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Abstract

Real driving-video dehazing poses a significant chal-
lenge due to the inherent difficulty in acquiring precisely
aligned hazy/clear video pairs for effective model training,
especially in dynamic driving scenarios with unpredictable
weather conditions. In this paper, we propose a pioneer-
ing approach that addresses this challenge through a non-
aligned regularization strategy. Our core concept involves
identifying clear frames that closely match hazy frames,
serving as references to supervise a video dehazing net-
work. Our approach comprises two key components: ref-
erence matching and video dehazing. Firstly, we introduce
a non-aligned reference frame matching module, leverag-
ing an adaptive sliding window to match high-quality ref-
erence frames from clear videos. Video dehazing incorpo-
rates flow-guided cosine attention sampler and deformable
cosine attention fusion modules to enhance spatial multi-
frame alignment and fuse their improved information. To
validate our approach, we collect a GoProHazy dataset
captured effortlessly with GoPro cameras in diverse ru-
ral and urban road environments. Extensive experiments
demonstrate the superiority of the proposed method over
current state-of-the-art methods in the challenging task of
real driving-video dehazing. Project page.

1. Introduction
Haze significantly degrades visual quality, leading to chal-
lenges such as limited visibility and low contrast. This de-
terioration adversely affects high-level visual tasks crucial
for safety in autonomous driving [28], including object de-
tection [19], semantic segmentation [50], and depth estima-
tion [54]. The degradation of haze effect can be expressed
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Figure 1. Spatial and temporal misalignments in real driving
hazy/clear video pairs due to inconsistent driving speeds, differ-
ent driving paths and moving objects.

through an atmospheric scattering model [39, 43] :

I(x) = J(x)t(x) +A∞(λ)(1− t(x)), (1)

where I(x) and J(x) represent the hazy image and the
clear image at a pixel position x, respectively. A∞ de-
notes the infinite airlight. The transmission map is de-
fined as t(x) = e−β(λ)d(x), where d(x) and β(λ) signify
the scene depth and the scattering coefficient associated
with the wavelength of light λ, respectively. Although im-
age/video dehazing [20, 59] has been extensively studied
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over many years, there has been limited research on driving-
video dehazing as dynamic driving scenarios with unpre-
dictable weather conditions results in the inherent difficulty
in acquiring precisely aligned ground truth (GT) videos for
model training in Fig. 1 (a).

Here, we introduce a new paradigm for data collection
that involves capturing driving videos under both hazy and
clear conditions within the same scenes. This relaxes ef-
fectively the stringent requirement of strictly aligned GT.
To assess its efficacy, we compile a GoPro-Hazy dataset,
effortlessly recorded using GoPro cameras across various
rural and urban road environments. Despite the ease of col-
lecting hazy/clear video pairs, two challenges persist: tem-
poral misalignment and spatial misalignment in the hazy
and clear video pairs. Firstly, inconsistent driving speeds
result in temporal misalignment. For example, as illustrated
in Fig. 1 (b), frame 81 in the hazy video corresponds to
frame 109, not frame 81 in the clear video. Secondly, dis-
tinct driving paths and moving objects contribute to spatial
misalignment. As depicted in Fig. 1 (c), the car in the hazy
video is not aligned with the corresponding scene.

To address spatial and temporal misalignment, this paper
introduces an innovative driving-video dehazing method in-
corporating a non-aligned regularization learning approach.
The fundamental concept involves identifying clear frames
that closely match hazy frames as references to super-
vise a video dehazing network. Our method comprises
two key components: reference matching and video dehaz-
ing. To enhance the quality of references, we introduce a
Non-aligned Reference Frames Matching (NRFM) module,
which pairs the input hazy frame with the clearest frame that
most closely resembles the scene. Subsequently, we present
a video dehazing model featuring a Flow-guided Cosine
Attention Sampler (FCAS) module and a Deformable Co-
sine Attention Fusion (DCAF) module. FCAS utilizes pre-
trained coarse optical flow for multi-scale cosine attention
sampling, improving offset accuracy and aligning multiple
frames. Unlike the ’warp’ operation relying on precise op-
tical flow, cosine attention sampling achieves more accurate
offset learning using coarse optical flow. DCAF aggregates
multi-frame features by combining deformable convolution
(DConv) [10] with a large receptive field and leveraging the
robustness of cosine similarity for correlation computation.
Prior to inputting the video dehazing model, we employ
an image dehazing network to pre-remove haze from each
frame. Our contributions can be summarized as follows:
• To our best knowledge, we are the first to propose a non-

aligned regularization strategy for the real driving-video
dehazing task. Its key idea is to selectively identify high-
quality reference frames from the non-aligned clear video
for supervision, reducing reliance on ground truth.

• We introduce a cutting-edge video dehazing network
equipped with flow-guided cosine attention sampler and

deformable cosine attention fusion, effectively handling
large motion in driving scenes.

• We provide a real-world video hazy dataset, which in-
cludes 27 non-aligned hazy/clear video pairs, totaling
4256 matched hazy/clear frame pairs. These pairs were
collected manually using GoPro cameras in various real
scenes (i.e., countryside and urban roads).

2. Related Work
Image dehazing. Early approaches to single-image dehaz-
ing primarily concentrated on integrating atmospheric scat-
tering models [39] with various priors [2, 16, 20, 75]. In
contrast, later advancements in the field showcased supe-
rior performance through deep learning techniques, lever-
aging extensive datasets of hazy/clear images [1, 25]. These
methods employ deep neural networks to either learn physi-
cal model parameters [13, 15, 26, 27, 30, 31, 34, 37, 42, 44,
58, 68, 69] or directly capture the mapping between hazy
and clear images [9, 12–14, 29, 36, 46, 48, 52, 65]. For
the latter category, recent works have introduced more so-
phisticated network structures, including transformer net-
works [18, 47, 54, 56]. However, these approaches heav-
ily rely on aligned synthetic data for supervised learning,
leading to suboptimal dehazing performance in real-world
scenarios. To tackle this limitation, some studies have pro-
posed domain-adaptive techniques [7, 45, 51, 59, 66] and
unpaired dehazing models [6, 62, 63, 72] tailored for real
scenes. Despite these efforts, when applying image dehaz-
ing models to videos, the outcomes often exhibit disconti-
nuities due to the disregard for temporal information.
Video dehazing. Compared to single-image dehazing,
video dehazing offers advantages by leveraging tempo-
ral cues from neighboring frames. Early approaches fo-
cused on enhancing temporal consistency in dehazing re-
sults, achieved through the optimization of transmission
maps [50] and the elimination of artifacts [4]. Some meth-
ods also addressed multiple tasks concurrently, such as
depth estimation [32], detection [24], within hazy videos.
Recently, Zhang et al. [71] collected a real indoor smoke
video dataset with ground truth, named REVIDE, and intro-
duced a confidence-guided and improved deformable net-
work (CG-IDN) for video dehazing. Building upon REV-
IDE, Liu et al.[38] proposed a novel phase-based memory
network designed to enhance video dehazing by integrating
both phase and color memory information. Similarly, Xu et
al. [60] introduced a memory-based physical prior guidance
module that encodes prior-related features into long-term
memory for video dehazing. Furthermore, certain video
restoration methods [21, 64], demonstrate superior perfor-
mance on the REVIDE dataset for adverse weather condi-
tions. However, it’s crucial to note that these approaches
are primarily trained and evaluated in indoor smoke scenes.
As a result, their effectiveness in addressing complex real-
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Figure 2. (a) The overall framework of our driving-video dehazing (DVD) comprising two crucial components: frame matching and video
dehazing. This involves applying frame dehazing to proactively eliminate haze from individual frames. One significant benefit is is the
effectiveness and efficiency of our method in training the video dehazing network using authentic driving data without requiring strict
alignment, ultimately producing high-quality results. (b) The illustration depicts the matching process of non-aligned, clear reference
frames through the utilization of an adaptive sliding window using feature cosine similarity. Our input consists of two frames.

world outdoor haze conditions remains limited.
Video alignment. The primary objective of alignment is to
capture spatial transformations and pixel-wise correspon-
dence between adjacent frames. Video-related tasks, like
restoration and super-resolution, often face alignment chal-
lenges [5, 35]. Recent works rely on precise optical flow es-
timation [49] to align adjacent images/features [21, 22, 61].
Alternatively, some approaches leverage deformable con-
volution (DConv) [10] to learn feature alignment offsets
[55, 57, 71]. Other methods [3, 33, 60, 70] employ atten-
tion mechanisms to combine optical flow and DConv for
feature alignment. However, these alignment methods face
two challenges: 1) obtaining accurate optical flow with pre-
trained models is difficult, and 2) DConv training is unstable
under large motion conditions.

In comparison to the aforementioned supervised video
dehazing methods [60, 71], our approach surpasses pre-
vious video dehazing models. This is achieved by train-
ing on non-aligned real-world hazy datasets and extract-
ing effective features from clear and misaligned reference
frames within the same scene. Furthermore, we introduce
a Flow-guided Cosine Attention Sampler (FCAS) module,
which more accurately aligns multi-frame features under in-
accurate optical flow conditions by incorporating learnable
multi-scale cosine attention sampling.

3. Methodology

Here, we present an innovative driving-video dehazing
method illustrated in Fig. 2 (a). Initially, we introduce a
Non-aligned Reference Frame Matching (NRFM) module,
employing an adaptive sliding window that utilizes feature
similarity to match high-quality reference frames for super-
vising the video dehazing network in subsection 3.1. Subse-

quently, we propose a video dehazing module that integrates
a flow-guided cosine attention sampler and deformable co-
sine attention fusion. This integration aims to improve spa-
tial multi-frame alignment and fuse the enhanced informa-
tion from multiple frames in subsection 3.2. Before display-
ing them, we first pre-process the hazy frames.

For a given continuous hazy/clear video pair (I =

I[0:N ], Ĵ = Ĵ[0:M ]) with N ≤ M + 2, we utilize an im-
age dehazing method to pre-remove haze from each frame,

Jt = P(It), (2)

where P denotes an image dehazing network, and we em-
ploy the non-aligned supervision network [15]. So, the
video pair is rewritten as (J = J[0:N ], Ĵ = Ĵ[0:M ]).

Prioritizing frame dehazing offers two key advantages.
First, easily acquiring non-aligned image pairs simplifies
the training process with a large dataset, leading to high-
quality pre-processing outcomes. Second, superior frame
dehazing enhances the video dehazing stage’s capability to
learn pixel correlations among adjacent frames.

3.1. Non-aligned Reference Frame Matching

In this subsection, for the hazy video I , our main objective
is to establish its corresponding clear and non-aligned ref-
erence frames derived from the clear video Ĵ in Fig. 2 (b).
These reference frames serve as supervision for the video
dehazing network. Further, we curate a set of non-aligned
video pairs characterized by temporal and spatial misalign-
ments in Fig. 1 (b) and (c).

To solve temporal misalignment, we introduce a non-
aligned reference frame matching module to match the clear
reference frames in Fig. 2 (b). For each hazy frame It,
we formally denote its corresponding sliding window clear
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Figure 3. (a) Overview of guided pyramid cosine attention sam-
pler (GPCAS). (b) The proposed FCSA module uses coarse optical
flow sampling to enhance the receptive field for cosine correlation
calculations. (c) Sampling and calculating cosine correlation.

frames as Ĵ[its:ite], where its and ite denote the starting and
ending indexes, respectively. When t = 0, we initialize i0s
and i0e as 0 and ⌈(M − N)/2⌉, respectively. To iteratively
match clear reference frames, we define the iterated indexes
at the t-th frame as:

its = it−1
s + (kt−1 − kt−2), (3)

ite = 2(kt−1 − kt−2) + 1, (4)

where kt represents the index of the most similar clear
frame from Ĵ[its:ite], determined by comparing their cosine
similarity. The index is defined as:

kt = arg min
its≤i≤ite

{
d
(
Φ(It), Φ(Ĵi)

)}
, (5)

where Φ denotes the VGG-16 [53] network. Consequently,
we obtain the matching reference frames Ĵkt and Ĵkt+1 for
the hazy frame It. The overall procedure of our NRFM is
outlined in Algorithm 1.
Multi-frames Reference Loss. In addition to temporal
misalignment, our collected data also exhibits pixel and se-
mantic misalignment in Fig. 1 (c). To tackle spatial mis-
alignment, we devise a multi-frame reference loss to ensure
feature consistency between the video dehazing result J̃t,
and the reference frames Ĵkt and Ĵkt+1. Based on the con-
textual loss [40] and cosine distance, our multi-frame refer-
ence loss is formulated as

Lmfr(J̃t, Ĵkt , Ĵkt+1) =
∑5

l=1
d
(
Φl(J̃t), Φ

l(Ĵkt)
)
+∑5

l=1
d
(
Φl(J̃t), Φ

l(Ĵkt+1)
)
, (6)

where d(·, ·) is the cosine distance between J̃t and Ĵkt .
Φl(J̃t) and Φl(Ĵkt) represent the feature maps extracted
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Figure 4. Overview of proposed DCAF. Enhancing cosine correla-
tion for pixel misalignment robustness by expanding the receptive
field with DConv, thereby improving cosine fusion performance.

Algorithm 1: NRFM (default N ≤ M + 2)
Input: hazy video: I[0:N ], clear video: J[0:M ]

Output: [Ĵk, Ĵk+1]

1 Initialize: i0s = 0, i0e = ⌈(M −N)/2⌉, Ĵk = [] and
Ĵk+1 = [] ;

2 for t = 0, ..., N do
3 Compute the index kt by Eq. (5);
4 Ĵk = [..., Ĵk, Ĵkt ] ;
5 Ĵk+1 = [..., Ĵk+1, Ĵkt+1];
6 Update its and ite by Eqs. (3) and (4);
7 end

from the l-th layer of the VGG-16 network with inputs J̃t
and Ĵkt , respectively. kt is the matching index of the clear
reference frame of the t-th hazy frame.

3.2. Video Dehazing

In video tasks, previous studies [55, 67, 70] have revealed
the significance of a larger receptive field. This attribute
proves beneficial for aligning and fusing adjacent frames,
as it extends the search range and facilitates the learning of
pixel correlations between neighboring frames. The prevail-
ing approaches often involves using optical flow for warp-
ing alignment [3, 70, 74]. However, these methods are lim-
ited by optical flow precision, especially when dealing with
blurry images after pre-dehazing.

Motivated by these observations, we propose a novel
Flow-guided Cosine Attention Sampler (FCAS) module.
This module leverages coarse optical flow for sampling,
thereby expanding the receptive field for cosine correlation
calculations. This augmentation enhances computational
accuracy and yields superior alignment results, as depicted
in Fig. 3. Additionally, we extend this concept to introduce
a Deformable Cosine Attention Fusion (DCAF) module, il-
lustrated in Fig. 4. The DCAF module employs deformable
convolutions (DConv) to broaden sampling receptive fields,
capturing long-term dependencies and thereby improving
feature aggregation across multiple frames.

3.2.1 Flow-guided Cosine Attention Sampler

In Fig. 3 (b), our FCAS module aims to align the features
of the previous frame Ft−1 with those of the current frame
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Ft. The FCAS module produces the offset between adja-
cent frame features [Ft−1, Ft] ∈ RC×H×W , where C, H ,
and W denote the channel, height, and width of the fea-
tures, respectively. Additionally, an optical flow Ot−1→t is
learned to capture pixel-to-pixel correspondence from the
previous frame to the current frame.

Specifically, Ft−1 and Ft are derived from a fea-
ture extraction network applied to the pre-dehazing results
[Jt−1, Jt]. The optical flow Ot−1→t ∈ R2×H×W is ob-
tained by fine-tuning SpyNet [49], denoted as ϕspy , during
training. The flow offset map at each position p = (x, y)
in It−1 is mapped to its estimated correspondence in It as
p′ = (x+ u, y + v), which is defined as

∆p = (u, v) = ϕspy(It−1, It)(x, y). (7)

The set of sampled grid coordinates is expressed as

Ω(p′)k = {p′ + e | e ∈ Z2, ||e||1 ≤ (k − 1)/2}, (8)

where k represents the sampling kernel size and Z2 denotes
a two-dimensional space. Linear projected query vectors
Qx,y = Ft−1W

q , key vectors Kx,y = FtW
k, and value

vectors Vx,y = FtW
v at coordinate p = (x, y) of Ft−1 and

Ft are defined using the parameters W q , W k, and W v ∈
RC×d, where d is the dimension of the projected vector.

Fig. 3 (c) illustrates the use of the coarse Ot−1→t to
guide learnable sampling from Kx,y and Vx,y , expanding
the receptive field for cosine correlation calculations to en-
hance accuracy. Within the sampled grid coordinates, the
sampling key and value elements are described as

{Ki,j , Vi,j | (i, j) ∈ Ω(p′)k} = S(Kx,y, Vx,y), (9)

where S denotes the interpolation sampling. The cosine at-
tention Fattn ∈ RHW/4×1×k2

is then computed by

Fattn =
∑

(i,j)∈Ω(p′)k

𭟋softmax

(
QT

x,yKi,j

|Qx,y||Ki,j |
√
d

)
Vi,j , (10)

where d is the dimension of the projected vector. Finally,
the output offset is computed as

ot−1→t = Conv (Cat(Ft−1, Fattn, Ot−1→t)) , (11)

where Cat represents the concatenation operation, and
ot−1→t is the offset map between Ft−1 and Ft.

3.2.2 Deformable Cosine Attention Fusion

Similar to the central concept discussed in Section 3.2.1,
enhancing the accuracy of cosine correlation calculation in-
volves expanding the receptive field. However, a distinc-
tion arises in DCAF (refer to Fig. 4), where we broaden
the receptive field using deformable convolution (DConv).

To fully leverage the spatial cues from multiple frames, the
DCAF module is employed to fuse the aligned feature F align

t−1

with the current frame feature Ft to achieve further align-
ment. Initially, we transform F align

t−1 and Ft to compute the
embedding query Qalign

t−1 , key Kt, and value Vt through con-
volutional operations with a 1×1 kernel size, denoted by
C1. Subsequently, the key Kt and value Vt undergo down-
sampling via a 4×4 maxpooling operation, denoted by M.
They are computed by

Q̃align
t−1 = M(C1(Q

align
t−1 )), (12)

K̃t = DConv(M(C1(Kt))), (13)

Ṽt = DConv(M(C1(Vt))). (14)

Next, we use the Eq. (10) to calculate the cosine correlation,
and obtain the fused feature Ffusion ∈ RC×H×W .

3.3. Training Loss

For frame dehazing, we exclusively utilize the pre-trained
NSDNet [15], please refer to its training loss for details.
Now, let’s focus on elucidating the training loss for video
dehazing, which is expressed as follows:

Lall = Ladv + Lmfr + Lalign + Lcr, (15)

Ladv represents the adversarial loss [17], and Lmfr corre-
sponds to the multi-frames reference loss as defined in
Eq. (6). Since we lack the ground truth for the aligned
feature F align

t−1 , we optimize the guided pyramid cosine at-
tention sampler (GPCAS) module by using the current
frame feature Ft as the label. Our objective is to mini-
mize the discrepancy between F align

t−1 and Ft, expressed as
Lalign = ||F align

t−1 − Ft||1. Inspired by [11], we introduce a
self-supervised temporal consistency regularization to en-
sure the consistency (i.e., color and brightness) of pixels
between consecutive frames. It can be formulated as:

Lcr = ||M ⊙ (Wt→t−1(J̃t,Ot→t−1)− J̃t−1||1, (16)

where M is the occlusion map, W represents the flow-based
image warp [49] for pixel alignment based on optical flow
Ot→t−1, and J̃t−1 is the previous output frame.

4. GoProHazy and DrivingHazy Datasets
4.1. Collection Details

Camera Parameters Setting. We utilized a GoPro 11 cam-
era with anti-flicker set to 60Hz, video output resolution at
1920x1080, frames per second (FPS) set to 30, and default
focal length range of 19-39mm.
Collection Settings. Firstly, as shown in Fig. 5 (a), we
use an electric vehicle to collect the GoProHazy dataset,
ensuring controlled speed for higher-quality non-aligned
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Data
Settings Methods Data Type

GoProHazy DrivingHazy (NoRef) InternetHazy (Only testing) Params
(M)

Flops
(G) Ref.FADE ↓ NIQE ↓ FADE ↓ NIQE ↓ Votes ↑ FADE ↓ NIQE ↓ Votes ↑

Unpaired

DCP [20] Image 0.9835 5.8309 0.9692 5.6799 - 0.9223 6.4744 - - - CVPR’09
RefineNet [72] Image 1.5694 5.3693 1.1837 5.5500 - 1.1801 5.8742 - 11.38 75.41 TIP’21
CDD-GAN [6] Image 1.1942 4.9787 1.4423 5.0349 - 1.2120 5.1049 - 29.27 56.89 ECCV’22

D4 [63] Image 1.9272 5.7865 1.8658 5.6864 - 1.3277 6.2150 - 10.70 2.25 CVPR’22

Paired

PSD [7] Image 1.0529 6.0010 0.9672 5.3520 - 0.9275 5.2187 - 33.11 182.5 CVPR’21
RIDCP [59] Image 0.8010 4.6640 1.1077 4.3889 0.315 0.9391 4.6610 0.265 28.72 182.69 CVPR’23
PM-Net [38] Video 1.1011 4.1211 0.9434 3.8944 0.220 1.1517 4.0590 0.150 151.20 5.22 ACMM’22

MAP-Net [60] Video 1.0611 4.2359 1.0440 4.2542 0.025 1.2130 5.3241 0.030 28.80 8.21 CVPR’23

Non-aligned
NSDNet [15] Image 0.7996 4.1547 0.9348 4.0529 - 0.8934 4.3835 - 11.38 56.86 arXiv’23
DVD (Ours) Video 0.7598 3.7753 0.8207 3.5825 0.440 0.8745 3.7480 0.555 15.37 73.12 -

Table 1. Quantitative results on three real-world hazy video datasets. ↓ denotes the lower the better. ↑ denotes the higher the better. Due
to PM-Net and MAP-Net rely on GT for training, we use Lcx to train them on GoProHazy dataset. Note that we only selected the latest
dehazing methods (i.e., RIDCP, PM-Net and MAP-Net) and our DVD for the user study. Moreover, DrivingHazy and InternetHazy were
tested on dehazing models trained using GoProHazy and pre-trained dehazing models provided by the authors, respectively.

(a) GoProHazy’s capture setting (b) DrivingHazy’s capture setting

Figure 5. Vehicles with different speeds for data collection.

hazy/clear video pairs at lower speeds (30 - 35 km/h). Sec-
ondly, as illustrated in Fig. 5 (b), we employ a car to capture
the DrivingHazy dataset, testing performance under higher
driving speeds (60 - 80 km/h) in a real-world environment.
Collection Method. To collect non-aligned of hazy/clear
video pairs, follow these steps:
• 1). As illustrated in Fig. 1 (a-i), we capture hazy videos

in various scenes under hazy weather conditions.
• 2). In Fig. 1 (a-ii), to maintain consistent scene bright-

ness, we choose overcast days with good visibility for
capturing clear video pairs. Besides, to ensure the ref-
erence clear video matches the hazy scene, we align clear
video capture with the starting point of the hazy videos.

• 3). Video cropping ensures consistent starting and ending
points for collected hazy/clear video pairs.

4.2. Statistical Analysis

In Fig. 6, within the GoProHazy dataset, urban roads dom-
inate our scenes, with 40% exhibiting heavy haze and 47%
moderate haze. Overall, 87% of scenes depict visibility be-
low 100 meters. In the DrivingHazy dataset, real high-speed
scenario videos increased to 21%, with hazy density mainly
in the 0-50 meters visibility range, constituting 54% of the
dataset. In summary, both the GoProHazy and DrivingHazy
datasets predominantly feature urban road scenarios, with
hazy density concentrated within a 0-100m visibility range.

5. Experimental Results
We validate the effectiveness of our proposed method by
experimenting with three real-world hazy video datasets.

53%
26%

21%

Hazy scene distribution

Urban Road
Rural Road
Highway

70%

21%

9%

Hazy scene distribution

Urban Road
Rural Road
Highway

40%

47%

13%

Hazy density distribution

Heavy hazy
(0-50m)
Moderate hazy
(50-100m)
Thin hazy
(100-200m)

(a) GoProHazy dataset (4256 frames)

54%38%

8%

Hazy density distribution

Heavy hazy
(0-50m)
Moderate hazy
(50-100m)
Thin hazy
(100-200m)

(a) DrivingHazy dataset (1807 frames)
Figure 6. Statistical analysis of hazy scenes and density distribu-
tion in the GoProHazy and DrivingHazy datasets.

To assess its performance, we compare our method against
state-of-the-art image and video dehazing techniques. Ad-
ditionally, we conduct three ablation studies to substantiate
the efficacy of our proposed core module. Note that REV-
IDE dataset experiment, more visual results, ablation stud-
ies and video demo are provided in supplementary material.

5.1. Experimental Setting

Three real-world hazy video datasets. One of these
datasets is GoProHazy, where videos were captured using a
GoPro camera under hazy and clear conditions. The record-
ings were made at the starting and ending points of the same
road, with a total of 22 training videos (3791 frames) and 5
testing videos (465 frames). Each hazy video in the dataset
is paired with a corresponding clear reference video, and the
footage was obtained by driving an electric vehicle. In con-
trast, DrivingHazy was collected by driving a car at a rela-
tively high speed in real hazy conditions. It comprises 20
testing videos (1807 frames), providing a unique perspec-
tive on hazy conditions during fast-paced driving. More-
over, we curated two distinct sets of hazy videos, contribut-
ing to the creation of the InternetHazy. This dataset, com-

26114



(a) Hazy (b) D4 (d) RIDCP (e) PM-Net (f) MAP-Net (g) Ours (h) Reference(c) NSDNet
Figure 7. Comparison of video dehazing results on GoProHazy. Our method effectively removes distant haze.

(a) Hazy (c) D4 (d) RIDCP (f) PM-Net (g) MAP-Net (h) Ours(b) CDD-GAN (e) NSDNet
Figure 8. Testing results on DrivingHazy. Our method can perform dehazing in real driving environments while preserving the brightness.

prising 328 frames, features hazy videos with distributions
distinct from those found in GoProHazy. It enriches our
study by introducing diverse hazy scenarios for analysis.
Implementation details. In training processing, we use
ADAM [23] optimizer with default parameter (β1 = 0.9, β2

= 0.99) and MultiStepLR scheduler. The initial learning rate
is set as 1×10−5. The batch size is 1, and the image size of
input frames is 256×256. Our model was trained for 95K
iterations by Pytorch with two NVIDIA RTX 3090 GPUs.

5.2. Main Results

Quantitative comparison. In Table. 1, our method out-
performs SOTAs performance in terms of FADE [8] and
NIQE [41] across all collected datasets. Specifically, on
the GoProHazy dataset, our approach achieves the highest
FADE score of 0.7598 and the best NIQE score of 3.7753,
surpassing previous SOTA methods. Notably, our method
exhibits a FADE improvement of 0.0412 over RIDCP and
an NIQE gain of 0.3458 over PM-Net.

On the DrivingHazy dataset, our method achieves a
FADE improvement of 0.1227 and a NIQE gain of 0.3119
over PM-Net, the leading competitor. Evaluating the gener-
alization performance of our proposed DVD on the Internet-
Hazy dataset without retraining or fine-tuning, our method
consistently outperforms other approaches, solidifying its
position as the top-performing model for generating dehaz-
ing results across diverse datasets.

In summary, our method surpasses supervised counter-
parts, leveraging non-aligned regularization. Unlike su-
pervised approaches requiring pixel-wise alignment, our
method excels by imposing robust constraints, such as ob-
taining image pairs within similar scenes to ensure a con-
sistent distribution of clear and hazy images. Compared to

Mehods wo / NRFM (unpaired) Ours (misaligned)
FADE ↓ 0.9204 0.7598
NIQE ↓ 3.9729 3.7753

Table 2. Ablation study for our NRFM on GoProHazy.

unpaired competitors like D4, our approach applies stronger
constraints, leading to more effective dehazing results.
Visual comparison. The dehazing visualizations in Fig. 7
highlight the performance of our approach. Overall, our
method exhibits superior brightness and texture details
compared to other state-of-the-art (SOTA) techniques. No-
tably, D4 and RIDCP fail to eliminate distant haze, with
RIDCP additionally displaying color distortion. While PM-
Net and MAP-Net successfully clear distant haze, they
compromise on texture details, resulting in blurred images.
Figs. 8 and 9 showcase visualizations on the DrivingHazy
and InternetHazy datasets. Despite their advancements,
state-of-the-art dehazing methods share a common limita-
tion—they struggle to effectively remove distant haze while
preserving texture details and brightness in the images.
Moreover, we validated the effectiveness of our method in
the user study results presented in Table. 1.

5.3. Ablation Studies

Effect of NRFM. To assess the effectiveness of our pro-
posed NRFM, we conducted experiments by excluding the
NRFM module and training our video dehazing model in
an unpaired setting, where clear reference frames were ran-
domly matched. The results in Table 2 and Fig. 10 show a
notable improvement in video dehazing by integrating our
NRFM module. This enhancement is due to a more robust
supervisory signal from non-aligned clear reference frames,
distinguishing it from the unpaired setting.
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(a) Hazy (c) D4 (d) RIDCP (f) PM-Net (g) MAP-Net (h) Ours(b) CDD-GAN (e) NSDNet

Figure 9. Testing with the pre-trained model provided by the authors on the InternetHazy dataset. Our method excels in dehazing.

(a) Hazy (b) wo / NRFM (c) Ours (d) Reference

Figure 10. Ablation visualization of our NRFM.

Methods (i) (ii) (iii) Our method
Basic ✓ ✓ ✓ ✓
FCAS ✓ ✓
DCAF ✓ ✓
FADE ↓ 0.8957 0.8869 0.8464 0.8207
NIQE ↓ 3.9217 3.8495 3.6981 3.5825

Table 3. Ablation studies of FCAS and DCAF on DrivingHazy.

Effect of FCAS and DCAF. We conducted a series of ex-
periments to validate the efficacy of the FCAS and DCAF
modules on the DrivingHazy dataset. Initially, we devel-
oped a baseline video dehazing framework that comprised
a frame dehazing module, a pyramid deformable convolu-
tion alignment module, and a non-local fusion module, re-
ferred to as model (i). This model was trained using ad-
versarial loss (Ladv) and multi-frames reference loss ( Lmfr).
Subsequently, to assess the impact of the FCAS module, we
integrated it into the pyramid deformable convolution align-
ment module, resulting in a comparative model (ii). Simi-
larly, to evaluate the effectiveness of the DCAF module, we
replaced the non-local fusion module with the deformable
cosine fusion module, denoted as model (iii). Follow-
ing this, we introduced our proposed modules (FCAS and
DCAF) by replacing the pyramid deformable convolution
alignment module and the non-local fusion module in the
baseline model, forming our proposed method. The quan-
titative results are presented in Table 3, where our method
exhibits the lowest FADE and NIQE values, indicating its
excellent real-world video dehazing performance.

Additionally, the ablation results for different modules
are visualized in Fig. 11. (a) displays the frame dehazing
results used as input for video dehazing. (b), (c), (d), and
(e) illustrate the visualized dehazing results for models (i),
(ii), (iii), and our method, respectively. The dehazing results
of models (i) and (iii) appear blurrier in comparison to our
result in (e). Moreover, (c) exhibits reduced blurriness but
lacks structural information of objects in the image.

(a) Pre-dehazing

(b) baseline (c) wo / FCAS

(d) wo / DCAF (e) Ours

Figure 11. Ablation visualization of our FCAS and DCAF.

Kernel Size (3×3) (5×5) (7×7) (9×9)
FADE ↓ 0.9626 0.9598 0.7598 0.9637
NIQE ↓ 3.8307 3.8753 3.7753 3.8098

Table 4. Comparison with different kernel sizes on GoProHazy.

Effect of sampling kernel size. We conducted experi-
ments using various kernel sizes to evaluate their influence
on video dehazing outcomes. Due to computational con-
straints, we opted for kernel sizes of 3, 5, 7, and 9. Table 4
indicates that a 7 × 7 kernel size yields the most favorable
results. Optimal sampling kernel size should account for
motion magnitude between frames. A kernel size of 1 × 1
corresponds to a wrapping operation.

6. Conclusion
We introduce an innovative and effective video dehaz-
ing framework explicitly tailored for real-world driving
scenarios with hazy videos. By leveraging non-aligned
hazy/clear video pairs, we address the challenges of tem-
poral and spatial misalignment through the incorporation
of a non-aligned reference frame matching module. This
module utilizes high-quality clear and misaligned refer-
ence frames, providing robust supervision for video dehaz-
ing. we enhance spatial multi-frame alignment and aggre-
gation through the integration of flow-guided cosine atten-
tion sampler and deformable cosine attention fusion mod-
ules. Our framework’s experimental results unequivocally
demonstrate superiority over recent state-of-the-art meth-
ods, not only enhancing video dehazing but also promising
improved visibility and safety in real driving scenarios.
Acknowledgements. This work was supported by the Na-
tional Natural Science Foundation of China under Grant
No.62361166670 and No.62072242.
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