂h ∈ X̂, Hself

(
x̂h
)
⩽ t
}
,

X̂ l =
{
x̂l
∣∣∣x̂l ∈ X̂, Hself

(
x̂l
)
> t
}
,

(4)

where t is a dynamic threshold parameter for fast conver-
gence and learning more supervision information. To con-
verge fast, the requirement for high-reliable samples can be
relaxed at the beginning of training to provide more samples
and quickly improve network performance; As the training
progresses, the network performance gradually improves,
which raises the standard for high-reliable samples. It is
necessary to use high-reliable samples to provide better su-
pervision information and avoid the impact of low-reliable
samples on network performance. At the same time, using
more low-reliable samples can also improve the robustness
of the network. Thus, t continuously decrease as the train-
ing epoch increases:

t=Tu−ft(epoch)(Tu−Tl), (5)
where Tl and Tu are the lower and upper boundaries, and
t ∈ [Tl, Tu], which continuously decrease as the training
epoch increase. ft(epoch) = epoch

E , epoch and E denote
the current and whole epoch for training, respectively.

3.2. Multiple Pseudo-Labels

With the reliability filtering, the samples in X̂h have
high reliability and can provide more supervision informa-

tion for the quantized model. In the proposed method, ma-
jor pseudo-labels are designed for these samples, and the
pseudo-label ŷmi for the high-reliable sample x̂h

i is assigned
as,

ŷmi = argmax
c∈C

P(x̂h
i , c), (6)

where C = {1, 2, ..., Nc} denotes the set of all the possible
prediction classes. We define the loss of Lh

CE for supervised
learning with high-reliable dataset:

Lh
CE =

1

Nh

Nh∑
i=1

CE
(
Pq(x̂

h
i ), ŷ

m
i

)
, (7)

where Nh refers to the number of high-reliable samples,
and Pq

(
x̂h
i

)
denotes the predicted probability for all classes

with the quantized network on high-reliable samples x̂h
i .

Generally, the high-reliable samples account for a small
portion of the total samples [23]. In quantization, we aim to
train the quantized network, which can fit the performance
of the pre-trained network. The low-reliable synthetic data
can also reflect the features of the pre-trained network and
provide some information for robustness. But owing to the
low predicted probability for the labels with low reliability,
they may mislead the training if applied directly in training.

To deal with it, auxiliary pseudo-labels are designed to
give a soften supervised learning with the low-reliable sam-
ples, which consists of the primary label ŷpi and secondary
label ŷsi . The primary label ŷpi represents the label with
the highest predicted probability, and the secondary label
ŷsi represents that with the second highest probability. In
the prediction with high self-entropy, the labels excluding
ŷpi can also have a decent probability, especially the sec-
ondary label ŷsi . Thus, the pseudo-labels from ŷpi and ŷsi
can be leveraged to enhance the training and mitigate the
risk of misleading for these samples [29]. The primary la-
bel ŷpi and secondary label ŷsi can be obtained as,

ŷpi = argmax
c∈C

P(x̂l
i, c),

ŷsi = argmax
c∈Ĉ

P(x̂l
i, c),

(8)

where Ĉ denotes the set of classes removing the class with
the highest predicted probability.

The auxiliary cross-entropy Ll
CE loss are defined with

the primary and secondary labels ŷpi , ŷsi as,

Ll
CE =

1

Nl

Nl∑
i=1

(
λp
i · CE

(
Pq(x̂

l
i), ŷ

p
i

)
+λs

i · CE
(
Pq(x̂

l
i), ŷ

s
i

))
,

(9)

where Nl refers to the number of low-reliable samples, λp
i

and λs
i represent the weights of primary and secondary la-

bels to balance their importance, and can be obtained as,

λp
i =

P(x̂l
i, p)

P(x̂l
i, p) + P(x̂l

i, s)
,

λs
i =

P(x̂l
i, s)

P(x̂l
i, p) + P(x̂l

i, s)
,

(10)
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where P(x̂l
i, p) and P(x̂l

i, s) denote the predicted probabili-
ties of the primary and secondary labels with the pre-trained
model, respectively.

With the designed major and auxiliary pseudo-labels, the
high- and low-reliable samples can be simultaneously used
to provide the supervision information for model training:

Ltotal
CE = Lh

CE + β · Ll
CE, (11)

where β is the hyper-parameter to balance the importance
of samples with different reliability, which is less than 1.

3.3. Pseudo-Label Training

To train a high-performance quantized model, we design
a pseudo-label training based on the knowledge distillation
framework [18], whereby the pre-trained network is em-
ployed as the teacher for the quantized network. In order to
learn the supervision information from the designed major
and auxiliary pseudo-labels, the designed cross-entropy loss
Ltotal
CE is used in training and combined with LMSE to form

the prediction similarity loss LP, which aims to guide the
quantized network has similar prediction ability with pre-
trained network as,

LP = Ltotal
CE + µ · LMSE, (12)

where µ is the hyperparameter to balance the two losses.
LMSE denotes the Mean Squared Error (MSE) between the
intermediate feature layers of the two networks. Owing to
the reduction of bits number for weights and activations in
the quantized network, the features extracted by interme-
diate layers are significantly affected, resulting in perfor-
mance degradation. LMSE is utilized to minimize the dif-
ference between the intermediate feature layers of the two
networks:

LMSE =

L∑
k=1

(
1

N

N∑
i=1

(fk (x̂i)− fq
k (x̂i))

2

)
, (13)

where fk (x̂i) and fq
k (x̂i) represent the outputs in the k-th

layer of the full-precision model and the quantized model,
respectively.

In common, the Kullback-Leibler (KL) divergence LKL

[3] between the outputs of the pre-trained and quantized net-
works can be used to minimize the discrepancy between the
outputs of the two networks, thereby ensuring the perfor-
mance of the quantized network.

LKL =
1

N

N∑
i=1

(
P (x̂i) · log

P (x̂i)

Pq(x̂i)

)
, (14)

where P (x̂i) and Pq (x̂i) denotes predicted probability us-
ing the pre-trained and quantized networks, respectively.

Thus, the total loss function for the entire training pro-
cess can be obtained as,

Ltotal = LKL + τLP, (15)

where hyperparameter τ is used to balance the weights of
the two losses.

4. Experiment
4.1. Experiment Setup

Datasets and Networks. Data-Free Quantization is
typically evaluated on CIFAR-10/100 [25] and ImageNet
(ILSVRC2012) [8] datasets. The proposed method is im-
plemented and examined with ResNet [17] and MobileNet
[19], i.e. ResNet-20 on CIFAR-10/100; ResNet-18/50, and
MobileNet-V1 on ImageNet (ILSVRC2012).

Implementation Details. For a fair comparison, we syn-
thesize 5,120 images as the synthetic data, which is the
same as the settings of IntarQ [47] and HAST [28], and
these synthetic samples are optimized with 1000 iterations.
The hyper-parameters γ are set as 10 for CIFAR-10/100
and 0.1 for ImageNet. We adopt the SGD optimizer with
a weight decay of 10−4 and momentum of 0.9 for model
training. The initial learning rate is set as 0.001 for CIFAR-
10/100 and 10−5 for ImageNet. The hyper-parameters Tl,
Tu, β, µ and τ are respectively set to 0.2, 0.5, 0.3, 100 and
1 for CIFAR-10/100 and 0.1, 0.4, 0.5, 4000 and 1 for Im-
ageNet. All full-precision pre-trained models are provided
by pytorchcv [42]. All layers are quantized, including the
first and last layers of the model. Our implementation is
conducted with PyTorch on a GPU Nvidia GTX 3090 Ti
workstation, CUDA 11.4, and Ubuntu 18.04.

4.2. Comparisons with State-of-the-Art Methods

The proposed method is compared with state-of-the-art
data-free quantization methods on CIFAR-10/100 and Im-
ageNet as listed in Tables 1∼4. W-bit/A-bit represent the
bits number of weights and activations after quantization,
respectively. Among these methods, GDFQ [42], DSG [44],
ZAQ [32], Qimera [5], ARC [6], ARC+AIT [48], AdaSG
[38] and AdaDFQ [37] belong to GBA. ZeroQ [3], IntraQ
[47] and HAST [28] belong to DBA.

CIFAR-10/100. For ResNet-20 on CIFAR-10/100, the
model is quantized into 4-bit and 3-bit. As shown in Ta-
ble 1, the proposed method achieves the superior perfor-
mances at 92.47% (4-bit), 88.04% (3-bit) on CIFAR-10
and 66.94% (4-bit), 57.03% (3-bit) on CIFAR-100. So our
method can get the higher performance compared with most
of exsiting methods, i.e. +0.98% over IntraQ, +0.37% over
AdaSG, +0.16% over AdaDFQ, and +0.11% over HAST
on CIFAR-10 (4-bit). The performance improvement is
higher on CIFAR-100 than CIFAR-10, i.e. +1.96% (4-bit)
and +8.78% (3-bit) over IntraQ, +0.52% (4-bit) and +4.27%
(3-bit) over AdaSG, +0.13% (4-bit) and +4.29% (3-bit)
over AdaDFQ, and +0.26% (4-bit) and +1.36% (3-bit) over
HAST. Generally, the proposed method can get the best per-
formance except in 3-bit on CIFAR-10 dataset (0.30% lower
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Table 1. Top-1 accuracy (%) comparison with the state-of-the-
art methods on CIFAR-10, CIFAR-100 for 3/4-bit ResNet-20. *
represents the results reimplemented in paper [37].

Dataset Method Venue W4A4 W3A3

CIFAR-10
For

ResNet-20
(FP:94.03)

ZeroQ[3] CVPR’20 84.68 29.32
GDFQ[42] ECCV’20 90.25 71.10
DSG[44] CVPR’21 88.74 32.90
Qimera[5] NeurIPS’21 91.26 74.43*
ARC[6] IJCAI’21 88.55 -

ARC+AIT[48] CVPR’22 90.49 -
IntraQ[47] CVPR’22 91.49 77.07
AdaSG[38] AAAI’23 92.10 84.14

AdaDFQ[37] CVPR’23 92.31 84.89
HAST[28] ICCV’23 92.36 88.34

Ours - 92.47 88.04

CIFAR-100
For

ResNet-20
(FP:70.33)

ZeroQ[3] CVPR’20 58.42 15.38
GDFQ[42] ECCV’20 63.58 43.87
DSG[44] CVPR’21 62.36 25.48
Qimera[5] NeurIPS’21 65.10 46.13*
ARC[6] IJCAI’21 62.76 40.15*

ARC+AIT[48] CVPR’22 61.05 41.34*
IntraQ[47] CVPR’22 64.98 48.25
AdaSG[38] AAAI’23 66.42 52.76

AdaDFQ[37] CVPR’23 66.81 52.74
HAST[28] ICCV’23 66.68 55.67

Ours - 66.94 57.03

Table 2. Top-1 accuracy (%) comparison with the state-of-the-art
methods on ImageNet for 4/5-bit ResNet-18.

Dataset Method Venue W5A5 W4A4

ImageNet
For

ResNet-18
(FP:71.47 )

ZeroQ[3] CVPR’20 69.65 60.68
GDFQ[42] ECCV’20 66.82 60.60
DSG[44] CVPR’21 69.53 60.12
ZAQ[32] CVPR’21 64.54 52.64
Qimera[5] NeurIPS’21 69.29 63.84
ARC[6] IJCAI’21 68.88 61.32

ARC+AIT[48] CVPR’22 70.28 65.73
IntraQ[47] CVPR’22 69.94 66.47
AdaSG[38] AAAI’23 70.29 66.50

AdaDFQ[37] CVPR’23 70.29 66.53
HAST[28] ICCV’23 - 66.91

Ours - 70.35 67.02

than HAST). By analysis, HSAT aims to improve the qual-
ity of synthetic data by increasing the proportion of hard
samples, resulting in more high quality synthetic data, but
our method emphasises on the synthetic data evaluation for
better utilization of synthetic data.

ImageNet. To further verify the effectiveness of our
method on the large-scale dataset, we compare the perfor-
mance on ImageNet using different networks with state-
of-the-art methods in Tables 2∼4. (1) The ResNet-18
is implemented with the proposed method, and the re-
sults are listed in Table 2. It can be observed that the
proposed method achieves the best performance among
these methods, which are 70.35% (5-bit) and 67.02% (4-

Table 3. Top-1 accuracy (%) comparison with the state-of-the-
art methods on ImageNet for 4/5-bit MobileNet-V1. ’IL’ denotes
using the inception loss [16].

Dataset Method Venue W5A5 W4A4

ImageNet
For

MobileNet-V1
(FP:73.39)

ZeroQ[3]+IL[16] CVPR’20 67.11 25.43
GDFQ[42] ECCV’20 59.76 28.64

DSG[44]+IL[16] CVPR’21 66.61 42.19
SQuant[13] ICLR’22 64.20 10.32
IntraQ[47] CVPR’22 68.17 51.36
HAST[28] ICCV’23 68.52 57.70

Ours - 69.44 59.51

Table 4. Top-1 accuracy (%) comparison with the state-of-the-art
methods on ImageNet for 4/5-bit ResNet-50.

Dataset Method Venue W5A5 W4A4

ImageNet
For

ResNet-50
(FP:77.73)

GDFQ[42] ECCV’20 71.63 54.16
ZAQ[32] CVPR’21 73.38 53.02
Qimera[5] NeurIPS’21 75.32 66.25
ARC[6] IJCAI’21 74.13 64.37

ARC+AIT[48] CVPR’22 76.00 68.27
AdaSG[38] AAAI’23 76.03 68.58

AdaDFQ[37] CVPR’23 76.03 68.38
Ours - 76.08 68.97

bit). Especially in the case of 4-bit, compared with
GDFQ (60.60%), Qimera (63.84%), AdaDFQ (66.53%),
and HAST (66.91%), our method can get much better per-
formance. (2) The MobileNet-V1 is selected for the evalua-
tion of the proposed method on the light-weighted network
as shown in Table 3. Generally, light-weighted networks
always have a heavy accuracy drop after quantization, but
the proposed method can also outperform existing methods,
which get 0.92% and 1.81% higher accuracy than the ad-
vanced method HAST for 5-bit and 4-bit, respectively. (3)
The ResNet-50 is used to evaluate the performance of the
proposed method on the network with complex and deeper
structure as Table 4. The proposed method achieves supe-
rior performances at 76.08% (5-bit) and 68.97% (4-bit), es-
pecially compared with the latest methods AdaSG (68.58%)
and AdaDFQ (68.38%) at 4-bit setup. Thus, the proposed
method can efficiently improve performance on various net-
work structures and datasets, proving the effectiveness of
our proposed evaluation for synthetic data.

4.3. Ablation Study

Effect of Different Components in LP. To evaluate the
effect of each component in the proposed method, we test
each item in the designed prediction similarity loss LP. Ta-
ble 5 lists different networks (N1 ∼ N7) trained with differ-
ent loss combinations (the common LKL is used in all the
networks to provide the basic performance of quantized net-
work). Symbol ✓ means the component is used for quanti-
zation training, and symbol × indicates that the component
is removed for training. Lh

CE and Ll
CE denote the cross-
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𝓝𝟒 𝓝𝟓 𝓝𝟔 Ours

original synthetic high-reliable low-reliable

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 4. Feature visualization using t-SNE. Figure 4 (a∼d) show the feature distributions of the network N4 (w/o Lh
CE and Ll

CE), N5

(w/o Ll
CE), N6 (w/o Lh

CE) and N7 (Ours) on the original test dataset. Figure 4 (e ∼ h) show the feature distributions of the pre-trained
network on the original dataset, the synthetic dataset, the evaluated high-reliable dataset X̂h and low-reliable dataset X̂l, respectively.
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Figure 5. The highest and secondary highest predicted probabilities of pre-trained network on the high- and low-reliable datasets. The
highest predicted probabilities on the high-reliable dataset are far higher than the secondary highest predicted probabilities, since the pre-
trained network has high performance on these data. While on the low-reliable dataset, the pre-trained network cannot perform well, which
can be reflected by the lower highest predicted probabilities and higher secondary highest predicted probabilities.

Table 5. Ablation studies of losses with 3/4-bit ResNet-20 on the
CIFAR-100.

- Lh
CE Ll

CE LMSE W4/A4 W3/A3

N1 × × × 65.81 50.87
N2 ✓ × × 66.30 53.22
N3 ✓ ✓ × 66.52 54.14
N4 × × ✓ 66.32 54.59
N5 ✓ × ✓ 66.68 56.43
N6 × ✓ ✓ 66.57 55.86
N7 ✓ ✓ ✓ 66.94 57.03

entropy loss functions using high-reliable and low-reliable
samples, respectively. LMSE represents the usage of the
MSE loss function. There are two observations. (1) Mul-
tiple Pseudo-labels can provide supervision information for
model training, and improve the performance of the quan-
tized network. In the comparison for Lh

CE and Ll
CE (i.e.

comparing N1 with N3, and comparing N4 with N7), it
is obvious that the designed Lh

CE and Ll
CE can improve

the quantized network performance, which can prove the
efficiency of proposed reliability filtering. By comparing
the network with different combinations of Lh

CE and Ll
CE

Table 6. Top-1 accuracy (%) of the combination of GDFQ [42],
IntraQ [47] and our training method on CIFAR-100 for 4-bit
ResNet-20 and ImageNet for 4-bit ResNet-18. The combination
with our multiple pseudo-labels is denoted as +Ltotal

CE .

Dataset Method Acc Acc Up

Cifar100
(FP:70.33)

GDFQ[42] 63.58 -
GDFQ[42]+Ltotal

CE 64.01 0.43 ↑
IntraQ[47] 64.98 -

IntraQ[47]+Ltotal
CE 65.49 0.51 ↑

Ours 66.94 -

ImageNet
(FP:73.09)

GDFQ[42] 60.60 -
GDFQ[42]+Ltotal

CE 61.36 0.76 ↑
IntraQ[47] 66.47 -

IntraQ[47]+Ltotal
CE 66.79 0.32 ↑

Ours 67.02 -

(i.e. comparing N2 with N3, comparing N5 with N7, and
comparing N6 with N7), the network trained using multiple
pseudo-labels can have better performance than using only
one of them, which shows the designed multiple pseudo-
labels works and can provide more supervision information
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for improving the performance of the quantized network.
Especially, the performance of N5 is higher than that of
N6, which can show better training efficiency using high-
reliable data than low-reliable data. (2) Mean Squared Er-
ror (MSE) can make significant performance gain for quan-
tized network. In the comparison with and w/o LMSE (i.e.
comparing N1 with N4, comparing N2 with N5, and com-
paring N3 with N7), the performance can have a stable im-
provement with LMSE, which can prove the efficiency for
minimizing the difference between the intermediate feature
layers of the two networks.

To give visualizations for the improvement of network
performance with the designed loss function, the feature
distributions of the network N4 (w/o Lh

CE and Ll
CE), N5

(w/o Ll
CE), N6 (w/o Lh

CE) and N7 (Ours) on the original test
dataset are shown in Figure 4 (a∼d) with t-SNE [40], which
can display the distribution for classification by transferring
data from high dimension into the two-dimensional space.
It is evident that the designed Lh

CE and Ll
CE can improve

the classification performance of the trained quantized net-
work, which can be observed from the aggregation effect of
different classes (comparing N4 with N5 in Figure 4 (a) and
(b), and comparing N4 with N6 in Figure 4 (a) and (c)), so
the designed reliability filtering can improve the training of
quantized network. In addition, N7 in Figure 4 (d) has the
best aggregation effect among these four networks, which
can prove the efficiency of the designed multiple pseudo-
labels in the proposed method.

Effect of Reliability Filtering. To show the efficiency
of proposed self-entropy metric for evaluating the reliabil-
ity of samples in the synthetic data, we present the feature
distributions of the pre-trained network on the original train-
ing dataset, the synthetic dataset, the evaluated high-reliable
dataset X̂h and low-reliable dataset X̂ l as shown in Figure 4
(e ∼ h). The feature distributions of the pre-trained net-
work on the original training dataset are shown in Figure 4
(e), which means the pre-trained network can have a good
classification performance on the original training dataset.
However, the feature distributions in Figure 4 (f) show the
pre-trained network can hardly efficiently classify the syn-
thetic data. From the results in Figure 4 (g) and (h), it is
evident that the pre-trained network can have an excellent
classification performance on X̂h. This means the applica-
tion of designed reliability filtering can efficiently filter the
high-reliable samples, which is suitable to provide supervi-
sion information and train quantized network.

Effect of Multiple Pseudo-Labels. The highest and sec-
ondary highest predicted probabilities of pre-trained net-
work on the high- and low-reliable datasets are plotted in
Figure 5. It can be observed that the highest predicted
probabilities on the high-reliable dataset are far higher than
the secondary highest predicted probabilities, since the pre-
trained network has high reliability on these data. While on

the low-reliable dataset, the pre-trained network cannot per-
form well, which can be reflected by the lower highest pre-
dicted probabilities and higher secondary highest predicted
probabilities. Therefore, the designed secondary label ŷsi
can also provide information for fitting the performance of
the pre-trained network, which can enhance the training and
mitigate the risk of misleading for the high-reliable samples.

Effect of Pseudo-Label Training. Our designed multi-
ple pseudo-labels Ltotal

CE can also combined with other train-
ing framework. To evaluate the proposed training frame-
work, two classic DFQ methods (GDFQ and IntraQ) are
selected as baselines, and we combine the designed Ltotal

CE

with these two baselines. We examine the performance
on CIFAR-100 for 4-bit ResNet-20 and ImageNet for 4-
bit ResNet-18 as listed in Table 6. From the experimental
results, the combination with our designed Ltotal

CE can effi-
ciently improve the performance of the quantized network
for the existing methods, which can prove the effectiveness
of our designed multiple pseudo-labels. In addition, it is
also observed that the proposed training framework can still
have the best accuracy among these methods, which can
prove that the proposed pseudo-label training can guide the
quantized network to have a similar prediction ability with
the pre-trained network and learn supervision information
from the synthetic data with different labels.

5. Conclusion

This work proposes an efficient data-free quantization
method via pseudo-label filtering, which is the first to eval-
uate the synthetic data before training the quantized net-
work. In the proposed method, self-entropy is selected as
an evaluation metric to divide the synthetic data into high-
reliable and low-reliable data. The multiple pseudo-labels
are designed to label the evaluated samples, which can fur-
ther improve the reliability and avoid misleading caused by
low-reliable data. The pseudo-label training is designed
to integrate the supervision information provided by multi-
ple pseudo-labels. Extensive experiments are implemented
and evaluated on CIFAR-10/100 and ImageNet datasets,
demonstrating that the proposed framework performs bet-
ter than existing methods.
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