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Abstract

Panoramic videos have the advantage of providing an
immersive and interactive viewing experience. Neverthe-
less, their spherical nature gives rise to various and uncer-
tain user viewing behaviors, which poses significant chal-
lenges for panoramic video quality assessment (PVQA).
In this work, we propose an end-to-end optimized, blind
PVQA method with explicit modeling of user viewing pat-
terns through visual scanpaths. Our method consists of
two modules: a scanpath generator and a quality assessor.
The scanpath generator is initially trained to predict future
scanpaths by minimizing their expected code length and
then jointly optimized with the quality assessor for quality
prediction. Our blind PVQA method enables direct quality
assessment of panoramic images by treating them as videos
composed of identical frames. Experiments on three public
panoramic image and video quality datasets, encompassing
both synthetic and authentic distortions, validate the supe-
riority of our blind PVQA model over existing methods.

1. Introduction
The rapid advancement of multimedia technologies has
marked the beginning of a new era characterized by the
proliferation of panoramic videos [20]. Such type of dig-
ital data offers an immersive and interactive viewing expe-
rience that is transforming the way we consume multime-
dia. Therefore, assessing and ensuring the visual quality
of panoramic videos is increasingly important, as it shapes
the users’ viewing experience and the triumph of any prod-
uct or service based on panoramic videos [40]. Unlike their
planar counterparts, panoramic videos provide a 360◦ broad
view with a spherical data structure, which poses significant
computational challenges for panoramic video quality as-
sessment (PVQA). Moreover, the diverse and uncertain user
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Figure 1. Analogy between human subjects and our end-to-end
optimized method for panoramic video quality assessment.

viewing behaviors (in the form of visual scanpaths) induced
by the spherical structure further complicate the quality pre-
diction process. Addressing these challenges requires novel
PVQA models that take into account both the spherical data
structure as well as user viewing patterns.

In the quality assessment of panoramic images and
videos, three approaches are commonly employed: sphere-
to-plane projection onto a 2D plane, rectilinear projection
onto multiple viewports, and direct processing using spher-
ical operations. According to the Theorema Egregium by
Gauss, all sphere-to-plane map projections [32, 35, 41] are
impeded by non-uniform sampling and geometric distor-
tions, which may bias subsequent planar quality predic-
tion. While spherical operators give a better account for the
panoramic data structure, they are generally computation-
ally prohibitive and, more importantly, may not faithfully
reflect user viewing patterns [4, 39, 40]. To overcome these
computational difficulties, several methods seek to sample
and process rectilinear viewports [7, 14, 27, 29, 36, 37].
Of particular interest are scanpath-based methods, which
sample, along visual scanpaths [23, 24], sequences of rec-
tilinear viewports at discrete time instances. This sampling
process turns panoramic images and videos into moving-
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camera videos, amenable to planar VQA.
By closely imitating how humans perceive visual dis-

tortions in virtual environments (see Figure 1), scanpath-
based methods [27, 29, 36] have demonstrated remarkable
efficacy in the quality of panoramic images. Nonetheless,
some methods [27] rely on human visual scanpaths for as-
sessment, which are cumbersome and time-consuming to
obtain, thus limiting their applications in fully-automated
situations. Some other methods [29, 36] design and refine
the scanpath generator separately from the quality predictor,
which is bound to be suboptimal. Moreover, while all meth-
ods prove effective with panoramic images, their adaptabil-
ity for use with panoramic videos remains unclear.

In this work, we further pursue the scanpath-based meth-
ods for end-to-end optimized blind PVQA. Our method
consists of two modules: a scanpath generator and a qual-
ity assessor. Our scanpath generator is probabilistic, which
takes historical scanpaths as input and is pre-trained to pre-
dict future scanpaths by minimizing their expected code
length [16]. The scanpath generator and the quality asses-
sor are then jointly optimized to explain human perceptual
scores of panoramic videos. To enable end-to-end opti-
mization, we employ the reparameterization trick [12, 13]
to allow differentiable scanpath sampling and adopt sub-
gradients to handle discontinuities of the interpolation ker-
nel [11] for viewport sequence generation. Our blind
PVQA method not only eliminates the need for human
scanpaths, but also supplies a lightweight and differentiable
scanpath generator that can work with any planar VQA
model. Furthermore, our method is “backward compati-
ble,” in the sense that it handles panoramic images with
no modification. We test the proposed blind PVQA mod-
els on three public panoramic image and video quality
datasets [6, 30, 35], covering both synthetic and authen-
tic distortions. Under both in-dataset and cross-dataset set-
tings, our models consistently exhibit better quality predic-
tion performance.

2. Related Work
We review two highly relevant topics, scanpath generation
and quality assessment of panoramic images and videos.

2.1. Scanpath Generation

Typical inputs to a panoramic scanpath generator include
the saliency map, optical flow map, and historical scanpath.
To improve saliency detection, Nguyen et al. [21] compiled
a panoramic video saliency dataset, while Xu et al. [38] fo-
cused on relative viewpoint displacement prediction. Apart
from the historical scanpath, Li et al. [15] incorporated
“future” scanpaths from other users to facilitate cross-user
transfer learning. Through an in-depth root-cause analysis,
Rondón et al. [25] discovered that visual features have a
minimal impact on the prediction of short-term scanpaths

(e.g., ≤ 2 seconds). Motivated by their findings, Chao et
al. [3] trained a Transformer [33] to predict future scanpaths
based solely on historical scanpaths.

The above-mentioned methods [3, 15, 21, 25, 38] treat
scanpath generation as a deterministic prediction task, ne-
glecting the inherent scanpath diversity and uncertainty. As
a departure, Li et al. [16] formulated scanpath generation as
a density estimation problem, which can be implemented by
expected code length minimization. In our work, we adopt
Li’s approach [16] to learn multi-user viewing patterns and
generate human-like scanpaths.

2.2. Quality Assessment

Current PVQA models are primarily derived from planar
image and video quality methods, which are applied to three
types of data representations: the projected 2D plane, spher-
ical surface, and projected rectilinear viewport.

Planar domain methods [32, 35, 41] aim to rectify ge-
ometric distortions and mitigate uneven sampling that re-
sults from the sphere-to-plane projection. These include the
latitude-adaptive weighting [32], Craster parabolic projec-
tion [41], and pseudocylindrical representation [35]. Spher-
ical domain methods, such as S-PSNR [40] and S-SSIM [4],
compute and pool local quality measurements over the
sphere. Yang et al. [39] trained a non-local spherical neu-
ral network [5, 34] to extract spatiotemporal information
from panoramic videos. Viewport domain methods prior-
itize the extraction of visually informative viewports for
quality analysis. Li et al. [14] introduced a two-step ap-
proach that involves viewport proposal and quality assess-
ment. Xu et al. [37] built a graph over the extracted view-
ports, and Fu et al. [7] constructed hypergraphs to represent
the semantic interactions between viewports. One limita-
tion of current viewport proposal methods is that they do
not accurately reflect the human viewing experience.

Sui et al. [27] pioneered scanpath-based methods for
PVQA, under the category of viewport domain methods.
To eliminate the dependency on human scanpaths, Sui et
al. [29] adopted a deep Markov model [28] to generate
scanpaths. Meanwhile, Wu et al. [36] handcrafted a sim-
ple scanpath generator based on the entropy feature and
equator bias. These methods are tailored for panoramic im-
ages and are not end-to-end optimized. In contrast, we aim
ambitiously for an end-to-end optimized quality assessment
method for panoramic videos, with the added benefit of be-
ing backward compatible with panoramic images.

3. Proposed Method
As illustrated in Figure 2, our method consists of two mod-
ules: a scanpath generator and a quality assessor. Given a
panoramic video, we first specify a starting point (ϕ0, θ0), a
viewing duration S, and N initial paths. The scanpath gen-
erator autoregressively samples N scanpaths based on the
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Figure 2. Overview of the proposed blind PVQA method, consisting of a scanpath generator and a quality assessor. The basic component
of the scanpath generator is the scanpath generation unit (SGU), which utilizes the historical and causal relative scanpaths to produce the
GMM parameters for differentiable sampling of the current viewpoint. By assembling W SGUs, we create a scanpath generation block
(SGB), which autoregressively predicts a future scanpath of W viewpoints. We further stack M SGBs to generate a long-term scanpath of
M ×W +H viewpoints, where H is the length of the initial path. By adjusting the number of initial paths (denoted by N ), we can sample
N scanpaths, along which we produce N viewport sequences as input to the quality assessor.

initial and already generated path segments. Along these
scanpaths, we apply a differentiable viewport generation
technique to extract N viewport sequences from the in-
put panoramic video. Each viewport sequence (as a planar
video) is fed to the quality assessor, whose predicted score
is subsequently aggregated into an overall quality estimate
of the panoramic video.

3.1. Scanpath Generator

Probabilistic Scanpath Modeling. To capture the un-
certainty and diversity of human scanpaths, we formu-
late panoramic scanpath generation as a density estimation
problem:

max p(r|s), (1)

where s = {(ϕ0, θ0), . . . , (ϕt, θt), . . . , (ϕT−1, θT−1)}
is the historical scanpath as the condition and r =
{(ϕT , θT ), . . . , (ϕT+W−1, θT+W−1)} is the future scan-
path to be predicted. Herein, W is the prediction horizon,
and (ϕt, θt) is the t-th viewpoint in the Euler coordinate
system. Mathematically, p(r|s) can be decomposed as

p(r|s) =
W−1∏
t=0

p
(
ϕT+t, θT+t

∣∣∣s, ct) , (2)

where ct = {(ϕT , θT ), . . . , (ϕT+t−1, θT+t−1)} is re-
ferred to as the causal path that includes all estimated
viewpoints before (ϕT+t, θT+t), and c0 = ∅. The

chain rule suggests estimating the conditional probability
p
(
ϕT+t, θT+t

∣∣∣s, ct) autoregressively. We further make
the Markovian assumption: prediction of the current view-
point is conditionally independent of viewpoints that are
temporally further distant, given the most recent H view-
points. This leads to a truncated historical path context
sT = {(ϕT−H , θT−H), . . . , (ϕT−1, θT−1)}.

We parameterize the probability p
(
rt

∣∣∣sT , ct), where
rt = (ϕT+t, θT+t), by a Gaussian mixture model (GMM)
with K components:

p
(
rt

∣∣∣sT , ct) =

K∑
i=1

αiNi(rt;µi,Σi), (3)

where αi is the i-th mixture weight, µi and Σi represent
the mean vector and the covariance matrix of the i-th Gaus-
sian component, respectively. This parametrization can be
straightforwardly done by training a density estimation net-
work for parameter estimation. As illustrated in Figure 2,
this network is inside the scanpath generation unit (SGU)
and is composed of two subnetworks to process the histor-
ical path context sT and the causal path context ct, which
we denote by H-Net and C-Net, respectively. The concate-
nated features are fed to three prediction heads to estimate
the weight vector, the mean vectors, and the covariance
matrices of the GMM, respectively. We find empirically
that incorporating the historical video frames as the visual
context significantly increases computational demands with
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only slight improvements in performance. Therefore, to
keep the scanpath generator lightweight, we choose to omit
the visual context. The detailed specifications of the den-
sity estimation network can be found in the supplementary
material.

Estimating continuous probability density is generally
difficult and may lead to overfitting. In particular, maxi-
mum likelihood estimation of the GMM parameters through
direct optimization of Eq. (3) is challenging, due to the pres-
ence of singularities [2]. To circumvent this, we compute
the probability mass P

(
r̄t

∣∣∣sT , ct) by discretizing and in-

tegrating the density p
(
rt

∣∣∣sT , ct):

P (r̄t|sT , ct) =
∫
Ω

p (r̄t|sT , ct) dΩ. (4)

r̄t represents the quantized value of rt by a uniform quan-
tizer with a step size of ∆:

ξ̄ = Q(ξ) = ∆

⌊
ξ

∆
+

1

2

⌋
, (5)

where ⌊·⌋ denotes the floor function. Ω = [ϕ̄T+t −
1/2∆, ϕ̄T+t + 1/2∆] × [θ̄T+t − 1/2∆, θ̄T+t + 1/2∆] is
the integration interval. As pointed out in [16], the incorpo-
ration of quantization establishes the equivalence between
scanpath generation and lossy scanpath compression.

Furthermore, the absolute Euler coordinate system is not
user-centric, meaning that it is not centered at the user’s
current viewpoint, relative to historical and future view-
points [16]. This may complicate the probabilistic mod-
eling of scanpaths and the end-to-end optimization of blind
PVQA. To address this, we convert the Euler coordinates to
the relative uv coordinates:

s̃T−t = ΨT−t(sT ), for t ∈ {1, . . . ,H}, (6)

where ΨT−t(·) denotes the mapping of sT to the view-
port centered at the reference viewpoint (ϕT−t, θT−t). By
choosing each viewpoint in sT as the reference, we cre-
ate H relative scanpaths out of sT (see Figure 3), which
serve as input to the H-Net. Meanwhile, we map the
causal scanpath context ct and the viewpoint to be pre-
dicted (ϕT+t, θT+t) to the last historical viewport centered
at (ϕT−1, θT−1). We stack W SGUs to form a scanpath
generation block (SGB), which takes sT as input and pre-
dicts the future scanpath r. Furthermore, we stack M SGBs
to form the scanpath generator, which is capable of predict-
ing a very long-term scanpath of length M×W+H (includ-
ing the initial length H). The parameters of different SGUs
are shared to enable variable-length scanpath generation by
varying M .
Differentiable Scanpath Sampling. To enable end-to-end
optimization of the proposed blind PVQA method, we pro-
pose a two-step differentiable sampling method to draw

reference

Figure 3. Visualization of a relative scanpath projected from the
sphere to the viewport.

viewpoints from the estimated GMM via the reparameter-
ization trick [12, 13]. The first step is to select a Gaussian
component from which to sample the viewpoint, according
to the categorical distribution:

e = one hot

(
argmax
i∈{1,...K}

(log(αi) + gi)

)
, (7)

where gi is a sample drawn from the Gumbel(0, 1) distri-
bution, and e is a one-hot vector. Eq. (7) is known as the
Gumbel-Max trick [8], which is non-differentiable. We re-
lax the argmax operator with a softmax function [12]:

ê = softmax((log(α) + g)/τ), (8)

where τ represents the temperature coefficient, α =
[α1, . . . , αK ], and g = [g1, . . . , gK ]. As τ approaches zero,
ê converges to e. In the forward pass, argmax is used
directly, while in the backward pass, it is replaced by the
softmax function . The second step involves sampling a
viewpoint from the selected Gaussian component. Assum-
ing the i-th Gaussian component is selected, the linear repa-
rameterization trick [13] suggests

r̃t = ui +Liϵ, (9)

where r̃t is the relative uv coordinates of the t-th future
viewpoint. Σi = LiL

⊺
i is the Cholesky decomposition, and

ϵ is a sample drawn from the N (0, I). Differentiation of
the Cholesky decomposition is complicated and sometimes
numerically unstable [26]. Thus we assume the indepen-
dence between the uv coordinates, leading to the simplified
reparameterization formula:

r̃t = ui + σi ⊙ ϵ, (10)

where ⊙ denotes the element-wise product, and σi de-
notes the standard deviations of the i-th Gaussian com-
ponent. Through the two-step reparameterization, our
sampling strategy ensures effective back-propagation. As
suggested in [16], we additionally implement a propor-
tional–integral–derivative (PID) controller [1] to further im-
prove the smoothness of the sampled scanpaths (see the de-
tails in the supplementary material).
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Differentiable Viewport Sequence Generation. Inspired
by [11], we first parameterize the Euler sampling grid in
terms of the relative uv coordinates via the inverse trans-
formation Ψ−1 (see Eq. (6)). Subsequently, the Euler co-
ordinate (ϕ, θ) is mapped to the discrete sampling position
(m,n) in the ERP domain:

m = (0.5− ϕ/π)He − 0.5, (11)
n = (θ/2π + 0.5)We − 0.5, (12)

where He and We are the height and width of the video
frame in ERP. Once the mapping between (u, v) and (m,n)
is established, we construct a flow field that is the same
size as the viewport. Within this field, each element records
the corresponding pixel position (m,n). Given an ERP im-
age and the flow field, we apply bilinear interpolation [11]
to compute pixel values in the viewport and leverage its
sub-gradients for back-propagation. This process yields N
viewport sequences, corresponding to N initial paths.

3.2. Quality Assessor

Our probabilistic scanpath generator can work with any pla-
nar VQA model, whether it is differentiable or not. To
enable end-to-end optimization of the scanpath generator
and the quality assessor, and to make a fair comparison
with existing blind PVQA models, we reuse three differen-
tiable quality assessors from ScanpathVQA [35], GSR-S /
GSR-X [29], and Assessor360 [36]. Specifically, the quality
assessor of ScanpathVQA is a lightweight ResNet-18 net-
work [9], with the classification head replaced by a quality
estimator (a multilayer perceptron). The quality assessors
of GSR-S / GSR-X are adapted from Video Swin-T [18] /
X-Clip-B/32 [22]. The quality assessor of Assessor360 is
modified from Swin-B [17] with the addition of a temporal
analysis module. We feed each of the N viewport sequences
to the quality assessor to compute N quality scores. The
overall quality estimate is then computed by a simple aver-
age:

q̂ =
1

N

N∑
i=1

q̂i. (13)

3.3. Optimization Strategy

We explore a three-stage training procedure for our blind
PVQA model. In the first stage, we pre-train the density
estimation network on the VRVQW dataset [35] by mini-
mizing the expected code length of the generated scanpaths
(also equivalent to minimizing the negative log-likelihood):

ℓcode = − 1

BW

B∑
i=1

W−1∑
t=0

log2

(
P
(
r̄
(i)
t

∣∣∣s(i), c(i)t

))
,

(14)

where B denotes the mini-batch size. During this stage of
training, we use human scanpaths to fill in the causal path
context, which can be efficiently implemented by a causal
masking mechanism. In the second stage, we fix the pa-
rameters of the pre-trained scanpath generator and warm up
the quality assessor by optimizing the Pearson linear corre-
lation coefficient (PLCC) between human perceptual scores
and model predictions. In the third stage, we end-to-end
finetune the entire method. We find that the proposed three-
stage optimization strategy accelerates convergence com-
pared to the naive end-to-end optimization.

4. Experiments
In this section, we first delineate the experimental setups,
and then compare our method with current blind PVQA
models under both in-dataset and cross-dataset settings. We
further validate our scanpath generator in terms of explain-
ing human perceptual scores and replicating human view-
ing patterns. Lastly, we conduct a series of ablation experi-
ments to probe the impact of several key designs.

4.1. Experimental Setups

Datasets. We employ three panoramic image and video
datasets: VRVQW [35], CVIQD [30], and OIQA [6]. The
VRVQW dataset includes 502 panoramic videos that have
a wide spectrum of authentic distortions. Each video is
viewed under four unique viewing conditions to simulate
the different quality of experience during the initial viewing.
The CVIQD dataset comprises a total of 528 compressed
panoramic images by JPEG, AVC, and HEVC, from 16 ref-
erence images. The OIQA dataset includes 320 panoramic
images that have been altered from 16 reference images
by JPEG compression, JPEG2000 compression, Gaussian
blurring, and Gaussian noise contamination.
Implementation Details. For the scanpath generator, we
set the length of the provided initial path H and the pre-
dicted future path W in the SGB to be identical and equal
to 5. The number of Gaussian components K in Eq. (3)
is set to 3. The quantization step size ∆ in Eq. (5) is set
to 0.2. The temperature coefficient τ in Eq. (8) is set to 1.
The number of stacked SGBs M is set to 6 and 14 for the
viewing duration of 7 and 15 seconds, respectively. For the
quality assessor, the number of scanpaths N in Eq. (13) is
set to 20. The input viewport size Hv ×Wv is 224 × 224,
corresponding to a field of view of 90◦ × 90◦. The length
of the viewport sequence is set to 7 regardless of the du-
ration and frame rate of the original panoramic video. We
split VRVQW randomly into the training, validation, and
test sets according to the ratio of 6 : 2 : 2 for 5 times,
and report the mean results. Similarly, we split CVIQD and
OIQA using a different ratio of 7 : 1 : 2 for 5 times. The de-
tailed configuration of our three-stage optimization strategy
is detailed in the supplementary material.
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Table 1. In-dataset comparison of blind PVQA methods on
three panoramic image and video quality datasets. SRCC: Spear-
man’s rank correlation coefficient. PLCC: Pearson linear correla-
tion coefficient. The same evaluation metrics are applied in Ta-
bles 2, 3, 5, 6 and Figure 6. The best results on each dataset are
highlighted in bold.

.

Dataset Method SRCC PLCC

NIQE [19] 0.401 0.365
MC360IQA [31] 0.669 0.671
Wen24 [35] 0.756 0.763
ScanpathVQA [35] 0.779 0.781

VRVQW [35] Assessor360 [36] 0.406 0.415

Ours (ScanpathVQA) 0.801 0.809
Ours (GSR-S) 0.804 0.807
Ours (GSR-X) 0.815 0.819
Ours (Assessor360) 0.822 0.823

NIQE [19] 0.847 0.878
MC360IQA [31] 0.917 0.939
Wen24 [35] 0.919 0.932
GSR-S [29] 0.905 0.937
GSR-X [29] 0.944 0.962

CVIQD [30] Assessor360 [36] 0.955 0.969

Ours (ScanpathVQA) 0.912 0.936
Ours (GSR-S) 0.930 0.958
Ours (GSR-X) 0.956 0.974
Ours (Assessor360) 0.972 0.983

NIQE [19] 0.702 0.657
MC360IQA [31] 0.900 0.906
Wen24 [35] 0.905 0.907
GSR-S [29] 0.902 0.915
GSR-X [29] 0.945 0.954

OIQA [6] Assessor360 [36] 0.946 0.953

Ours (ScanpathVQA) 0.915 0.922
Ours (GSR-S) 0.927 0.936
Ours (GSR-X) 0.956 0.967
Ours (Assessor360) 0.960 0.971

Table 2. Cross-dataset comparison of blind PVQA methods on the
CVIQD [30] and OIQA [6] datasets. The arrow points from the
training set to the test set.

Dataset Method SRCC PLCC

MC360IQA 0.798 0.842
OIQA GSR-X 0.762 0.841
↓ Assessor360 0.859 0.893

CVIQD Ours (ScanpathVQA) 0.733 0.747
Ours (Assessor360) 0.872 0.904

MC360IQA 0.288 0.349
CVIQD GSR-X 0.695 0.718

↓ Assessor360 0.338 0.467

OIQA Ours (ScanpathVQA) 0.636 0.658
Ours (Assessor360) 0.703 0.715

4.2. Main Results

We compare our blind PVQA method with seven ex-
isting models, including NIQE [19], MC360IQA [31],
Wen24 [35], ScanpathVQA [35], GSR-S [29], GSR-X [29],

Table 3. Comparison of different scanpath generators for explain-
ing human perceptual scores.

Dataset Method SRCC PLCC

Human scanpath 0.786 0.790
Random sampling 0.075 0.104
Heuristic sampling [36] 0.431 0.443

VRVQW Xu18 [38] 0.712 0.717
TRACK [25] 0.745 0.749
Li23 [16] 0.790 0.794
Ours 0.805 0.814

Random sampling 0.632 0.640
Heuristic sampling [36] 0.868 0.870

CVIQD ScanDMM [28] 0.856 0.864
Li23 [16] 0.814 0.827
Ours 0.928 0.940

Random sampling 0.514 0.536
Heuristic sampling [36] 0.861 0.872

OIQA ScanDMM [28] 0.865 0.877
Li23 [16] 0.793 0.799
Ours 0.914 0.917

and Assessor360 [36]. For image quality models such as
MC360IQA [31] and Assessor360 [36], we retrain them on
the VRVQW dataset. In the case of MC360IQA, we as-
sign the video-level quality score to each key frame and use
their temporally averaged score for testing. Assessor360’s
scanpath generator is adapted to videos by adjusting the se-
mantic context associated with each key frame.
In-dataset Results. Table 1 shows the Spearman’s rank
correlation coefficient (SRCC) and PLCC1 results under the
in-dataset setting. It is evident that our learned scanpaths
enhance the performance of all quality assessors compared
to other scanpath-based methods. When integrated with the
quality assessor from Assessor360 (i.e., a modified Swin-
B with a temporal analysis module), our proposed method
achieves the best results on all three datasets. Furthermore,
our scanpath generator can boost a simpler quality asses-
sor (e.g., from ScanpathVQA [35] with approximately 11
million parameters) to reach performance levels similar to
those of a more sophisticated quality assessor coupled with
a weaker scanpath generator (e.g., GSR-S [29] with approx-
imately 112 million parameters). Methods that overlook hu-
man viewing patterns, like NIQE [19] and MC360IQA [31],
fail to accurately model the human perception of panoramic
image and video quality, especially on VRVQW. Addition-
ally, we find that assessing the quality of panoramic videos
with authentic distortions tends to be more challenging than
for panoramic images with synthetic distortions. This is an-
ticipated because authentic distortions in panoramic videos
typically present as a complex blend of various artifacts, lo-
calized in space and time.
Cross-dataset Results. Table 2 shows the SRCC and PLCC
results under the cross-dataset settings on CVIQD [30] and

1As standard practice, we apply a monotonic logistic function to com-
pensate for the nonlinearity in model predictions before computing PLCC.
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Table 4. Comparison of different scanpath generators for repli-
cating human viewing patterns using the minimum orthodromic
distance (minOD) and maximum temporal correlation (maxTC).

Method minOD ↓ maxTC ↑

Heuristic sampling [36] 1.325 0.401
Xu18 [38] 1.185 0.637
TRACK [25] 1.067 0.699
Li23 [16] 0.542 0.796

Ours (w/o end-to-end optimization) 0.556 0.781
Ours 0.536 0.805
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Figure 4. Comparison of different scanpath predictors in terms of
maxTC with different prediction horizons.

OIQA [6]. Generally, models trained on the OIQA dataset
show better generalizability. This is likely because OIQA
encompasses a broader range of distortion types, compared
to CVIQD, which only includes the compression artifacts.
Assessor360 shows a noticeable performance drop when
tested on OIQA, potentially indicative of overfitting. Our
scanpath generator is capable of restoring Assessor360’s
performance, which provides a strong indication of its ef-
fectiveness through end-to-end optimization.

4.3. Scanpath Generator Validation

Explaining Human Perceptual Scores. We conduct an
apple-to-apple comparison of different scanpath generators
in terms of explaining human perceptual scores by fixing
the quality assessor to that used in ScanpathVQA. These in-
clude random sampling, heuristic sampling [36], Xu18 [38],
TRACK [25], ScanDMM [28], Li23 [16], and our method.
Table 3 shows the SRCC and PLCC results on the VRVQW,
CVIQD and OIQA datasets. It is noteworthy that our scan-
path generator outperforms all competing methods across
all three datasets, even surpassing the human-level perfor-
mance on VRVQW. The performance of random and heuris-
tic sampling decreases sharply on VRVQW, due to the pres-
ence of spatiotemporally localized authentic distortions.
Replicating Human Viewing Patterns. We also test differ-
ent scanpath generators in terms of replicating human view-
ing patterns on the VRVQW dataset by comparing the pre-
dicted scanpaths to those of humans. We use two set-to-set
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t=3s t=7s

Figure 5. Comparison of saliency maps generated from scanpaths
by our method and those by humans.

Table 5. Impact of optimization strategies on blind PVQA. Train-
ing protocol: 1) Two-stage w/ fixed scanpaths, 2) Two-stage w/
varied scanpaths, and 3) Three-stage w/ end-to-end optimization.

Protocol VRVQW CVIQD OIQA
SRCC PLCC SRCC PLCC SRCC PLCC

1 0.769 0.772 0.710 0.780 0.688 0.742
2 0.781 0.785 0.830 0.859 0.798 0.815
3 0.805 0.814 0.928 0.940 0.914 0.917

evaluation metrics: the minimum orthodromic distance (i.e.,
minOD) and maximum temporal correlation (i.e., maxTC),
as suggested in [16]. Given a set of human scanpaths,
S = {s(i)}|S|

i=1, the minimum orthodromic distance be-

tween S and the set of predicted scanpaths Ŝ = {ŝ(i)}|Ŝ|
i=1

can be computed by

minOD
(
S, Ŝ

)
= min

s∈S,ŝ∈Ŝ
OD(s, ŝ) , (15)

where the orthodromic distance OD(·, ·) is defined as

OD(s, ŝ) =
1

T

T−1∑
t=0

arccos
(
cos(ϕt)cos(ϕ̂t)cos(θt − θ̂t)

+ sin(ϕt)sin(ϕ̂t)
)
.

(16)

The maximum temporal correlation between S and Ŝ is de-
fined as

maxTC
(
S, Ŝ

)
= max

s∈S,ŝ∈Ŝ
TC(s, ŝ), (17)

where the temporal correlation is computed by

TC
(
s(i), s(j)

)
=

1

2

(
PLCC

(
ϕ(i),ϕ(j)

)
+ PLCC

(
θ(i),θ(j)

))
.

(18)

Table 4 presents the minOD and maxTC results, from
which we find that our end-to-end optimized scanpath gen-
erator delivers the best results, surpassing its independently
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Table 6. Impact of visual context on blind PVQA. #Parameters added to the scanpath generator are also shown.

Method #Parameters VRVQW CVIQD OIQA
SRCC PLCC SRCC PLCC SRCC PLCC

Ours 1M 0.805 0.814 0.928 0.940 0.914 0.917
Ours w/ visual context 27M 0.816 0.823 0.937 0.956 0.925 0.934

optimized counterpart by a clear margin. The heuristic sam-
pling [36] that depends on the simplified entropy features
and equator bias, is inadequate for capturing human view-
ing patterns, especially for long-term prediction horizons
(see Figure 4). Due to the deterministic nature, Xu18 [38]
and TRACK [25] fail to accommodate the diversity and un-
certainty inherent in human scanpaths, resulting in subpar
performance. Incorporating historical video frames as the
visual context, Li23 [16] shows performance on par with
our method, reinforcing our assertion that visual context in-
forms less about future viewpoints. Figure 5 demonstrates
a comparison of the saliency maps derived from scanpaths
by our method and those by humans, offering further proof
of the close alignment of our scanpath generator and human
viewing behaviors.

4.4. Ablation Studies

Impact of Optimization Strategies. We explore three
different optimization strategies: 1) a two-stage approach
where the pre-trained scanpath generator produces a fixed
set of scanpaths for the training of the quality assessor, 2)
a similar two-stage approach but supplying a varied set of
scanpaths in each epoch of training, and 3) the default three-
stage approach that enables end-to-end optimization. From
the results in Table 5, we find that the two-stage approach
benefits from “data augmentation” with varied scanpaths in
each epoch. Our three-stage end-to-end optimization strat-
egy further boosts the accuracy of quality prediction by
jointly finetuning both the scanpath generator and quality
assessor.
Impact of Visual Context. To assess the impact of visual
context on blind PVQA, we enhance our scanpath genera-
tor with a video analysis network [16], implemented by a
variant of ResNet-50 for frame-level feature extraction and
aggregation. We subsequently integrate it with the Scan-
pathVQA quality assessor for blind PVQA, with the results
shown in Table 6. We find that the visual context has a neg-
ligible effect on blind PVQA, and thus we exclude it in the
generation of scanpaths.
Impact of the Number and Length of Viewport Se-
quences. We investigate the effects of varying the number
N and length L of viewport sequences on blind PVQA. We
test N values from {5, 10, 15, 20, 50} and L values from
{4, 7, 15}. Figure 6 shows the SRCC results on VRVQW,
using the ScanpathVQA quality assessor for prediction. It is
clear that N = 20 viewport sequences are sufficient for reli-
able quality assessment, with performance remaining stable
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Figure 6. Impact of the number N and length L of viewport se-
quences on blind PVQA.

with the increase in N . For sequence length, L = 7 appears
to be a wise choice. Further increasing L does not notice-
ably affect the performance, but would lead to a consider-
able rise in computational demand. Conversely, a shorter
viewport sequence results in a noticeable drop in perfor-
mance due to the loss of information from excessive tempo-
ral downsampling. It is important to note that these findings
are specific to the ScanpathVQA quality assessor and may
differ from other assessors.

5. Conclusion

We have introduced an end-to-end optimized blind PVQA
method, consisting of a scanpath generator and a quality as-
sessor. The proposed scanpath generator is differentiable
and can be integrated with any planar VQA model, whose
effectiveness has been thoroughly validated in supporting
blind PVQA and in modeling human viewing patterns. Ad-
ditionally, we have also devised a three-stage optimization
strategy to facilitate training convergence, which aligns with
current large-scale optimization practices that involve self-
supervised pre-training followed by supervised finetuning,
including initial warmup phases [10].
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