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Abstract

Recent significant advances in text-to-image models un-
lock the possibility of training vision systems using synthetic
images, potentially overcoming the difficulty of collecting
curated data at scale. It is unclear, however, how these
models behave at scale, as more synthetic data is added to
the training set. In this paper we study the scaling laws of
synthetic images generated by state of the art text-to-image
models, for the training of supervised models: image classi-
fiers with label supervision, and CLIP with language super-
vision. We identify several factors, including text prompts,
classifier-free guidance scale, and types of text-to-image
models, that significantly affect scaling behavior. After tun-
ing these factors, we observe that synthetic images demon-
strate a scaling trend similar to, but slightly less effective
than, real images in CLIP training, while they significantly
underperform in scaling when training supervised image
classifiers. Our analysis indicates that the main reason for
this underperformance is the inability of off-the-shelf text-
to-image models to generate certain concepts, a limitation
that significantly impairs the training of image classifiers.
Our findings also suggest that scaling synthetic data can be
particularly effective in scenarios such as: (1) when there
is a limited supply of real images for a supervised problem
(e.g., fewer than 0.5 million images in ImageNet), (2) when
the evaluation dataset diverges significantly from the train-
ing data, indicating the out-of-distribution scenario, or (3)
when synthetic data is used in conjunction with real images,
as demonstrated in the training of CLIP models.

1. Introduction

The quality and quantity of data play a crucial role in train-
ing vision models. Historically, the emphasis has been on
creating large, meticulously curated image datasets with
categorical labels at the image level for training supervised
models [14, 34, 50, 62]. Prominent examples include CI-
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Figure 1. Scaling ability (i.e., the slope of the power law curve
between loss and dataset size fitted in the log space, see Eq. 2)
comparison between real and synthetic images on supervised clas-
sifier and CLIP training. Red bars represent real images and blue
bars represent synthetic images generated with different text-to-
image models. Supervised models are trained on real or synthetic
ImageNet, and text in parentheses is the text prompt used to gen-
erate the images (details in Section 3.1). ImageNet-Sketch and
ImageNet-R are out-of-distribution tests. CLIP models are trained
on LAION-400M with real or synthetic images. We see that: (1)
scaling ability of synthetic data is slightly worse than that of real
data for CLIP training; (2) robustness on ImageNet-Sketch and
ImageNet-R datasets can be better when training on synthetic data.

FAR [34] and ImageNet [14]. While creating these datasets
is effective on a smaller scale, their expansion to hun-
dreds of millions of samples presents significant challenges.
These challenges include the intensive labor required for cu-
ration at scale, as well as the increasing potential for noise
and quality issues as the datasets scale up.

Recently, there has been an increasing interest in train-
ing vision models using language supervision [30, 45].
This shift is exemplified by models like CLIP [45], which
move beyond the fixed, predefined categories typical of
datasets like ImageNet. Training these models requires
extensive image-text pair datasets. Developments ranging
from the creation of the Conceptual Captions dataset [59],
which comprises millions of image-text pairs, to the LAION
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dataset [58], encompassing billions of pairs, are examples
of this growing trend. However, this approach is not with-
out its challenges. The massive scale of data sourcing, often
through web scraping, introduces significant noise. Scala-
bility issues also persist. Moreover, the immense size of
these datasets presents practical difficulties in terms of stor-
age and data transfer. For instance, LAION-2B requires
tens of terabytes of disk space and could take days, if not
weeks, to download.

Fortunately, recent breakthroughs in text-to-image mod-
els have introduced exciting new possibilities in the realm
of synthetic data generation. These models, capable of pro-
ducing high-quality images from textual descriptions, offer
several significant advantages. Firstly, they allow precise
control over image content through input texts, which could
provide categorical labels or paired text supervision for free.
Secondly, they are bandwidth-efficient, as only the model
needs to be transferred, not the entire dataset. For instance,
models like Stable Diffusion [51] occupy merely 5 GB of
disk space, which is 2000× more efficient compared to the
massive LAION-2B dataset. Thirdly, they facilitate easier
scalability with markedly reduced human labor for dataset
curation. These benefits naturally lead to the question of
whether it’s feasible to scale up vision datasets with syn-
thetic images for training supervised models.

However, the use of synthetic images is also not with-
out its drawbacks. When scaled to tens or hundreds of mil-
lions of images, these models may produce images of lower
quality or with misaligned concepts, and might also strug-
gle with maintaining diversity. In this paper, we tackle a
pivotal question: How effective is the scaling of synthetic
images, specifically generated for training supervised vi-
sion models? We examine the scaling behavior of synthetic
images created by cutting-edge text-to-image models, com-
paring their efficacy to real images in two key scenarios: the
training of supervised classifiers and the training of vision
models with language supervision, such as CLIP. Addition-
ally, we explore a range of factors that markedly impact the
scaling efficiency of synthetic images. These include the
choice of text-to-image model, the classifier-free guidance
scale employed, and the nature of text prompts used for gen-
erating training images. A summarized comparison of the
scaling ability between real and synthetic images is shown
in Figure 1.

We present our key findings as follows:

• An empirical study on the scaling behavior of images syn-
thesized by three major text-to-image models (Stable Dif-
fusion [51], Imagen [56], and Muse [9]) shows that model
performance exhibits power law scaling [32] as a func-
tion of the number of synthetic images they are trained
on. This trend holds until computation budget and model
size become limiting factors [32].

• We identify several factors that can significantly alter the

scaling ability of synthetic data, including prompt design,
classifier free guidance, and the choice of models.

• In supervised settings, synthetic data does not scale as
effectively as real data. However, there are exceptions
where synthetic data demonstrates better scaling: (1) with
classes that text-to-image models are particularly adept
at generating, and (2) when the test data deviates signifi-
cantly from the training data, e.g., out of distribution data.

• In CLIP training, the disparity in scaling performance be-
tween synthetic and real data is less pronounced. Incor-
porating synthetic data with real data leads to enhanced
zero-shot performance in most scenarios.

2. Related Work
Text to image models. Recent breakthroughs in text-
to-image models, primarily driven by advances in diffu-
sion models [27, 60, 71], have enabled the generation of
high-quality, photo-realistic images using neural networks.
Key examples of such models include Imagen [56], which
performs diffusion in pixel space, and Stable Diffusion
[51], which operates in the latent space of an autoencoder.
DALL-E 3 [6] also exemplifies this category. An alternative
family of models, based on visual tokens, utilizes VQGAN
[66] and Transformers [67]. Prominent examples within
this category include Parti [74] and Muse [9]. Addition-
ally, recent advancements have been exploring the scaling
Generative Adversarial Networks (GANs) [16] for text-to-
image generation, as demonstrated in works such as [31].
Learning from synthetic data. Synthetic data has proven
to be effective in improving performance across various
domains [12, 19, 35, 38, 40, 53, 54, 63, 65, 72]. Syn-
thetic images, in particular, have been extensively utilized
in a range of different computer vision tasks, including
object detection [44, 55], semantic segmentation [10, 52],
autonomous driving [1], and robotics [41, 73]. More re-
cently, there has been evidence that combining synthetic
images generated by text-to-image models with real im-
ages can improve the performance on supervised learning
tasks [18]. Particularly, [4, 75] have fine-tuned the text-to-
image model using the target dataset, e.g. ImageNet, while
this paper studies the capabilities of off-the-shelf text-to-
image models. Additionally, there are efforts developing
methods for learning transferable representations from syn-
thetic images [5, 18, 29, 37, 49, 57, 64].
Neural scaling laws. Scaling up model size, data amount,
and training budget has unlocked new capabilities of deep
models [11, 13, 42, 46, 76]. Recent studies [24, 32] sug-
gest the testing loss behaves as a power low with respect to
each of these three resources when the other two are proper,
in large language models (LLMs), machine translation [17],
auto-regressive generative models [22], and transfer learn-
ing [23]. Similar behavior is observed in multi-modal mod-
els [2]. Chinchilla [28] suggests scaling up data propor-
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tionally to model size, to obtain compute-optimal LLMs.
[3] propose to fit scaling laws by extrapolating training
curves. Of particular interest, [61] theoretically shows one
can break the power law with respect to data size with an
ideal data pruning strategy. In this paper, we focus on the
scaling behavior of synthetic data for training models.

3. Preliminaries
We first study the scaling behavior of synthetic images gen-
erated with state-of-the-art text-to-image models under the
ImageNet supervised training setting.

3.1. Three Factors on T2I Generation

There are three primary factors influencing the generated
images used for supervised training: (1) choice of text-to-
image model, (2) the classifier-free guidance scale, and (3)
the class-specific prompt used for the text input. We will
now provide a detailed description of each of these factors:
Text-to-Image Models. We conducted the study on three
state-of-the-art text-to-image models of different types:
• Stable Diffusion [51], a model that drives the diffusion

process in the latent space of a pre-trained autoencoder.
• Imagen [56], a model that drives the diffusion process

directly in the raw pixel space.
• Muse [9], a visual token-based generation model trained

with masked generative modeling, that performs discrete
diffusion in the latent space of an autoencoder.

These models have distinct architectural designs, but are all
capable of generating photo-realistic images. Since Ima-
gen [56] and Muse [9] are not publicly available, we base
our work on a version trained on internal data sources.
Guidance Scale. All modern text-to-image models primar-
ily rely on the classifier-free guidance (CFG) technique to
generate images based on textual input [26]. Increasing the
CFG scale typically improves the alignment between the
generated images and the input text, resulting in higher-
quality output images. However, this also tends to reduce
the diversity of content in the generated images. Through
empirical analysis, we determined that when generating im-
ages for training supervised classifiers, it is advisable to use
a relatively lower CFG scale compared to the default value
used in generation. This ensures that the generated images
exhibit a higher degree of diversity, particularly when gen-
erating images from texts describing the same class. We
conducted a detailed analysis and determined the optimal
CFG scale ranges for different models: [1.5, 10.0] for Sta-
ble Diffusion, [1.0, 2.0] for Imagen, and [0.1, 1.0] for Muse.
Class-specific Prompts. To generate images for each class
in ImageNet, we employed different techniques to create
corresponding text prompts. This allows us to generate
images conditioned on the specific ImageNet class via the
prompts. Take the class ‘Tench’ as example, we can have
prompts as:

• Classnames: Directly use the ImageNet class name.
(‘Tench’)

• Classnames + Description: Combine class name with its
WordNet [39] description. (‘tench, freshwater dace-like
game fish of Europe and western Asia ...’)

• Classnames + Hypernyms: Combine ImageNet class
name with its Wordnet hypernyms. (‘Tench, Tinca tinca,
cyprinid, cyprinid fish’)

• Word2Sen: Use a pre-trained T5 model [47] as used
in [18] to convert the ImageNet class name into a sen-
tence. We generate 100 sentences for each class. (‘a tench
with fish in the distance.’)

• CLIP templates: Generate either 7 or 80 sentences with
the text templates CLIP used for zero-shot classification
task. (‘a photo of the large tench’)

• IN-Captions: Combine the class name with captions from
ImageNet(IN) training images. Captions are generated by
BLIP2 [36]. (‘Tench, a man holding a fish’)

3.2. Metrics: Recognizability and Diversity

The above factors give us a number of configurations to gen-
erate synthetic data. We now proceed to define metrics to
analyze the resulting images, and then analyze the scaling
behavior exhibited by the images generated under this con-
figuration. The generated images should possess two cru-
cial attributes: (1) Recognizabilty: Synthetic images should
exhibit high precision, meaning they correctly represent the
intended class, and high recall, implying that images for
other classes should not mistakenly contain elements of this
class. (2) Diversity: It is essential that the generated images
are diverse from each other to improve generalization.

We define two measures to quantify the recognizability
and diversity of images generated under a specific config-
uration. We generate 50 images for each ImageNet class,
resulting in a synthetic test set comprising 50,000 images.
Subsequently, we define the two metrics as follows:
• Recognizabiliy: Use a pre-trained ImageNet classifier (a

ViT-B with 86.2% accuracy from [69]) to classify the gen-
erated images and compute the F1 score for each class.
The final metric is given by averaging F1 score across all
classes.

• Diversity1: Following [8], we extract features from the
same pre-trained model [69] and compute the standard
deviation on the feature space for images from every
class, and then compute the average score across all
classes.

3.3. Scaling Law for Synthetic Data

Prior works on scaling laws, such as [32], have observed
that, for sufficiently large models, the test loss L and dataset

1We also tried replacing the diversity metric with FID [25] or
LPIPS [77], please refer to Appendix D for details.
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Figure 2. Recognizability vs. diversity plot for
various synthetic image generation configurations
(as in Section 4.2), colored by the performance
at 1.3M on ImageNet validation set (measured by
negative log loss). Deeper color stands for smaller
loss and better performance.
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Figure 3. Scaling on ImageNet validation set for various configurations as in Sec-
tion 4.3. Loss and data scale follows the power-law (as in Equation 2) with varied
k when data is less than 4M. By tuning the CFG scale, text prompts and text-
to-image models, the scaling behavior for synthetic images can be significantly
improved (from light blue to orange). Red dashed line is for real images. Orange
and blue dotted lines are ViT-L backbones, extending the power-law to 8M.

scale D, approximately follow a power-law relationship:

LD ∝ (1/D)k (1)

where k is a constant. Thus LD exhibits linear dependence
on D in log space. Let DI be 1.3 million, roughly the size
of the ImageNet training set with real data. We re-write
Equation 1 as:

logLD = −k︸︷︷︸
k: Scaling Ability

(logD − logDI)− (− logLDI
)︸ ︷︷ ︸

Performance at 1.3M
(2)

The slope −k and y-intercept − logLDI
would determine

a unique scaling curve in log space. With this, we provide
quantitative definitions for two key metrics for scaling:
• Scaling Ability: Quantifies the scaling effectiveness of

synthetic images generated by a particular text-to-image
configuration. Stepper curves means loss scales better
with data, therefore we represent scaling ability by the
negative of the slope: k.

• Performance at 1.3M: Measures the classification per-
formance of models (as negative log loss) when trained on
a dataset with a scale equivalent to 1.3M, the size of the
ImageNet training set. It is represented by the y-intercept
− logLDI

.

4. Scaling on Supervised Training
4.1. Setup

We train supervised classification models exclusively using
the images generated by text-to-image models and evaluate
their performance by computing cross-entropy loss and top-
1 accuracy on the ImageNet validation set, which contains

real images. Training iterations are scheduled linearly based
on the training data size in logarithmic space. All generated
images are resized to a resolution of 256x256 pixels. Un-
less stated otherwise, we employ the ViT-B model [15] with
a patch size of 16 as our backbone architecture. Training
hyperparameters details are provided in Appendix A.

4.2. Performance at 1.3M

We commenced by generating synthetic ImageNet datasets,
each containing 1.3 million synthetic images, using various
configurations of text-to-image models, CFG scales, and
prompts as outlined in Section 3. In total, we created syn-
thetic ImageNets in 54 distinct configurations, with detailed
information provided in Appendix C. Figure 2 displays the
validation loss on the real ImageNet validation set, repre-
sented by − logLDI

as defined in Equation 2. A higher
value correlates with increased classification accuracy, sig-
naling better performance. Comparisons focusing on clas-
sification accuracy are also included in Appendix C.

Within this study, we investigate the impact of differ-
ent prompt sets (Section 3) within the Stable Diffusion
model. Squares (■), Circles (●), and Diamonds (◆) rep-
resent prompt configurations involving IN-captions, Class-
names, and all other prompt setups, respectively. For Muse
and Imagen configurations, we maintain the prompt set as
IN-Captions and vary the CFG scale within the ranges [1, 2]
and [0.1, 1], respectively. Triangles (▲) represent the per-
formance of images generated with Muse, while Stars (★)
represent the performance of images generated with Ima-
gen. Several key findings emerge from the results:
Diversity and Recognizability trade-off: Across differ-
ent configurations, we observe a trade-off between diver-
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Figure 4. Scaling behavior on four different out-of-distribution validation sets. We compare synthetic images generated with optimal CFG
scales by Stable Diffusion (with 80 CLIP templates or IN-Captions prompt), Imagen and Muse (all with IN-Caption prompt) with real
images. Scaling synthetic data is useful and can surpass real images when the domain gap between the training and testing is significant,
e.g. when evaluated on ImageNet-R and ImageNet-Sketch.

sity and recognizability. The top-right corner of the figure
represents the best performance, indicating configurations
that can generate both accurate and diverse images. Config-
urations perform poorly when either recognizability or di-
versity falls below a certain threshold. Also see Figure A4
bottom left for scattering colorized by accuracy.
Effect of Prompt Sets: Choosing different prompt sets can
impact performance. Using a more diverse prompt set shifts
the configuration towards the bottom-right of the figure.
Transitioning from Classname to IN-captions for text-to-
image prompts may contribute to this shift, likely due to the
increased diversity on the text side, which inherently leads
to more diverse generated images.
Impact of CFG Scale: When prompts are fixed, controlling
the CFG scale also affects the performance of the classifica-
tion model. Increasing the CFG scale shifts the configura-
tion towards the upper-left part of the figure, where recog-
nizability is increased, but diversity decreases. This initially
leads to improved performance, followed by a decrease.
Text-to-Image Model Performance: In terms of text-to-
image models, when all configured to use IN-Captions as
prompts, Stable Diffusion, Imagen, and Muse demonstrate
a quite similar trend in balancing recognizability and diver-
sity. This similarity in their trade-off is reflected in their
close proximity to each other in the plot.

4.3. Scaling Ability

We next proceed to analyze the scaling behavior of different
models, as well as the difference between training super-

vised models on synthetic images and on the real ImageNet
training set. Figure 3 illustrates the scaling behavior across
various configurations. Specifically, for Stable Diffusion,
we depict the scaling behavior of different configurations
with various prompts and CFG scales. We select the opti-
mal configuration for Muse and Imagen from Section 4.2,
using IN-Caption as prompts and the corresponding opti-
mal CFG scale for each model. From the figure, several
observations can be made:

Power-law Relationship: Training on synthetic images
follows a power-law relationship from 0.125 million to 4
million training images. Validation loss and training data
size exhibit a linear correlation when analyzed in log space.

Scaling Disparity: Training on synthetic images does not
scale as effectively as training on the real ImageNet train-
ing set images, and typically has a smaller scaling ability.
This difference can be attributed to the curation of Ima-
geNet training images and performing validation under an
in-domain setting.

Impact of Prompts and CFG Scale: Using default prompt
sets and CFG scale for image generation results in poor
scaling ability, i.e. a very flat slope and smaller k value.
However, by tuning the prompts and CFG scale properly,
the generated images become much more diverse, leading
to an increased scaling behavior for synthetic images, bring-
ing it closer to the scaling ability observed with real images.
Nevertheless, the best scaling configuration is still signifi-
cantly worse than scaling with real data.
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4.4. Scaling beyond 4M

We naturally wonder about the scaling behavior when the
dataset size exceeds 4 million images and whether the val-
idation loss will continue to decrease. In Figure 3, we also
illustrate the scaling curve for Stable Diffusion up to 64
million images, and for Muse and Imagen up to 8 million
images (in gray background). The results indicate that the
relationship changes when the dataset scale exceeds around
4 million images.

We hypothesize that this could be due to the loss be-
ing constrained by insufficient model capacity. According
to [32], the power-law relationship between validation loss
and training dataset size requires the model to have suffi-
cient capacity to fit the dataset and converge. Therefore,
when the dataset size exceeds 4 million images, and if we
continue to use ViT-B as the backbone architecture, the val-
idation loss in log space no longer exhibits a linear trend. To
address this, we retrain the supervised models with ViT-L as
the backbone architecture for the best Stable Diffusion and
Imagen configuration, as shown in the dotted lines. This
improvement in model capacity could achieve a lower val-
idation loss and maintain a roughly linear ratio up to the 8
million scale and slightly postpones the inflection point.

4.5. Out-Of-Distribution Scaling

We also investigate the scaling behavior on out-of-
distribution (OOD) validation sets to determine whether it
differs from the in-domain setup on the ImageNet valida-
tion set. We employ the supervised ImageNet classifiers
and test them on four OOD validation sets, which include
ImageNet-A [21], ImageNet-R [20], ImageNet-Sketch [68],
and Imagenet-V2 [48]. The scaling curves for validation
loss and top-1 validation accuracy are presented in Figure 4.

Our empirical results indicate that in scenarios where
the domain gap is relatively small, such as ImageNet-v2,
the scaling behavior mirrors the observation in in-domain
setups, with real images showing superior scaling perfor-
mance. However, a more intriguing observation emerges
when the domain shift is bigger, as seen in ImageNet-R and
ImageNet-Sketch. In these instances, the disparity in scal-
ing capabilities between synthetic and real images narrows.
Consequently, scaling up synthetic images becomes partic-
ularly beneficial and useful. Remarkably, in situations with
sufficiently large dataset scales, synthetic images can even
outperform real images from ImageNet training set (e.g. for
ImageNet-R and ImageNet-Sketch with Muse), highlight-
ing the potential of synthetic images in bridging significant
domain gaps. Interestingly, when images are generated with
80 CLIP templates as text prompt (the light blue line in the
plot) instead of IN-Captions, the improvements over real
images on ImageNet-R and ImageNet-Sketch are more sig-
nificant, although the scaling ability on the ImageNet val-
idation set is worse (as shown in Figure 3). This suggests

Ox Station Wagon

Geyser Airliner

Vine snakeTiger cat

Figure 5. Visualization of different class categories generated by
Stable Diffusion. Top row are the ‘strong’ classes that scales well.
Middle row are the ‘easy’ classes that has a good initial perfor-
mance. Bottom row are the ‘poor’ classes that has poor scaling
ability and performance.

that carefully crafting text prompts can unlock further po-
tential in increasing the efficacy of synthetic images, partic-
ularly for OOD scenarios.

4.6. Zoom-in: Per Class Analysis

In addition to the general analysis of scaling behavior and
its impact on overall performance, we also assess the scal-
ing ability of each specific class in the 1,000 categories in
ImageNet. For this analysis, we use on images generated
by Stable Diffusion, using the optimal CFG of 2.0 and IN-
Caption prompts. We created a scatter plot with scaling
ability on the X-axis and 1.3M performance on the Y-axis,
as shown in Figure 6. Each class is a dot, with top-right
positions indicating better performance when scaled up to 4
million images. Points are colored based on either diversity
or recognizability, or final performance at 4M dataset scale.

Based on their positioning in the scatter plot, classes can
be categorized into three groups. Points in the bottom-left
section are ‘Poor’ classes, which have both limited scaling
ability and poor overall performance. Classes located in the
upper-right section are ‘Easy’ ones with strong initial per-
formance as well as robust scaling ability. Lastly, classes in
the mid-right section are ‘Scaling’ ones. These classes may
exhibit poor initial performance but demonstrate consider-
able improvement as the dataset size increases.

In Figure 7, we showcase two classes from each of the
‘Scaling’, ‘Easy’, and ‘Poor’ categories to illustrate and
compare their scaling behaviors against real images. We can
see certain ‘Scaling’ classes demonstrate a scaling ability
that surpasses that of real images, emphasizing the potential
utility of synthetic images in these scenarios. We present
additional results for ‘Scaling’ classes in Appendix G.2.

Additionally, we present visualizations of the generated
images from these categories in Figure 5. Our findings
show that text-to-image models adeptly generate images for
‘Scaling’ and ‘Easy’ classes with commendable accuracy
and diversity. However, these models face challenges in ac-
curately rendering the correct concepts for ‘Poor’ classes.
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Figure 6. Scaling ability vs. Performance at 1.3M plot for synthetic data. Each point represents one of the 1,000 ImageNet classes. Classes
are colored by their diversity, recognizability, and their final performance at 4M scale in the three sub-figures respectively. The scaling
ability is measured by k defined in Equation 2. The performances at Y-axis is measured by the validation loss: − log(L), and higher
numbers indicate lower loss and better performance. We choose two classes in each of the ‘Scaling’, ‘Easy’ and ‘Poor’ class categories,
and their detailed scaling behavior and visualization can be found in Figure 5.
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Figure 7. Scaling behavior for classes from ‘Scaling (Red)’, ‘Easy (Blue)’ and ‘Poor (Green)’ categories. Easy classes have a good
initial accuracy with limited amounts of data, while Poor classes do not scale well. Scaling classes scale the best, and can achieve better
performances than real images as the data amount goes up.

5. Scaling on CLIP

5.1. Setup

We investigated the scaling behavior of synthetic data in
CLIP training using the extensive LAION-400M dataset.
The synthetic images were generated using Stable Diffu-
sion. We compare across different CFG scales and choose
the optimal one (1.5) for CLIP training. For evaluation,
we followed the prompt templates from [45] and con-
duct zero-shot classification on ImageNet and 15 different
fine-grained classification datasets, including Food-101 [7],
Stanford Cars [33], Oxford Pets [43] etc. The training
scale begins with 1 million image-text pairs, progressively
scaling up to encompass the full dataset of 3712 million
samples. All models use ViT-B as the backbone with a
patch size of 16, and are trained for 32 epochs across all

2The LAION-400M dataset we used contains slightly less samples
compared to the orignal one because of link rot.

dataset scales. Detailed training hyper-parameters are in
Appendix B. Comparisons on different CFG scales are also
available in Appendix H.

5.2. Scaling Analysis

We evaluated the scaling behavior across three data setups:
(1) only synthetic images, (2) only real images, and (3)
a combination of both synthetic and real images. Dataset
scale here refers to the number of captions. When combin-
ing synthetic and real images for training, we maintained a
consistent text scale throughout. During each training iter-
ation, we randomly selected one image, either real or syn-
thetic, for use. The comparative analysis of these setups,
evaluated on zero-shot classification loss and accuracy on
ImageNet validation set, is depicted in Figure 8.

The analysis revealed that for all three scenarios, zero-
shot classification loss adheres to the power-law relation-
ship when the data amount is under around 64 million, com-
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Table 1. Zero-shot transfer performance on 15 downstream datasets. Models are trained on LAION-400M subsets at various scales from
1M to the total 371M, with images from synthetic, real or synthetic+real. Combining synthetic images with real images can improve
performance, especially when data amount is limited.
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Figure 8. Scaling behavior for CLIP models trained on LAION-
400M subsets of different scales. Models are trained with syn-
thetic, real, or a combination of synthetic and real images, and are
evaluated with ImageNet zero-shot accuracy. Dataset scale here
refers to the number of captions.

pared to the 4 million scale in supervised training. In this
range, the loss and data scale maintain a linear relationship
in logarithmic space. Additionally, while the scaling effi-
ciency (reflected in the slope of the curve) of synthetic data
is lower than that of real data, this discrepancy is less pro-
nounced than in the supervised classifier settings. However,
a noticeable performance gap persists between synthetic
and real images, which is likely attributable to concept mis-
matches between generated images and corresponding texts
in certain classes, as discussed in Section 4.6.

Moreover, our results indicate that combining synthetic
and real images during CLIP training can significantly en-
hance zero-shot performance, particularly when the dataset
is limited. For instance, in training scenarios with fewer
than 10 million image-text pairs, integrating synthetic im-
ages with real data can boost performance by up to 5%.

5.3. Scaling on downstream datasets
We followed the same setup and extended our comparison
to include the scaling behavior of synthetic versus real im-
ages on 15 fine-grained classification datasets, detailed in
Table 1. This analysis indicates a scaling behavior in these
datasets that is consistent with our findings from the Im-
ageNet evaluations. Notably, a combination of synthetic
and real images demonstrated superior performance in most
scenarios, particularly when the total dataset size was un-
der 100 million samples. In cases with extremely limited
data availability, such as with just 1 million samples, train-
ing on synthetic images occasionally yielded better perfor-
mance than with real images, for some certain tasks, such
as Pets [43] and SUN397 [70].

6. Discussion
In this paper, we investigate the scaling laws of synthetic
data in model training and identify three key factors that
significantly influence scaling behavior: the choice of mod-
els, the classifier-free guidance scale, and the selection of
prompts. After optimizing these elements and increasing
the scale of training data, we find that, as expected, syn-
thetic data still does not scale as effectively as real data,
particularly for supervised classification on ImageNet. This
limitation largely stems from the inability of standard text-
to-image models to accurately generate certain concepts.
However, our study also highlights several scenarios where
synthetic data proves advantageous: (1) In certain classes,
synthetic data demonstrates better scaling behavior com-
pared to real data; (2) Synthetic data is particularly effective
when real data is scarce, for instance, in CLIP training with
limited datasets; (3) Models trained on synthetic data may
exhibit superior generalization to out-of-distribution data.
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