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Figure 1. HOLD: Given a monocular video sequence of a hand interacting with an unknown object, our method, HOLD, reconstructs
high-quality 3D hand and object surfaces in both in-the-lab videos from a static camera and in-the-wild egocentric-view videos. Here we
show the input images and the reconstructed surface normals. Best viewed in color.

Abstract
Since humans interact with diverse objects every day, the

holistic 3D capture of these interactions is important to un-
derstand and model human behaviour. However, most ex-
isting methods for hand-object reconstruction from RGB ei-
ther assume pre-scanned object templates or heavily rely
on limited 3D hand-object data, restricting their ability
to scale and generalize to more unconstrained interaction
settings. To address this, we introduce HOLD – the first
category-agnostic method that reconstructs an articulated
hand and an object jointly from a monocular interaction
video. We develop a compositional articulated implicit
model that can reconstruct disentangled 3D hands and ob-
jects from 2D images. We also further incorporate hand-
object constraints to improve hand-object poses and con-
sequently the reconstruction quality. Our method does not
rely on any 3D hand-object annotations while significantly
outperforming fully-supervised baselines in both in-the-lab
and challenging in-the-wild settings. Moreover, we qualita-
tively show its robustness in reconstructing from in-the-wild
videos. See here for code, data, models, and updates.

1. Introduction

We interact with a diverse set of objects in our everyday
lives: We hold our morning cup of coffee; we hold a drill
in making home renovations; and we pour cereal from a
box. Studies show that on average, we interact with 140
objects per day [45]. To understand, model, and synthesize
these interactions [7, 9, 59, 74, 75], it is critical to be able
to reconstruct them in 3D. Towards this goal, we tackle the
challenging problem of reconstructing diverse 3D objects
and the articulated hands holding them from only monocu-
lar videos of the hand-object interaction, as shown in Fig. 1.

Most hand-object reconstruction methods assume a pre-
scanned object template [12, 23, 24, 68], making it infea-
sible to scale to in-the-wild scenarios [2]. Other methods
do not assume object templates [22, 70], but are trained us-
ing datasets with a limited number of objects, leading to
poor generalization. Very recently, Ye et al. [71] introduced
a data-driven prior that is trained on six object categories
and they leverage this prior to reconstruct hand and object
surfaces from segmentation mask observations. Although
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they can reconstruct novel objects and articulated hands,
their method is limited to these training categories. An-
other emerging line of work focuses on in-hand object scan-
ning [21, 26, 79] from monocular videos. They adapt multi-
view reconstruction techniques to aggregate observations of
hand-held objects in multiple rigid poses. While achiev-
ing promising reconstruction quality on novel objects, these
methods do not consider hand articulation and hence cannot
handle more dexterous hand-object interaction.

In this paper, we go beyond prior works to tackle the new
task of category-agnostic interaction reconstruction. Given
a monocular video as input, our method HOLD (Hand and
Object reconstruction by Leveraging interaction constraints
in three Dimensions) reconstructs hand and object 3D sur-
faces for every frame without assuming an object template.
Our key insight is that hands and objects in interaction pro-
vide complementary cues to each other’s shapes and poses.
For example, when one holds a mug, the hand geometry
constrains the possible shape of the mug via contact. There-
fore, we jointly model the object and the articulated hand
with a compositional neural implicit model.

To jointly reconstruct the hand and object surfaces from
a video, HOLD performs initial hand pose estimation via
an off-the-shelf hand regressor and object pose estimation
with structure-from-motion (SfM). With the initial noisy
hand and object poses, we train HOLD-Net, our compo-
sitional neural implicit model of an articulated hand, and
an object. The model is volumetrically rendered and super-
vised with auxiliary losses to obtain the 3D hand and object
surfaces. After initializing the hand and object shapes by
training HOLD-Net, we optimize hand and object poses via
interaction constraints. Finally, we use the refined poses to
train HOLD-Net for better shape reconstruction.

We empirically show that by jointly modelling the hand
and object in this category-agnostic reconstruction setting
through interaction constraints, we achieve better recon-
struction quality than methods that only consider objects.
We quantitatively evaluate our method with an existing
hand-object dataset and further show that our method can
generalize to both in-the-lab and in-the-wild videos. We
also demonstrate generalization to videos captured by a
moving camera from both 3rd person and 1st person views
with diverse lighting and background conditions.

To summarize our contributions: 1) We present a novel
method that accurately reconstructs 3D hand and object sur-
faces from monocular 2D interaction videos without requir-
ing a pre-scanned object template or pre-trained object cate-
gories; 2) We formulate a compositional implicit model that
facilitates the disentanglement and the reconstruction of 3D
hands and objects; 3) We show that by jointly optimizing
hand-object constraints, we can obtain better reconstruction
quality than treating the hand and object separately; 4) We
evaluate our method both qualitatively and quantitatively

for 3D reconstruction, and we demonstrate realistic recon-
struction on challenging in-the-wild videos.

2. Related Work
3D hand pose and shape recovery: The field of monoc-
ular RGB 3D hand reconstruction has been evolving since
the foundational work of Rehg and Kanade [49]. A sig-
nificant portion of the existing literature is focused exclu-
sively on reconstructing the hand [1, 4, 10, 11, 14, 22, 27,
34, 41, 43, 53–56, 64, 73, 78, 81, 82]. For instance, Zim-
mermann et al. [82] employ a deep convolutional network,
implementing a multi-stage approach to achieve 3D hand
pose estimation. Ziani et al. [81] adopt a self-supervised
time-contrastive method to improve in-the-wild generaliza-
tion. Recently, there are also methods that reconstruct 3D
hand poses of strongly interacting hands [18, 31, 33, 34, 39–
42, 44]. For example, Fan et al. [11] introduce a semantic
feature fusion layer to address appearance ambiguities when
two hands strongly interact. Tse et al. [63] introduce a spec-
tral graph-based transformer for two-hand reconstruction.
Unlike these, we focus on hand-object reconstruction.
Hand-object reconstruction: Reconstructing the hand
and object in 3D from images and videos is also a well-
established research area [8, 15, 22–24, 37, 61, 62, 68,
68, 80]. Most methods in the literature assume an ob-
ject template and only estimate the hand and object poses
[2, 8, 13, 37, 61, 68]. For example, Tekin et al. [61] infer 3D
control points for both the hand and the object in videos, us-
ing a temporal model to propagate information across time.
Fan et al. [12] estimate articulated object pose with hands
in dexterous manipulation. Liu et al. [37] devise a semi-
supervised learning approach by first constructing pseudo-
groundtruth in hand-object interaction videos based on tem-
poral heuristics and train the model with the new annotation.
Yang et al. [68] introduce a contact potential field for better
hand-object contact. Despite accurate object pose estima-
tion quality, it is hard to generalize such work to novel ob-
jects and in-the-wild videos because it requires known ob-
ject templates. There are methods that do not assume an ob-
ject template by training on 3D hand-object data [5, 22, 70].
Unfortunately, these methods have poor generalization abil-
ity due to limited 3D hand-object data. Recently, there are
more generalizable approaches [26, 47, 48, 58, 71] with dif-
ferentiable rendering and data-driven priors. However, they
require either the hand to be rigid when interacting with ob-
jects [26, 47], multi-view observations [48], or category-
level hand-object supervision [71]. In contrast, ours allows
articulated hands, only requires monocular videos, and is
category-agnostic.
In-hand object scanning: There has been increasing inter-
est in in-hand object scanning. The goal of this task is to
reconstruct the canonical 3D object shape from a video of
a human interacting with an object; the hand is often not
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Figure 2. Method overview. For each image in a video, our method, HOLD, first initializes the hand and object poses using off-the-shelf
estimators. Then we briefly pre-train HOLD-Net, a compositional implicit signed distance field to learn hand and object shapes. The
learned shapes of HOLD-Net are then used to refine poses with hand-object interaction constraints. Finally, we use the refined poses to
fully train HOLD-Net to learn accurate 3D geometries of hand and object.

reconstructed. For example, early work, such as Tzionas et
al. [65], leverages hand motion as a prior for object scan-
ning. Recently, BundleSDF [67] estimates the object pose
with the help of sequential RGBD images and simultane-
ously reconstructs the implicit surface defined by a Signed
Distance Field (SDF). HHOR [26] also employs SDFs for
object surface representation but distinguishes itself by con-
currently reconstructing both the object and the hand, as-
suming the object is securely gripped. Hampali et al. [21]
propose a novel approach, incorporating a camera trajec-
tory alignment technique and utilizing volumetric rendering
for enhanced object surface reconstruction. Very recently,
Zhong et al. [79] introduce a global coloring and relighting
network that significantly improves texture extraction dur-
ing the object scanning process. In contrast to our work, the
methods above do not reconstruct hands with articulation
and mainly focus on capturing the object’s canonical shape.

3. Method: HOLD
Figure 2 summarizes our method, HOLD, for reconstruct-
ing hand-object surfaces from a monocular RGB video. To
achieve this, HOLD first initializes hand and object poses
(Sec. 3.1) for each frame in a video. Then we use the
poses to train HOLD-Net (Sec. 3.2), a compositional im-
plicit signed distance field for hand and object shapes. With
the learned shapes, we refine hand-object poses using inter-
action constraints (Sec. 3.3). Finally, with the refined poses
we fully train HOLD-Net (Sec. 3.4), resulting in accurate
3D hand-object geometry.

3.1. Pose initialization

For each frame, to obtain hand poses θ ∈ IR48 (includ-
ing global orientation), shape β, and translation th ∈ IR3,
we use an off-the-shelf hand pose estimator [35]. Estimat-
ing object pose is more challenging because our approach
is category-agnostic and existing category-level object pose
estimators are unsuitable for out-of-category objects [3, 66].
Consequently, we first create object-only images for each
video using object pixels with an off-the-shelf segmenta-
tion network [29]. We then use HLoc [51, 52] to perform
structure-from-motion (SfM) to obtain a point cloud defin-

ing the object and its rotation Ro ∈ SO(3) and translation
to ∈ IR3 for each frame. Since SfM only reconstructs point
clouds up to a scale, to align the hand and object in the same
space and to estimate the object scale s ∈ IR, we perform a
simple optimization procedure that encourages hand-object
contact while enforcing the 2D reprojection of hand joints
and the object point cloud to match with the original 2D
projection. This optimization updates the hand and object
translation {th, to} for each frame, the hand shape β, and
an object scale s. For a detailed explanation, see SupMat.

3.2. HOLD-Net training

3.2.1 HOLD-Net

Figure 3 outlines HOLD-Net, our compositional neural im-
plicit model. In detail, we represent the hand and object
surfaces as two neural representations that can be volumet-
rically rendered into an RGB image. Following [17], we use
a time-dependent NeRF++ [77] to model the dynamic back-
ground. HOLD shares the time-independent canonical 3D
geometries for the hand and the object across frames. Thus,
if an object region is occluded in one frame, the region can
be observed from another non-occluded frame.
Hand model: We model the hand as an implicit network,
driven by MANO pose θ, and translation th [50]. To model
the hand shape and appearance in canonical space, we use a
signed distance and texture field parameterized by a multi-
layer perception (MLP):

fh : R3 → R× R3 (1)
x 7→ d, c, (2)

where the MLP fh, with learnable parameters ψh, takes in
a canonical point x, and predicts its signed distance values
to the hand surface d and color c.

To determine the signed distance and color in the de-
formed observation space, we map points in the observation
space x′ back to the canonical space using inverse Linear
Blend Skinning (LBS):

x = (
∑nb

i=1wi(x
′) ·Bi)

−1x′, (3)
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Figure 3. HOLD-Net. Given as input hand and object poses and a query pixel, HOLD-Net determines the pixel color in the following
steps: 1) HOLD-Net first samples points along the ray independently for object, hand, and background using error-bounded sampling; 2)
These sampled points in the observation space are then mapped to the canonical space via rigid transformation for the object and inverse
linear blend skinning for the hand; 3) The SDF and color values for the sampled points are queried from the canonical hand, object, and
background networks; 4) All object, hand, and background points are merged by sorting via their z-values, and their color and density
values are integrated to determine the pixel color. Images on the right are the rendered RGB and normal images.

where {Bi}i=1,...,nb
are the bone transformations derived

from θ with forward kinematics, and {wi(x
′)}i=1,...,nb

are
the skinning weights of each deformed point determined by
averaging the skinning weights of the K-nearest vertices of
the MANO model [50] weighted by the distance.
Object model: Similar to the hand model, our object model
is driven by the relative object scale s, rotation Ro and
translation to between the canonical and deformed space re-
spectively. The object canonical shape and texture are mod-
elled via a neural signed distance and texture field fo, with
learnable parameters ψo:

fo : R3 × Rnz,o → R× R3 (4)
x, zo 7→ d, c, (5)

where zo ∈ Rnz,o of dimension nz,o = 32 is an optimizable
time-dependent latent code to model the changing object
appearance due to varying pose, occlusion and shadows.

To determine the signed distance and color of the object
in the deformed observation space, we map points in the
observation space x′ back to the canonical space using a
simple rigid transformation:

x = (sRo)
−1 · (x′ − to). (6)

Background: Following [17, 69], we define a bounding
sphere of the foreground scene, in our case the hand and the
object. For a given sample x′ outside the bounding sphere,
the signed distance and color are predicted by a background
network with learnable parameters ψb:

fb : R3 × R3 × Rnz,b → R× R3 (7)
x,v, zb 7→ d, c, (8)

where v ∈ R3 is the viewing direction and z ∈ Rnz,b of
dimension nz,b = 32 is an optimizable latent code with dis-
tinct value for each frame to model dynamic backgrounds.
Since we are only interested in modelling hands and ob-
jects, and images of human interaction often include other

parts of the body, this model is also used to explain par-
tial observation of the human body as part of the changing
background. Following NeRF++ [77], we use their inverted
sphere parametrization in our background model. For more
details, we refer readers to SupMat.

Compositional volumetric rendering: Following [69], to
convert hand and object Signed Distance Function (SDF)
values to density σ for volume rendering, we use the cumu-
lative distribution function of the scaled Laplace distribu-
tion, denoted as Γα1,α2(s), where α1, α2 > 0 are optimiz-
able. More details can be found in [69].

For each frame, to render the foreground, i.e., the hand
and the object, we first sample points along the correspond-
ing ray r parameterized by a camera center o and a viewing
direction v using error-bounded sampling [69]. We sam-
ple n points for the hand {x′}hi=1,...,n, transform them to
canonical space using inverse LBS, and query their opacity
and color values {(σi, ci)}hi=1,...,n from the canonical hand
model fh. Similarly for the object, we sample n points
{xi}i=1,··· ,n along the same ray, and obtain their density
and color {(σi, ci)}oi=1,...,n by transforming them rigidly
back to the canonical object model. We then sort and merge
the two sets of samples via their depth values to obtain
{(σi, ci)}i=1,...,2n and perform volumetric rendering:

CF (r) =
∑2n

i=1τici (9)

where τi = exp
(
−
∑

j<iσjδj

)
(1− exp (−σiδi))

and δi is the distance between two consecutive samples.
Similarly, we determine the background color CB(r) by
querying the density and color of sampled points from the
background network. To composite the background and
foreground, we render the foreground mask probability of a
ray r, which can be derived as MF (r) =

∑2n
i=1 τi ∈ IR. To

render with the dynamic background, the final color value
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of the ray is defined as

C(r) = CF (r) + (1−MF (r))CB(r) (10)

where CB(r) is the background color value. Similar to de-
termining the foreground probability, our model also deter-
mines the amodal mask [32] probability of a pixel belonging
to hand Mh(r) ∈ IR or object Mo(r) ∈ IR by accumulat-
ing the transmittance of hand or object samples indepen-
dently. In addition, our model renders the class probability
S(r) ∈ IR3 between hand, object, and background of each
pixel by following the rendering procedure in Equation 9
and Equation 10, while replacing the color c of each sam-
ple point with a one-hot three-vector for each class.

3.2.2 Training losses

Since reconstructing 3D shapes from a monocular video
is highly under-constrained, we devise a loss L consist-
ing of several terms to optimize for the texture and shape
network parameters {ψh, ψo, ψb}, the per-frame parameters
{θ, th,Ro, to, zo, zb}, and global parameters {β, s}.

In particular, we first encourage RGB values to be con-
sistent with the input image via

Lrgb =
∑

r

∥∥∥C(r)− Ĉ(r)
∥∥∥ (11)

where r is a ray casted from a sampled pixel on an image,
and C(r) and Ĉ(r) are the rendered and ground-truth color.

To encourage the disentanglement between the hand, the
object, and the background, we supervise the networks with
a multi-class segmentation loss

Lsegm =
∑

r

∥∥∥S(r)− Ŝ(r)
∥∥∥ , (12)

where Ŝ(r) ∈ IR3 is a one-hot vector representing the pre-
dicted class of a pixel, obtained with an off-the-shelf seg-
mentation network [29]. To regularize the hand and object
shapes, we sample points uniformly at random as well as
around the surface of the hand and object in their canonical
space. We then enforce the eikonal loss Leikonal [16] to reg-
ularize the canonical hand and object shapes. To provide a
shape prior for the hand, using the same set of samples, we
enforce the SDF predicted by our canonical hand model to
be similar to the one from MANO using the following loss:

Lsdf =
∑
x∈X

∥fh(x)− SDF (x)∥ (13)

where X is a set of randomly sampled points in canonical
space and SDF (x) is the signed distance from the MANO
mesh. To obtain a smooth SDF from the MANO mesh, we
sub-divide MANO using Loop subdivision [38].

Finally, to enforce sparsity of the hand density outside
of its surface, for a ray r that is far from the MANO hand
mesh, we enforce its amodal mask probability Mh(r) to be
zero. A ray r is far away from a mesh if its closest distance
to the mesh exceeds a threshold. Similarly, we periodically
construct an object mesh via marching cubes and use it to
enforce the object sparsity loss when the ray of a pixel is far
away from the object. Formally,

Lsparse =
∑

r∈Fh

∥Mh(r)∥+
∑

r∈Fo

∥Mo(r)∥ (14)

where Fh and Fo are the set of rays far from the hand and
object meshes respectively. The total loss L is defined as

L = Lrgb + λsegmLsegm + λsdfLsdf

+ λsparseLsparse + λeikonalLeikonal (15)

where λ∗ are the weights for the loss terms. Note that since
predicted segmentation masks are often noisy, we gradually
decrease λsegm over time and gradually increase the prior
weights λsdf and λsparse over time.

3.3. Pose refinement

The poses from Sec. 3.1 are imperfect because object point
clouds from SfM are noisy, and the hand shape parame-
ters are not optimized. After the training from Sec. 3.2,
HOLD-Net learns a custom object template, which is more
precise than a SfM point cloud for refining hand and ob-
ject poses with contact constraints. While jointly training
HOLD-Net and optimizing the poses could theoretically re-
solve noisy poses, we empirically find that this strategy
is inefficient as the pose of each training frame gets only
sparse training signals, i.e. only when the the correspond-
ing frame is sampled. To obtain accurate poses efficiently,
we first train HOLD-Net for a small number of epochs to
obtain a coarse estimate of the object shape. Then we fol-
low [72] and refine the hand and object pose parameters
{th,Ro, to, β, s} with mesh-based interaction constraints,
using the object mesh extracted from HOLD, and MANO.

In particular, we encourage contact between frequently
contacted hand vertices Vtips (vertex IDs from [22]) and
the object vertices by encouraging each such hand vertex to
be close to an object vertex. Formally, the loss is defined as:

Lcontact =
∑
i

min
j

∥∥Vi
tips −Vj

o

∥∥ . (16)

To provide better pixel-alignment for the hand and the ob-
ject, we use Soft Rasterizer [36] to render the hand amodal
masks Mh and object amodal masks Mo and encour-
age them to match the masks from off-the-shelf semantic
segmentation using an occlusion-aware term Lmask similar
to [76]. These simple terms work well in practice. See Sup-
Mat for more details and discussion.
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3.4. Final training

Using the refined hand pose parameters {θ} from Sec. 3.2
and {th,Ro, to, β, s} from Sec. 3.3, we fully train
HOLD-Net with the loss L following the formulation in
Sec. 3.2 to reconstruct the 3D hand and object geometries
for every frame of an input video. To avoid artifacts that
fh, fo, fb could have learnt during pre-training due to in-
accurate poses, we train {ψh, ψo, ψb, zo, zb} from scratch.
For brevity, we ignore the timestamp for frame-specific pa-
rameters. HOLD-Net is pre-trained with half the number
of epochs compared to this full-training stage for compu-
tational efficiency as we observe that the hand and object
shape stabilizes in the early training. The two training pro-
cedures are identical except the poses used and the epochs.

4. Experiments

In this section, we compare our method with existing base-
lines for our new category-agnostic interaction reconstruc-
tion task. The goal is to reconstruct accurate 3D surfaces
for the hand and object from a monocular video, where we
assume neither an object template nor an object category.
In-the-lab dataset: We use HO3D-v3 [20] for quantita-
tive and qualitative evaluation. The dataset consists of RGB
videos of a hand manipulating a rigid object. The hand is
articulated and it provides 3D annotations for MANO pa-
rameters and 6D object poses. Since HO3D does not re-
lease ground-truth annotations on the test set, we use two
sequences for each object with 3D annotations in their train-
ing set for evaluation: one matching Hampali et al. [21] for
consistency, and a second random sequence where hands
and objects remain within the frame throughout, simplify-
ing preprocessing. We omit the banana and the scissors as
SfM does not converge. These two objects either lack tex-
ture or have thin structures and are also failure cases for
[19, 21]. For completeness, we report results for the two
objects in SupMat using random poses.
HOLD dataset: To evaluate if our method can generalize to
diverse in-the-wild settings, we capture sequences of house-
hold items in both in-door and out-door scenes. We cap-
ture in both 1st-person moving views and 3rd-person static
views using an iPhone 14 main camera under different light-
ing conditions. For each video, we downsample it every 10
frames for our experiments.
Metrics: We use the root-relative mean-per-joint error
(MPJPE) in millimeters to measure hand pose error, and
Chamfer distance in squared centimeters to evaluate object
reconstruction quality [5]. Since Chamfer distance is sensi-
tive to outliers, we also use F-score in percentage to mea-
sure local shape details [60, 71]. In particular, to evalu-
ate object template quality independent from object pose,
following [71], we perform ICP alignment to the ground-
truth mesh of the HO3D meshes allowing scale, rotation

MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓

HOMan† [24] 32.0 N/A N/A 78.2
iHOI‡ [70] 38.4 3.8 75.8 41.7

DiffHOI [71] 32.3 4.3 68.8 43.8
Ours 24.2 0.4 96.5 11.3

Table 1. Comparison with SOTA hand-object reconstruction
methods. We evaluate our method and the baselines on the
HO3D dataset. †HOMan assumes a ground-truth object template.
‡During training, iHOI uses 3D annotation of the test objects,
while DiffHOI and ours do not use such information.

and translation and compute the Chamfer distance (CD) and
F-score at 5mm (F5) and 10mm (F10). To measure object
pose and shape relative to the hand in 3D, we subtract each
object mesh by the predicted hand root and compute the
hand-relative Chamfer distance for the object (CDh).
Implementation details: We train each sequence using
Adam. In each iteration we optimize 10 randomly sam-
pled images from the sequence. For stability, we perform
gradient clipping, which is crucial for convergence of the
hand model. We perform the initial training for 100 epochs,
which requires around 10 hours using an A100 GPU. The
final training takes 200 epochs. We use SAM-track [6] to
derive the hand and object segmentation masks by using
point-prompting for the first frame of each video. See Sup-
Mat for details. We use AITViewer [28] for visualization.

4.1. State-of-the-art comparison

Hand-object reconstruction: Table 1 compares HOLD
with existing hand-object reconstruction methods. We ob-
serve that HOLD significantly outperforms existing meth-
ods in terms of hand pose (MPJPE) and object shape (CD,
F10) quality. Our method also infers the relative spatial
alignment of the hand and object more accurately as shown
by the superior hand-relative Chamfer distance (CDh).

This improvement is also reflected in the qualitative
comparison in Fig. 4. Our method consistently produces re-
constructions that are closer to the ground-truth than those
of iHOI and DiffHOI, with notable improvements in captur-
ing the fine structures, such as the mug handle and the car
frame, as well as the dynamic postures of the hand and ob-
ject. In contrast, the reconstructions from the two baseline
methods lack details and suffer from erroneous hand and
object poses, even on the easier in-the-lab dataset. Notably,
both baseline methods use 3D supervision - iHOI is trained
on the HO3D dataset sequences with ground-truth 3D shape
and DiffHOI uses 3D shapes of diverse bottles and mugs as
training supervision. In contrast, our method only uses the
input 2D monocular video without requiring any 3D anno-
tation, while still achieving superior quality. Our method
can also reconstruct hands and objects reliably under differ-
ent backgrounds, and lighting conditions in both 3rd-person
view and moving egocentric views (see Fig. 5).
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Figure 4. Qualitative comparison with SOTA. We show hands and objects reconstructed by our method and SOTA baselines from in-the-
lab (left) and in-the-wild (right) videos. Our reconstruction demonstrates more accurate shapes, richer details, and more accurate poses. In
addition, our method works consistently well on various objects, even those with unique shapes (e.g. the Lego mug at the bottom right).

Object categories MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓
DiffHOI DiffHOI training 34.2 1.3 83.5 42.5

Ours 22.5 0.4 95.9 10.4

DiffHOI DiffHOI unseen 30.9 6.5 57.8 44.8
Ours 25.5 0.3 96.9 12.0

Table 2. Generalization comparison. We compare the general-
ization ability of HOLD and DiffHOI. We report results on objects
within and beyond DiffHOI’s training categories. DiffHOI’s per-
formance degrades significantly on unseen object categories while
ours produces more accurate reconstruction consistently.

Generalization: To quantify our method’s ability to gener-
alize compared to DiffHOI, in Table 2 we split the HO3D
sequences according to whether they belong to the training
categories of DiffHOI. We see that while DiffHOI’s per-
formance significantly drops across all metrics for unseen
categories, our method has consistent performance on all
categories. This is also reflected in Fig. 4: our method can
accurately reconstruct objects such as the drill, while the
baseline methods do not generalize to instances that are out-
side their training distributions.

Notably, our method significantly outperforms DiffHOI
even for its training categories. We can gain insight into
this from the water bottle example at the top-right of Fig. 4:
DiffHOI tries to reconstruct bottles seen in their data-driven
prior training set, which leads to a generic bottle. In com-

CD [cm2] ↓ F5 [%] ↑ F10 [%] ↑
Hampali [21] 1.4 57.4 79.9

Ours 0.5 84.3 94.4

Table 3. Comparison with a SOTA in-hand scanning method.

parison, our reconstructed bottle realistically captures the
shape details of the one in the image.
In-hand object scanning: Table 3 compares with Hampali
et al. [21], the SOTA method for in-hand object scanning.
Since no code is released, we compare our canonical shapes
with their released object point clouds. We observe better
object canonical shapes (CD) and local details (F5 and F10)
in HOLD. SupMat contains a qualitative comparison.

4.2. Ablation

Joint hand-object reconstruction: To verify that hand re-
construction is complementary to object reconstruction, we
implement an ablative baseline without modeling the hand.
To be specific, we mask out the hand from all video frames
and train the object network on these processed frames. As
demonstrated in Table 4, removing the hand from our model
leads to degraded reconstruction accuracy (CD and F10). A
qualitative example is shown in Fig. 6 (a). Without hand
modeling, the reconstructed object has a hole at the hand-
grasping region since the object model needs to explain the
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Figure 5. More qualitative results. We render the normals of
hands and objects reconstructed by HOLD. Our method can reli-
ably reconstruct in both static views and moving egocentric views.

images with the hand masked out. By jointly modeling the
hand, the object, and their occlusion, our method can faith-
fully reconstruct the object despite hand-object occlusion.
Contact-based hand-object pose refinement: To assess
the impact of pose refinement as described in Section 3.3,
we compare our model to a baseline that omits this process.
Figure 6 (b) provides a rotated-view illustration that high-
lights the disparity between the baseline model and our full
approach. Without pose refinement, there is an unrealistic
separation between the hand and object, a common issue in
monocular reconstructions due to significant depth ambigu-
ity leading to spatial misalignments.

Our refinement strategy mitigates this by encouraging
hand-object contact, thereby diminishing the relative depth
uncertainty. The improvements in pose accuracy for both
the hand and the object, as well as their spatial arrange-
ment, are quantitatively evidenced in Table 4. Our method
outperforms the baseline by achieving superior hand pose
accuracy, indicated by lower MPJPE, and improved hand-
relative Chamfer distance (see CDh). These improvements
in pose accuracy also translate into more accurate object
template reconstructions (see CD and F10).

MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓
w/o hand - 0.41 95.9 -

w/o pose ref. 24.6 0.55 94.2 122.1
Ours 24.2 0.38 96.5 11.3

Table 4. Ablation study. Modelling the hand and object jointly
improves object reconstruction accuracy. Pose refinement im-
proves hand-object poses and consequently object reconstruction.

Figure 6. Ablation study. (a) Jointly reconstructing the hand
and object effectively reduces artifacts. (b) Without contact-based
pose refinement, the hand and object can have an erroneous spatial
arrangement due to depth ambiguity.

5. Conclusion

In this paper, we present HOLD – the first category-agnostic
method that reconstructs an articulated hand and object
jointly from a monocular interaction video. We introduce a
novel compositional implicit model of the object and articu-
lated hand that disentangles and reconstructs 3D hands and
objects from 2D observations. We further show that jointly
optimizing the hand and object via interaction constraints
leads to better reconstruction of object surfaces than recon-
structing objects in isolation. Our method significantly out-
performs fully-supervised SOTA baselines in both in-the-
lab and in-the-wild settings while not relying on 3D hand-
object annotation data. We qualitatively demonstrate our
method’s robustness on challenging in-the-wild videos.

Limitations and discussion: While HOLD successfully re-
constructs category-agnostic interactions, it does face chal-
lenges. The reconstruction of thin/textureless objects is
limited by detector-based SfM for pose initialization. Ad-
vances in detector-free SfM [25, 57] could potentially ad-
dress this. Further, our reliance on RGB supervision may
hinder the reconstruction of rarely observed object regions.
This could be regularized with priors [46]. Lastly, training
time can be reduced with faster representations [30].
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