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Abstract

Instance segmentation is data-hungry, and as model ca-
pacity increases, data scale becomes crucial for improving
the accuracy. Most instance segmentation datasets today
require costly manual annotation, limiting their data scale.
Models trained on such data are prone to overfitting on the
training set, especially for those rare categories. While re-
cent works have delved into exploiting generative models
to create synthetic datasets for data augmentation, these
approaches do not efficiently harness the full potential of
generative models.

To address these issues, we introduce a more efficient
strategy to construct generative datasets for data augmen-
tation, termed DiverGen. Firstly, we provide an explana-
tion of the role of generative data from the perspective of
distribution discrepancy. We investigate the impact of dif-
ferent data on the distribution learned by the model. We
argue that generative data can expand the data distribu-
tion that the model can learn, thus mitigating overfitting.
Additionally, we find that the diversity of generative data
is crucial for improving model performance and enhance
it through various strategies, including category diversity,
prompt diversity, and generative model diversity. With these
strategies, we can scale the data to millions while main-
taining the trend of model performance improvement. On
the LVIS dataset, DiverGen significantly outperforms the
strong model X-Paste, achieving +1.1 box AP and +1.1
mask AP across all categories, and +1.9 box AP and +2.5
mask AP for rare categories. Our codes are available at
https://github.com/aim-uofa/DiverGen.

1. Introduction
Instance segmentation [1, 3, 8] is one of the challenging
tasks in computer vision, requiring the prediction of masks
and categories for instances in an image, which serves as
the foundation for numerous visual applications. As mod-
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els’ learning capabilities improve, the demand for training
data increases. However, current datasets for instance seg-
mentation heavily rely on manual annotation, which is time-
consuming and costly, and the dataset scale cannot meet
the training needs of models. Despite the recent emergence
of the automatically annotated dataset SA-1B [11], it lacks
category annotations, failing to meet the requirements of in-
stance segmentation. Meanwhile, the ongoing development
of the generative model has largely improved the controlla-
bility and realism of generated samples. For example, the
recent text2image diffusion model [20, 22] can generate
high-quality images corresponding to input prompts. There-
fore, current methods [25, 26, 32] use generative models for
data augmentation by generating datasets to supplement the
training of models on real datasets and improve model per-
formance. Although current methods have proposed various
strategies to enable generative data to boost model perfor-
mance, there are still some limitations: 1) Existing methods
have not fully exploited the potential of generative models.
First, some methods [32] not only use generative data but
also need to crawl images from the internet, which is signifi-
cantly challenging to obtain large-scale data. Meanwhile, the
content of data crawled from the internet is uncontrollable
and needs extra checking. Second, existing methods do not
fully use the controllability of generative models. Current
methods often adopt manually designed templates to con-
struct prompts, limiting the potential output of generative
models. 2) Existing methods [25, 26] often explain the role
of generative data from the perspective of class imbalance or
data scarcity, without considering the discrepancy between
real-world data and generative data. Moreover, these meth-
ods typically show improved model performance only in
scenarios with a limited number of real samples, and the
effectiveness of generative data on existing large-scale real
datasets, like LVIS [7], is not thoroughly investigated.

In this paper, we first explore the role of generative data
from the perspective of distribution discrepancy, address-
ing two main questions: 1) Why does generative data aug-
mentation enhance model performance? 2) What types of
generative data are beneficial for improving model perfor-
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mance? First, we find that there exist discrepancies between
the model learned distribution of the limited real training
data and the distribution of real-world data. We visualize the
data and find that compared to the real-world data, generative
data can expand the data distribution that the model can learn.
Furthermore, we find that the role of adding generative data
is to alleviate the bias of the real training data, effectively
mitigating overfitting the training data. Second, we find that
there are also discrepancies between the distribution of the
generative data and the real-world data distribution. If these
discrepancies are not handled properly, the full potential
of the generative model cannot be utilized. By conducting
several experiments, we find that using diverse generative
data enables models to better adapt to these discrepancies,
improving model performance.

Based on the above analysis, we propose an efficient
strategy for enhancing data diversity, namely, Generative
Data Diversity Enhancement. We design various diversity
enhancement strategies to increase data diversity from the
perspectives of category diversity, prompt diversity, and gen-
erative model diversity. For category diversity, we observe
that models trained with generative data covering all cate-
gories adapt better to distribution discrepancy than models
trained with partial categories. Therefore, we introduce not
only categories from LVIS [7] but also extra categories from
ImageNet-1K [21] to enhance category diversity in data gen-
eration, thereby reinforcing the model’s adaptability to distri-
bution discrepancy. For prompt diversity, we find that as the
scale of the generative dataset increases, manually designed
prompts cannot scale up to the corresponding level, limiting
the diversity of output images from the generative model.
Thus, we design a set of diverse prompt generation strate-
gies to use large language models, like ChatGPT, for prompt
generation, requiring the large language models to output
maximally diverse prompts under constraints. By combining
manually designed prompts and ChatGPT designed prompts,
we effectively enrich prompt diversity and further improve
generative data diversity. For generative model diversity,
we find that data from different generative models also ex-
hibit distribution discrepancies. Exposing models to data
from different generative models during training can enhance
adaptability to different distributions. Therefore, we employ
Stable Diffusion [20] and DeepFloyd-IF [22] to generate
images for all categories separately and mix the two types of
data during training to increase data diversity.

At the same time, we optimize the data generation work-
flow and propose a four-stage generative pipeline consisting
of instance generation, instance annotation, instance filtra-
tion, and instance augmentation. In the instance generation
stage, we employ our proposed Generative Data Diversity
Enhancement to enhance data diversity, producing diverse
raw data. In the instance annotation stage, we introduce an
annotation strategy called SAM-background. This strategy

obtains high-quality annotations by using background points
as input prompts for SAM [11], obtaining the annotations
of raw data. In the instance filtration stage, we introduce a
metric called CLIP inter-similarity. Utilizing the CLIP [19]
image encoder, we extract embeddings from generative and
real data, and then compute their similarity. A lower simi-
larity indicates lower data quality. After filtration, we obtain
the final generative dataset. In the instance augmentation
stage, we use the instance paste strategy [32] to increase
model learning efficiency on generative data.

Experiments demonstrate that our designed data diver-
sity strategies can effectively improve model performance
and maintain the trend of performance gains as the data
scale increases to the million level, which enables large-
scale generative data for data augmentation. On the LVIS
dataset, DiverGen significantly outperforms the strong model
X-Paste [32], achieving +1.1 box AP [7] and +1.1 mask AP
across all categories, and +1.9 box AP and +2.5 mask AP
for rare categories.

In summary, our main contributions are as follows:
• We explain the role of generative data from the perspec-

tive of distribution discrepancy. We find that generative
data can expand the data distribution that the model can
learn, mitigating overfitting the training set and the di-
versity of generative data is crucial for improving model
performance.

• We propose the Generative Data Diversity Enhancement
strategy to increase data diversity from the aspects of cat-
egory diversity, prompt diversity, and generative model
diversity. By enhancing data diversity, we can scale the
data to millions while maintaining the trend of model per-
formance improvement.

• We optimize the data generation pipeline. We propose
an annotation strategy SAM-background to obtain higher-
quality annotations. We also introduce a filtration metric
called CLIP inter-similarity to filter data and further im-
prove the quality of the generative dataset.

2. Related Work
Instance segmentation. Instance segmentation is an im-
portant task in the field of computer vision and has been
extensively studied. Unlike semantic segmentation, instance
segmentation not only classifies the pixels at a pixel level
but also distinguishes different instances of the same cat-
egory. Previously, the focus of instance segmentation re-
search has primarily been on the design of model structures.
Mask-RCNN [8] unifies the tasks of object detection and
instance segmentation. Subsequently, Mask2Former [3] fur-
ther unified the tasks of semantic segmentation and instance
segmentation by leveraging the structure of DETR [1].

Orthogonal to these studies focusing on model architec-
ture, our work primarily investigates how to better utilize
generated data for this task. We focus on the challenging
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Figure 1. Visualization of data distributions on different sources. Compared to real-world data (LVIS train and LVIS val), generative data
(Stable Diffusion and IF) can expand the data distribution that the model can learn.

long-tail dataset LVIS [7] because it is only the long-tailed
categories that face the issue of limited real data and re-
quire generative images for augmentation, making it more
practically meaningful.
Generative data augmentation. The use of generative
models to synthesize training data for assisting percep-
tion tasks such as classification [5, 30], detection [2, 32],
segmentation [13, 25, 26], etc. has received widespread
attention from researchers. In the field of segmentation,
early works [12, 31] utilize generative adversarial networks
(GANs) to synthesize additional training samples. With
the rise of diffusion models, there have been numerous ef-
forts [13, 25, 26, 28, 32] to utilize text2image diffusion mod-
els, such as Stable Diffusion [20], to boost the segmentation
performance. Li et al. [13] combine the Stable Diffusion
model with a novel grounding module and establish an auto-
matic pipeline for constructing a segmentation dataset. Dif-
fuMask [26] exploits the potential of cross-attention maps
between text and images to synthesize accurate semantic
labels. More recently, FreeMask [28] uses a mask-to-image
generation model to generate images conditioned on the pro-
vided semantic masks. However, the aforementioned work
is only applicable to semantic segmentation. The most rele-
vant work to ours is X-Paste [32], which promotes instance
segmentation through copy-pasting the generative images
and a filter strategy based on CLIP [19].

In summary, most methods only demonstrate significant
advantages when training data is extremely limited. They
consider generating data as a means to compensate for data
scarcity or class imbalance. However, in this work, we take
a further step to examine and analyze this problem from
the perspective of data distribution. We propose a pipeline
that enhances diversity from multiple levels to alleviate the
impact of data distribution discrepancies. This provides new
insights and inspirations for further advancements in this
field.

3. Our Proposed DiverGen
3.1. Analysis of Data Distribution

Existing methods [26, 27, 32] often attribute the role of gen-
erative data to addressing class imbalance or data scarcity. In
this paper, we provide an explanation for two main questions
from the perspective of distribution discrepancy.
Why does generative data augmentation enhance model
performance? We argue that there exist discrepancies be-
tween the model learned distribution of the limited real train-
ing data and the distribution of real-world data. The role
of adding generative data is to alleviate the bias of the real
training data, effectively mitigating overfitting the training
data.

First, to intuitively understand the discrepancies between
different data sources, we use CLIP [19] image encoder to
extract the embeddings of images from different data sources,
and then use UMAP [17] to reduce dimensions for visualiza-
tion. Visualization of data distributions on different sources
is shown in Figure 1. Real-world data (LVIS [7] train and
LVIS val) cluster near the center, while generative data (Sta-
ble Diffusion [20] and IF [22]) are more dispersed, indicating
that generative data can expand the data distribution that the
model can learn.

Then, to characterize the distribution learned by the
model, we employ the free energy formulation used by
Joseph et al. [9]. This formulation transforms the logits
outputted by the classification head into an energy function.
The formulation is shown below:

F (q;h) = −τ log

n∑
c=1

exp

(
hc(q)

τ

)
. (1)

Here, q is the feature of instance, hc(q) is the cth logit
outputted by classification head h(.), n is the number of
categories and τ is the temperature parameter. We train
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one model using only the LVIS train set (θtrain), and an-
other model using LVIS train with generative data (θgen).
Both models are evaluated on the LVIS val set and we use
instances that are successfully matched by both models to ob-
tain energy values. Additionally, we train another model us-
ing LVIS val (θval), treating it as representative of real-world
data distribution. Then, we further fit Gaussian distributions
to the histograms of energy values to obtain the mean µ and
standard deviation σ for each model and compute the KL
divergence [10] between them. DKL(pθtrain∥pθval) is 0.063,
and DKL(pθgen∥pθval) is 0.019. The latter is lower, indicating
that using generative data mitigates the bias of limited real
training data.

Moreover, we also analyze the role of generative data
from a metric perspective. We randomly select up to five
images per category to form a minitrain set and then conduct
inferences using θtrain and θgen. Then, we define a metric,
termed train-val gap (TVG), which is formulated as follows:

TVGk
w = APk

wminitrain− APk
wval. (2)

Here, TVGk
w is train-val gap of w category on task k,

APk
wd is AP [7] of w category on k obtained on dataset

d, w ∈ {f, c, r}, with f , c, r standing for frequent, common,
rare [7] respectively, and k ∈ {box,mask}, with box, mask
referring to the object detection and instance segmentation.
The train-val gap serves as a measure of the disparity in the
model’s performance between the training and validation
sets. A larger gap indicates a higher degree of overfitting
the training set. The results, as presented in Table 1, show
that the metrics for the rare categories consistently surpass
those of frequent and common. This observation suggests
that the model tends to overfit more on the rare categories
that have fewer examples. With the augmentation of genera-
tive data, all TVG of θgen are lower than θtrain, showing that
adding generative data can effectively alleviate overfitting
the training data.

Data Source TVGbox
f TVGmask

f TVGbox
c TVGmask

c TVGbox
r TVGmask

r

LVIS 13.16 10.71 21.80 16.80 39.59 31.68
LVIS + Gen 9.64 8.38 15.64 12.69 29.39 22.49

Table 1. Results of train-val gap on different data sources.
With the augmentation of generative data, all TVG of LVIS are
lower than LVIS + Gen, showing that adding generative data can
effectively alleviate overfitting to the training data.

What types of generative data are beneficial for improv-
ing model performance? We argue that there are also
discrepancies between the distribution of the generative data
and the real-world data distribution. If these discrepancies
are not properly addressed, the full potential of the generative
model cannot be attained.

We divide the generative data into ‘frequent’, ‘common’,
and ‘rare’ [7] groups, and train three models using each

group of data as instance paste source. The inference results
are shown in Table 2. We find that the metrics on the cor-
responding category subset are lowest when training with
only one group of data. We consider model performance
to be primarily influenced by the quality and diversity of
data. Given that the quality of generative data is relatively
consistent, we contend insufficient diversity in the data can
mislead the distribution that the model can learn and a more
comprehensive understanding is obtained by the model from
a diverse set of data. Therefore, we believe that using di-
verse generative data enables models to better adapt to these
discrepancies, improving model performance.

# Gen Category APbox
f APmask

f APbox
c APmask

c APbox
r APmask

r

none 50.14 43.84 47.54 43.12 41.39 36.83
f 50.81 44.24 47.96 43.51 41.51 37.92
c 51.86 45.22 47.69 42.79 42.32 37.30
r 51.46 44.90 48.24 43.51 32.67 29.04

all 52.10 45.45 50.29 44.87 46.03 41.86

Table 2. Results of different category data subset for training.
The metrics on the corresponding category subset are lowest when
training with only one group of data, showing insufficient diversity
in the data can mislead the distribution that the model can learn.
Blue font means the lowest value in models using generative data.

3.2. Generative Data Diversity Enhancement

Through the analysis above, we find that the diversity of
generative data is crucial for improving model performance.
Therefore, we design a series of strategies to enhance data
diversity at three levels: category diversity, prompt diversity,
and generative model diversity, which help the model to bet-
ter adapt to the distribution discrepancy between generative
data and real data.
Category diversity. The above experiments show that in-
cluding data from partial categories results in lower per-
formance than incorporating data from all categories. We
believe that, akin to human learning, the model can learn
features beneficial to the current category from some other
categories. Therefore, we consider increasing the diversity of
data by adding extra categories. First, we select some extra
categories besides LVIS from ImageNet-1K [21] categories
based on WordNet [4] similarity. Then, the generative data
from LVIS and extra categories are mixed for training, requir-
ing the model to learn to distinguish all categories. Finally,
we truncate the parameters in the classification head corre-
sponding to the extra categories during inference, ensuring
that the inferred category range remains within LVIS.
Prompt diversity. The output images of the text2image gen-
erative model typically rely on the input prompts. Existing
methods [32] usually generate prompts by manually design-
ing templates, such as “a photo of a single {category name}.”
When the data scale is small, designing prompts manually is
convenient and fast. However, when generating a large scale
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of data, it is challenging to scale the number of manually
designed prompts correspondingly. Intuitively, it is essential
to diversify the prompts to enhance data diversity. To easily
generate a large number of prompts, we choose large lan-
guage model, like ChatGPT, to enhance the prompt diversity.
We have three requirements for the large language model:
1) each prompt should be as different as possible; 2) each
prompt should ensure that there is only one object in the im-
age; 3) prompts should describe different attributes of the cat-
egory. For example, if the category is food, prompts should
cover attributes like color, brand, size, freshness, packaging
type, packaging color, etc. Limited by the inference cost
of ChatGPT, we use the manually designed prompts as the
base and only use ChatGPT to enhance the prompt diversity
for a subset of categories. Moreover, we also leverage the
controllability of the generative model, adding the constraint
“in a white background” after each prompt to make the back-
ground of output images simple and clear, which reduces the
difficulty of mask annotation.

Generative model diversity. The quality and style of output
images vary across generative models, and the data distri-
bution learned solely from one generative model’s data is
limited. Therefore, we introduce multiple generative mod-
els to enhance the diversity of data, allowing the model
to learn from wider data distributions. We selected two
commonly used generative models, Stable Diffusion [20]
(SD) and DeepFloyd-IF [22] (IF). We use Stable Diffusion
V1.5, generating images with a resolution of 512 × 512, and
use images output from Stage II of IF with a resolution of
256 × 256. For each category in LVIS, we generated 1k im-
ages using two models separately. Examples from different
generative models are shown in Figure 2.

Stable
Diffusion

DeepFloyd
IF

Figure 2. Examples of various generative models. The samples
generated by different generative models vary, even within the same
category.

3.3. Generative Pipeline

The generative pipeline of DiverGen is built upon X-
Paste [32]. It can be divided into four stages: instance gen-
eration, instance annotation, instance filtration and instance
augmentation. The overview of DiverGen is illustrated in
Figure 3.

Instance generation. Instance generation is a crucial stage
for enhancing data diversity. In this stage, we employ our
proposed Generative Data Diversity Enhancement (GDDE),
as mentioned in Sec 3.2. In category diversity enhancement,
we utilize the category information from LVIS [7] categories
and extra categories selected from ImageNet-1K [21]. In
prompt diversity enhancement, we utilize manually designed
prompts and ChatGPT designed prompts to enhance prompt
diversity. In model diversity enhancement, we employ two
generative models, SD and IF.

Instance annotation. We employ SAM [11] as our annota-
tion model. SAM is a class-agnostic promptable segmenter
that outputs corresponding masks based on input prompts,
such as points, boxes, etc. In instance generation, leveraging
the controllability of the generative model, the generative im-
ages have two characteristics: 1) each image predominantly
contains only one foreground object; 2) the background of
the images is relatively simple. Therefore, we introduce a
SAM-background (SAM-bg) annotation strategy. SAM-bg
takes the four corner points of an image as input prompts
for SAM to obtain the background mask, then inverts the
background mask as the mask of the foreground object. Due
to the conditional constraints during the instance genera-
tion stage, this strategy is simple but effective in producing
high-quality masks.

Instance filtration. In the instance filtration stage, X-Paste
utilizes the CLIP score (similarity between images and text)
as the metric for image filtering. However, we observe that
the CLIP score is ineffective in filtering low-quality im-
ages. In contrast to the similarity between images and text,
we think the similarity between images can better filter out
low-quality images. Therefore, we propose a new metric
called CLIP inter-similarity. We use the image encoder of
CLIP [19] to extract image embeddings for objects in the
training set and generative images, then calculate the similar-
ity between them. If the similarity is too low, it indicates a
significant disparity between the generative and real images,
suggesting that it is probably a poor-quality image and needs
to be filtered.

Instance augmentation. We use the augmentation strategy
proposed by X-Paste [32] but do not use the data retrieved
from the network or the instances in LVIS [7] training set
as the paste data source, only use the generative data as the
paste data source.
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Figure 3. Overview of the DiverGen pipeline. In instance generation, we enhance data diversity at three levels: category diversity, prompt
diversity, and generative model diversity. Next, we use SAM-background to obtain high-quality masks. Then, we use CLIP inter-similarity
to filter out low-quality data. At last, we use the instance paste strategy to increase model learning efficiency on generative data.

4. Experiments

4.1. Settings

Datasets. We choose LVIS [7] for our experiments. LVIS
is a large-scale instance segmentation dataset, containing
164k images with approximately two million high-quality
annotations of instance segmentation and object detection.
LVIS dataset uses images from COCO 2017 [14] dataset, but
redefines the train/val/test splits, with around 100k images
in the training set and around 20k images in the validation
set. The annotations in LVIS cover 1,203 categories, with a
typical long-tailed distribution of categories, so LVIS further
divides the categories into frequent, common, and rare based
on the frequency of each category in the dataset. We use the
official LVIS training split and the validation split.
Evaluation metrics. The evaluation metrics are LVIS
box average precision (APbox) and mask average precision
(APmask). We also provide the average precision of rare
categories (APbox

r and APmask
r ). The maximum number of

detections per image is 300.
Implementation details. We use CenterNet2 [33] as the
baseline and Swin-L [15] as the backbone. In the training
process, we initialize the parameters by the pre-trained Swin-
L weights provided by Liu et al. [15]. The training size is 896
and the batch size is 16. The maximum training iterations is
180,000 with an initial learning rate of 0.0001. We use the
instance paste strategy provided by Zhao et al. [32].

4.2. Main Results

Data diversity is more important than quantity. To inves-
tigate the impact of different scales of generative data, we

use generative data of varying scales as paste data sources.
We construct three datasets using only DeepFloyd-IF [22]
with manually designed prompts, all containing original
LVIS 1,203 categories, but with per-category quantities of
0.25k, 0.5k, and 1k, resulting in total dataset scales of 300k,
600k, and 1,200k. As shown in Table 3, we find that using
generative data improves model performance compared to
the baseline. However, as the dataset scale increases, the
model performance initially improves but then declines. The
model performance using 1,200k data is lower than that
using 600k data. Due to the limited number of manually
designed prompts, the generative model produces similar
data, as shown in Figure 4a. Consequently, the model can
not gain benefits from more data. However, when using our
proposed Generative Data Diversity Enhancement (GDDE),
due to the increased data diversity, the model trained with
1,200k images achieves better results than using 600k im-
ages, with an improvement of 1.21 box AP and 1.04 mask
AP. Moreover, when using the same data scale of 600k, the
mask AP increased by 0.64 AP and the box AP increased
by 0.55 AP when using GDDE compared to not using it.
The results demonstrate that data diversity is more important
than quantity. When the scale of data is small, increasing
the quantity of data can improve model performance, which
we consider is an indirect way of increasing data diversity.
However, this simplistic approach of solely increasing quan-
tity to increase diversity has an upper limit. When it reaches
this limit, explicit data diversity enhancement strategies be-
come necessary to maintain the trend of model performance
improvement.

Comparision with previous methods. We compare Di-
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(a) Images of manually designed prompts.
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(b) Images of ChatGPT designed prompts.

Figure 4. Examples of generative data using different prompts. By using prompts designed by ChatGPT, the diversity of generated
images in terms of shapes, textures, etc. can be significantly improved.

# Gen Data GDDE APbox APmask APbox
r APmask

r

0 47.50 42.32 41.39 36.83
300k 49.65 44.01 45.68 41.11
600k 50.03 44.44 47.15 41.96

1200k 49.44 43.75 42.96 37.91
600k ✓ 50.67 44.99 48.52 43.63

1200k ✓ 51.24 45.48 50.07 45.85

Table 3. Results of different scales of generative data. When
using the same data scale, models using our proposed GDDE can
achieve higher performance than those without it, showing that data
diversity is more important than quantity.

verGen with previous data-augmentation related methods
in Table 4. Compared to the baseline CenterNet2 [33], our
method significantly improves, increasing box AP by +3.7
and mask AP by +3.2. Regarding rare categories, our method
surpasses the baseline with +8.7 in box AP and +9.0 in mask
AP. Compared to the previous strong model X-Paste [32],
we outperform it with +1.1 in box AP and +1.1 in mask
AP of all categories, and +1.9 in box AP and +2.5 in mask
AP of rare categories. It is worth mentioning that, X-Paste
utilizes both generative data and web-retrieved data as paste
data sources during training, while our method exclusively
uses generative data as the paste data source. We achieve
this by designing diversity enhancement strategies, further
unlocking the potential of generative models.

Method Backbone APbox APmask APbox
r APmask

r

Copy-Paste [6] EfficientNet-B7 41.6 38.1 - 32.1
Tan et al. [24] ResNeSt-269 - 41.5 - 30.0

Detic [34] Swin-B 46.9 41.7 45.9 41.7
CenterNet2 [33] Swin-L 47.5 42.3 41.4 36.8

X-Paste [32] Swin-L 50.1 44.4 48.2 43.3

DiverGen (Ours) Swin-L
51.2 45.5 50.1 45.8

(+1.1) (+1.1) (+1.9) (+2.5)

Table 4. Comparison with previous methods on LVIS val set.

4.3. Ablation Studies

We analyze the effects of the proposed strategies in DiverGen
through a series of ablation studies using the Swin-L [15]
backbone.
Effect of category diversity. We select 50, 250, and 566
extra categories from ImagNet-1K [21], and generate 0.5k
images for each category, which are added to the baseline.
The baseline only uses 1,203 categories of LIVS [7] to gener-
ate data. We show the results in Table 5. Generally, increas-
ing the number of extra categories initially improves then
declines model performance, peaking at 250 extra categories.
The trend suggests that using extra categories to enhance
category diversity can improve the model’s generalization
capabilities, but too many extra categories may mislead the
model, leading to a decrease in performance.

# Extra Category APbox APmask APbox
r APmask

r

0 49.44 43.75 42.96 37.91
50 49.92 44.17 44.94 39.86
250 50.59 44.77 47.99 42.91
566 50.35 44.63 47.68 42.53

Table 5. Ablation of the number of extra categories during
training. Using extra categories to enhance category diversity
can improve the model’s generalization capabilities, but too many
extra categories may mislead the model, leading to a decrease in
performance.

Effect of prompt diversity. We select a subset of categories
and use ChatGPT to generate 32 and 128 prompts for each
category, with each prompt being used to generate 8 and 2
images, respectively, ensuring that the image count for each
category is 0.25k. The baseline uses only one prompt per
category to generate 0.25k images. The regenerated images
will replace the corresponding categories in the baseline to
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ensure that the final data scale is consistent. The results are
presented in Table 6. With the increase in prompt diversity,
there is a continuous improvement in model performance,
indicating that prompt diversity is indeed beneficial for en-
hancing model performance.

# Prompt APbox APmask APbox
r APmask

r

1 49.65 44.01 45.68 41.11
32 50.03 44.39 45.83 41.32

128 50.27 44.50 46.49 41.25

Table 6. Ablation of the number of prompts used to generate
data. With the increase in prompt diversity, there is a continuous
improvement in model performance, indicating that prompt diver-
sity is indeed beneficial for enhancing model performance.

Effect of generative model diversity. We choose two com-
monly used generative models, Stable Diffusion [20] (SD)
and DeepFloyd-IF [22] (IF). We generate 1k images per
category for each generative model, totaling 1,200k. When
using a mixed dataset (SD + IF), we take 600k from SD
and 600k from IF per category, respectively, to ensure the
total dataset scale is consistent. The baseline does not use
any generative data (none). As shown in Table 7, using data
generated by either SD or IF alone can improve performance,
further mixing the generative data of both leads to significant
performance gains. This demonstrates that increasing model
diversity is beneficial for improving model performance.

Model APbox APmask APbox
r APmask

r

none 47.50 42.32 41.39 36.83
SD [20] 48.13 42.82 43.68 39.15
IF [22] 49.44 43.75 42.96 37.91
SD + IF 50.78 45.27 48.94 44.35

Table 7. Ablation of different generative models. Increasing
model diversity is beneficial for improving model performance.

Effect of annotation strategy. X-Paste [32] uses four
models (U2Net [18], SelfReformer [29], UFO [23] and
CLIPseg [16]) to generate masks and selects the one with the
highest CLIP score. We compare our proposed annotation
strategy (SAM-bg) to that proposed by X-Paste (max CLIP).
In Table 8, SAM-bg outperforms max CLIP strategy across
all metrics, indicating that our proposed strategy can pro-
duce better annotations, improving model performance. As
shown in Figure 5, SAM-bg unlocks the potential capability
of SAM, obtaining precise and refined masks.
Effect of CLIP inter-similarity. We compare our proposed
CLIP inter-similarity to CLIP score [32]. The results are
shown in Table 9. The performance of data filtered by CLIP
inter-similarity is higher than that of CLIP score, demonstrat-
ing that CLIP inter-similarity can filter low-quality images
more effectively.

raw data

max CLIP

SAM-bg

Figure 5. Examples of object mask of different annotation
strategies. SAM-bg can obtain more complete and delicate masks.

Strategy APbox APmask APbox
r APmask

r

max CLIP [32] 49.10 43.45 42.75 37.55
SAM-bg 49.44 43.75 42.96 37.91

Table 8. Ablation of different annotation strategies. Our pro-
posed SAM-bg can produce better annotations, improving model
performance.

Strategy APbox APmask APbox
r APmask

r

none 49.44 43.75 42.96 37.91
CLIP score [32] 49.84 44.27 44.83 40.82

CLIP inter-similarity 50.07 44.44 45.53 41.16

Table 9. Ablation of the different filtration strategies. Our
proposed CLIP inter-similarity can filter low-quality images more
effectively.

5. Conclusions
In this paper, we explain the role of generative data augmen-
tation from the perspective of data distribution discrepancies
and find that generative data can expand the data distribution
that the model can learn, mitigating overfitting the training
set. Furthermore, we find that data diversity of generative
data is crucial for improving model performance. Therefore,
we design an efficient data diversity enhancement strategy,
Generative Data Diversity Enhancement. We design vari-
ous diversity enhancement strategies to increase data diver-
sity from the aspects of category diversity, prompt diversity,
and generative model diversity. Finally, we optimize the
data generative pipeline by designing the annotation strategy
SAM-background to obtain higher quality annotations and
introducing the metric CLIP inter-similarity to filter data,
which further improves the quality of the generative dataset.
Through these designed strategies, our proposed method
significantly outperforms the existing strong models. We
hope DiverGen can provide new insights and inspirations
for future research on the effectiveness and efficiency of
generative data augmentation.
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