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Abstract

Accuracy and computational efficiency are the most
important metrics to Visual Inertial Navigation System
(VINS). The existing VINS algorithms with either high
accuracy or low computational complexity, are difficult
to provide the high precision localization in resource-
constrained devices. To this end, we propose a novel
filter-based VINS framework named SchurVINS (SV),
which could guarantee both high accuracy by building a
complete residual model and low computational complexity
with Schur complement. Technically, we first formulate
the full residual model where Gradient, Hessian and
observation covariance are explicitly modeled. Then Schur
complement is employed to decompose the full model
into ego-motion residual model and landmark residual
model. Finally, Extended Kalman Filter (EKF) update
is implemented in these two models with high efficiency.
Experiments on EuRoC and TUM-VI datasets show that
our method notably outperforms state-of-the-art (SOTA)
methods in both accuracy and computational complexity.
The experimental code of SchurVINS is available at
https://github.com/bytedance/SchurVINS.

1. Introduction

High-precision localization technologies have become
a cornerstone in various industrial fields, playing an
indispensable role particularly in robotics, augmented
reality (AR), and virtual reality (VR). In recent decades,
visual inertial navigation system (VINS) has attracted
significant attentions due to its advantages of low-cost and
ubiquitousness. Composed of only cameras and inertial
measurement units (IMU), the VINS module can provide
six-degree-of-freedom (6-DOF) positioning as accurate as
expensive sensors such as Lidar, and is more competent
in being installed in portable devices like smartphone and
micro aerial vehicles (MAV).

It has been reported that kinds of excellent open-

Figure 1. Comparison of run time, CPU usage and RMSE
evaluated on EuRoC dataset. Different shapes and colors indicate
different methods and precision, respectively.

source VINS algorithms could achieve high-precision pose
estimation, which mainly includes two methodologies:
optimization-based and filter-based methods. Typical
optimization-based methods [4, 17, 21, 24, 33, 34]
model poses and the corresponding observed landmarks
jointly. Benefitting from Schur complement technique [1],
this high-dimensional model with special sparsity could
be solved efficiently by bundle adjustment (BA [32]).
In theory [11], although notable in high-precision of
localization, optimization-based methods may suffer from
high computational complexity. In contrast, main-
stream filter-based methods [2, 7, 10, 30] derived from
MSCKF [22] utilize the left nullspace method to simplify
the residual model. EKF [29] update is then executed
on the simplified residual model to estimate corresponding
poses. Finally, they achieve high efficiency but compromise
accuracy, since landmarks are not optimized with camera
poses jointly and all observations are utilized only once. To
sum up, optimization-based methods are advantageous in
accuracy while filter-based methods are more efficient.

Therefore, it is urgent to develop a framework combines
their high precision and efficiency. As discussed
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above, traditional residual model without simplification
can achieve high accuracy. In spite of this, when
both landmarks and poses are incorporated into the state
vector for joint estimation, the efficiency of EKF-SLAM
significantly decreases [22]. Inspired by the Schur comple-
ment in optimization-based methods, we make full use
of the sparse structure inherent in the high-dimensional
residual model constructed with poses and landmarks to
achieve high efficiency in EKF. Thus, an EKF-based
VINS framework that achieves both high efficiency and
accuracy is presented. In the framework, the equivalent
residual model, consisting of gradient, Hessian and the
corresponding observation covariance, is derived based on
the traditional residual model. Taking the special sparse
structure of Hessian into account, Schur complement is
carried out to break the equivalent residual equation into
two smaller equations: equivalent pose residual model
and equivalent landmark residual model. The equivalent
landmark residual model is able to be further split into a
collection of small equivalent residual models due to its
own sparse structure. Finally, EKF update is implemented
with the derived equivalent residual model to estimate the
poses and corresponding landmarks jointly. As shown in
Fig. 1, the resulting framework outperforms SOTA methods
in latency, computational complexity and accuracy. Our
main contributions are summarized as follows:
• An equivalent residual model is proposed to deal with

hyper high-dimension observations, which consists of
gradient, Hessian and the corresponding observation
covariance. This method is of great generality in EKF
systems.

• A lightweight EKF-based landmark solver is proposed to
estimate position of landmarks with high efficiency.

• A novel EKF-based VINS framework is developed
to achieve ego-motion and landmark estimation
simultaneously with high accuracy and efficiency. The
experimental code is published to benefit community.

2. Related Work
Improving the efficiency and accuracy is an ongoing effort
for VINS algorithms. To date, significant research has been
carried out to reduce the computational complexity and
improve the precision.

Many VINS algorithms focus on efficiency improve-
ment. Some studies reuse the intermediate results of
previous optimization to decrease the amount of repetitive
computation [14–16, 21]. While these approaches may
yield a slight loss in accuracy, the computational process
can be notably accelerated. Some other studies try to
achieve high efficiency through engineering technologies.
In [23, 36], efficient Hessian construction and Schur
complement calculation is employed to improve cache
efficiency and avoid redundant matrix representation. In

[6, 35], variables are declared by single precision instead
of traditional double precision to speed up the algorithm.

Besides efficiency, some studies concentrate on
improving the accuracy. In [12, 13, 20], high accuracy
is guaranteed through improving the consistency in EKF-
based VINS. Some improved MSCKF namely Hybrid
MSCKF [10, 18] (combined MSCKF and EKF-SLAM),
proposed in recent to balance efficiency and accuracy,
model informative landmarks selectively as part of their
state variables to estimate jointly [19]. Some researchers
construct the local bundle adjustment (LBA) running on
other threads to reduce drift [4, 9]. However, LBA requires
massive computational resources which might not be
practical for implementation on small devices.

3. SchurVINS Framework
In this paper, the proposed SchurVINS is developed based
on open-source SVO2.0 [8, 9] with stereo configuration, in
which sliding window based EKF back-end is employed to
replace the original back-end in SVO2.0, and EKF-based
landmark solver is utilized to replace the original landmark
optimizer. The framework of SchurVINS algorithm and
the relationship between SVO and SchurVINS are shown
in Fig. 2.

3.1. State Definition

Normally, for a traditional EKF-based VINS system [7, 10,
20], the basic IMU state is defined as:

xI =
[
G
I qT GpI

T GvI
T bT

a bT
g

]T
(1)

where {G}, {I} and {C} are the global frame, local
frame and camera frame, respectively. GpI and GvI
are the position and velocity of IMU expressed in {G},
respectively. G

I q represents the rotation quaternion from
{I} to {G} (in this paper, quaternion obeys Hamilton
rules [29]). The vectors ba and bg individually represent
the biases of the angular velocity and linear acceleration
measured by the IMU device. And thus the corresponding
EKF error-state of xI is defined as Eq. (2)

x̃I =
[
G
I θ̃

T Gp̃I
T GṽI

T b̃a
T

b̃g
T
]T

(2)

where, G
I θ̃ represents the error-state of G

I q. Except for
quaternion, other states can be used with standard additive
error (e.g. x = x̂ + x̃). Similar to [29], the extended
additive error of quaternion is defined as Eq. (3) (in this
paper, quaternion error is defined in frame {G})

qG
I = δGI q⊗ G

I q̂, δGI q =
[
1 1

2δ
G
I θ̃

]T (3)

Similarly, the extended additive error of rotation matrix
is defined as Eq. (4)

R(GI q) = G
I R, G

I R =
(

I +
[
G
I θ̃

]
×

)
G
I R̂ (4)
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Figure 2. Framework of SchurVINS, which shows the relationship between SVO and SchurVINS. P1 to Pm represent the valid landmarks
of the surrounding environment which are employed to construct residual model.

3.2. Propagation and Augmentation

SchurVINS follows the policy introduced in [29] on state
propagation. The time evolution of IMU states are
described as

G
I
˙̂q = 1

2
G
I q̂⊗ Ω(ω̂), Ω(ω̂) =

(
0 −ω̂T

ω̂ −[ω̂]×

)
(5)

˙̂bg = 03×1,
˙̂ba = 03×1 (6)

G ˙̂pI = GvI ,
G ˙̂vI = G

I R̂â + Gg (7)

where ω̂ = ωm − b̂g and â = am − b̂a are IMU
measurements with biases discarded. where [ω̂]× is skew
symmetric matrix of ω̂. Based on Eqs.(5) to (7), the
linearized continuous dynamics for the error IMU state is
defined as

˙̃xI = Fx̃I + GnI (8)

where nI =
[
na

T naω
T ng

T ngω
T
]T

. Vectors na and
ng represent the Gaussian noise of the accelerometer and
gyroscope measurement, while naω and ngω are the random
walk rate of the accelerometer and gyroscope measurement
biases. F and G are defined as

F =


03×3 03×3 03×3 03×3 −G

I R
03×3 03×3 I3×3 03×3 03×3

−[GI Râ]× 03×3 03×3 −G
I R 03×3

06×3 06×3 06×3 06×3 06×3

 (9)

G =


03×3 03×3 −G

I R3×3 03×3

03×3 03×3 03×3 03×3

−G
I R3×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3

 (10)

4th Runge-Kutta numerical integration method is
employed in Eqs. (3) to (7) for propagating the estimated
IMU state. Based on Eq. (8), the discrete time state
transition matrix Φ and discrete time noise covariance Q
are formulated as follows:

Φ = I15×15 + Fdt+ F2dt2 + F3dt3

Q = ΦGQIGTΦTdt
(11)

where QI = E[nInI
T] is the continuous time noise

covariance matrix of the system. Hence, the formulations
of covariance propagation are built as:

PII ← ΦPIIΦ
T + Q, PIA ← ΦPIA (12)

The covariance P is partitioned as Eq. (13). PII is the
covariance of basic state. PIA and PAI is the covariance
between basic state and augmented state. PAA is covariance
of the augmented state.

P =

[
PII PIA

PT
IA PAA

]
(13)

When a new image arrives, the current IMU pose xAi =[
G
I qT GpI

T
]T

is augmented as well as its covariance. The
augmentation formulations are:

X =
[
xI

T xA0
T xA1

T · · · xAi
T
]T

P←
[

P P21
T

P21 P22

] (14)

where P21 = JaP, P22 = JaPJaT. And Ja is the Jacobian
of x̃Ai with respect to error states, which is defined as
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Figure 3. A schematic of our system for ten landmarks and the
sliding window of size three shown in (a), and the Hessian or
Covariance of different methods shown in (b)-(d). (b) shows our
algorithm in which the covariance of every single landmark is
independent from the entire covariance of poses in the sliding
window. (c) demonstrates the Hessian of both landmarks and
poses in the sliding window. (d) demonstrates traditional hybrid
MSCKF with the Covariance of both selected landmarks and poses
in the sliding window.

follows:

J =

[
I3×3 03×3 03×(9+6N)

03×3 I3×3 03×(9+6N)

]
(15)

3.3. Schur Complement-Based State Update

In the SchurVINS scheme, unlike MSCKF methods [10,
30], the EKF update is conducted based on all the
successfully triangulated landmarks and their observations
in the sliding window, which can eliminate the drift caused
by state propagation in every single image timestamp
interval as much as possible. For single observation, the
reprojection error ri,j of camera measurement is formulated
as:

ri,j = zi,j − ẑi,j
ri,j = Jx,i,jX̃ + Jfj

Gp̃fj
+ ni,j

ẑi,j =
1

CiẐj

[
CiX̂j
Ci Ŷj

] (16)

where ri,j and zi,j are the reprojection error and the
camera measurement of jth landmark at ith pose in
sliding window, respectively, and ẑi,j is the corresponding
theoretical measurement formulated by estimated states.
Cipj =

[
CiX̂j

Ci Ŷj
CiẐj

]
is the landmark coordinate

in camera pose of ith sliding window. ni,j represents
the corresponding measurement standard deviation (or
measurement noise). X̃ and Gp̃fj

are respectively the state
perturbation and landmark position perturbation. Jx,i,j and

Jfi are the Jacobians of residual with respect to system
state and landmark position, respectively. The Jacobians
are defined as follows:

Jx,i,j =
[
02×(15+6i) JA 02×6(N−i−1)

]
JA = Ji,j

[
I
CR̂

T
[Ii p̂fj

]×
G
Ii

R̂
T
−G

Ci
R̂

T
]

Jfj =
[
Ji,j

G
Ci

R̂
T
] (17)

where, for convenience, we define the camera model using
the pinhole model. Therefore, Ji,j is defined as:

Ji,j =
1

CiẐj
2

[
CiẐj 0 −CiX̂j

0 CiẐj −Ci Ŷj

]
(18)

Aiming at all the observations of landmarks in the sliding
window, we can acquire the full residual model by stacking
all the residual equations:

r =
[
Jx Jf

] [ X̃
Gp̃f

]
+ n, n =

[
u, u, u, · · · , u

]T
(19)

where, r and
[
Jx Jf

]
are respectively the stacked residual

and stacked Jacobian. Jx and Jf are jacobian with respect to
states and landmark positions, respectively. n is the stacked
measurement noise, and the measurement covariance of n
is R = diag(u2, u2, · · · , u2), where u is the element of
standard deviation of n.

Unlike [7, 10, 30], in this paper, the residual
model Eq. (19) is projected into the jacobian space[
Jx Jf

]T
for formulating equivalent residual equations,

which consist of gradient and hessian and observation
covariance shown in Eqs. (20) and (21) below. It is
worth highlighting that this strategy is an alternative to QR
decomposition strategy [22] for speeding-up in any EKF
systems with high-dimensional measurements.[

Jx
T

JfT

]
r =

[
JxT

Jf
T

] [
Jx Jf

] [ X̃
GP̃f

]
+ n′ (20)

R′ =

[
JxT

Jf
T

]
R
[
Jx Jf

]
(21)

where n′ and R′ are the equivalent observation noise and
covariance, respectively. Obviously, Eqs. (20) and (21)
could be simplified as:[

Jx
Tr

JfTr

]
︸ ︷︷ ︸b1

b2


=

[
Jx

TJx Jx
TJf

JfTJx JfTJf

]
︸ ︷︷ ︸ C1 C2

C2
T C3



[
X̃

W P̃f

]
+ n′︸︷︷︸n′

1

n′
2


(22)

R′ =

[
Jx

TJx Jx
TJf

JfTJx JfTJf

]
u2 (23)
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Figure 4. The experimental trajectory and point cloud of
SchurVINS on TUM-VI and EuRoC datasets.

Since GP̃f is not included in the states in Eq. (14),
it is necessary to employ Schur complement [28] on
Eqs. (20) and (21) to marginalize the implicit states. To
be straightforward, Eqs. (22) and (23) should be projected
into L space as Eqs. (24) and (25).

L
[

b1

b2

]
= L

[
C1 C2

C2
T C3

] [
X̃

W P̃f

]
+

[
n′′
1

n′′
2

]
(24)

R′′ = L
[

C1 C2

C2
T C3

]
LTu2 =

[
R′′

1 0
0 R′′

2

]
(25)

where
[
n′′T
1 n′′T

2

]T
and R′′ are the derived observation

noise and covariance. And L is defined as:

L =

[
I −C2C−1

3

0 I

]
(26)

Substituting Eq. (26) into Eqs. (24) and (25) yields the
simplified formulations:[

b1 − C2C−1
3 b2

b2

]
= C

[
X̃

W P̃f

]
+

[
n′′
1

n′′
2

]
(27)

R′′ =

[
(C1 − C2C−1

3 CT
2 ) 0

0 C3

]
u2 (28)

where

C =

[
(C1 − C2C−1

3 CT
2 ) 0

CT
2 C3

]
(29)

Eqs. (27) and (28) could be decomposed into Eqs. (30)
to (31) and Eqs. (32) to (33) as follows:[

b1 − C2C−1
3 b2

]
=

[
C1 − C2C−1

3 CT
2

]
X̃ + n′′

1 (30)

R′′
1 =

[
C1 − C2C−1

3 CT
2

]
u2 (31)[

b2 − CT
2 X̃

]
=

[
C3

]
W P̃f + n′′

2 (32)

R′′
2 =

[
C3

]
u2 (33)

Obviously, Eqs. (30) and (31) are equivalent residual
equation and observation noise covariance. They could be
substituted into standard EKF model Eqs. (34) and (37) to
conduct state update directly.

K = PJT(JPJT + R)−1 (34)
∆x = Kr (35)

P = (I−KJ)P(I−KJ)T + KRKT (36)
x = x⊕∆x (37)

3.4. EKF-based Landmark Solver

X̃ can be obtained by substituting Eqs. (30) and (31) into
Eqs. (34) to (37). Then, the resulting X̃ could be substituted
into Eq. (32) to establish the landmark equivalent residual
equation

r1
r2
...

rm

 =


C31

C32

. . .
C3m




W P̃f1
W P̃f2

...
W P̃fm

+ n′′
2 (38)

where C31 , · · · ,C3m are diagonal elements of C3 clarified
in Eq. (22). And the corresponding covariance R′′

2 is:

R′′
2 =


C31u

2

C32u
2

. . .
C3mu2

 (39)

Benefited from the sparsity of the resulting landmark
equivalent residual equation, Eqs. (38) and (39) is split
as a bunch of small independent residual models, shown
as Eq. (40), which allows the EKF update of each landmark
to conduct one by one. This significantly reduces the
computational complexity.[

ri
]
=

[
C3i

] [
W P̃fi

]
+ n′′

2i , i = 1, · · · ,m
R = [C3iu

2]
(40)

3.5. Frontend

Our code implementation makes full use of SVO2.0 as
the front-end of SchurVINS. The integrated components
of SchurVINS include feature alignment and depth-filter
modules from original SVO2.0. Meanwhile, sparse image
alignment module is replaced by the proposed EKF
propagation scheme to guarantee delivering an accurate
pose to feature alignment module. Compared with frame-
to-frame feature tracking[10, 24, 30], the strategy of feature
alignment, implemented by projecting and matching the
co-visible landmarks from local map to frames, achieves
excellent long-term landmark tracking performance due to
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Sequence S/M1 F/O2 MH1 MH2 MH3 MH4 MH5 V11 V12 V13 V21 V22 Avg

OKVIS4[17] M O 0.160 0.220 0.240 0.340 0.470 0.090 0.200 0.240 0.130 0.160 0.225
VINS-mono[24] M O 0.150 0.150 0.220 0.320 0.300 0.079 0.110 0.180 0.080 0.160 0.174
Kimera[26] S O 0.110 0.100 0.160 0.240 0.350 0.050 0.080 0.070 0.080 0.100 0.134
ICE-BA[21] S O 0.090 0.070 0.110 0.160 0.270 0.050 0.050 0.110 0.120 0.090 0.112
SVO2.05[9] S O 0.080 0.080 0.088 0.211 0.231 0.052 0.082 0.073 0.084 0.116 0.109
BASALT[33] S O 0.070 0.060 0.070 0.130 0.110 0.040 0.050 0.100 0.040 0.050 0.072
DM-VIO[34] M O 0.065 0.044 0.097 0.102 0.096 0.048 0.045 0.069 0.029 0.050 0.064

MSCKF4[22] S F 0.420 0.450 0.230 0.370 0.480 0.340 0.200 0.670 0.100 0.160 0.342
ROVIO4[2] M F 0.210 0.250 0.250 0.490 0.520 0.100 0.100 0.140 0.120 0.140 0.232
OpenVINS-45[10]3 S F 0.084 0.084 0.127 0.218 0.360 0.038 0.054 0.050 0.064 0.061 0.114
OpenVINS5[10] S F 0.072 0.143 0.086 0.173 0.247 0.055 0.060 0.059 0.054 0.047 0.096
SV(ours)5 S F 0.049 0.077 0.086 0.125 0.125 0.035 0.053 0.082 0.046 0.075 0.075
1 S and M mean stereo and monocular methods, respectively.
2 F and O mean filter-based and optimization-based methods, respectively.
3 OpenVINS-4 means that the maximum size of the sliding window in OpenVINS is configured to be 4.
4 results taken from [5].
5 evaluated by author manually.

All other results are taken from the respective paper.

Table 1. Accuracy evaluation of various mono and stereo VINS algorithms on EuRoC. In the upper part, we summarize the results for the
optimization-based methods that run sliding window optimization to estimate pose. In the lower part, we evaluate the results of filter-based
methods. Best result in bold, underline is the best result among filter-based methods. SchurVINS achieves the lowest average APE RMSE
in filter-based methods and surpasses the majority of optimization-based methods.

Sequence S/M F/O c1 c2 c3 c4 c5 r1 r2 r3 r4 r5 r6 Avg

VINS-Mono1 M O 0.630 0.950 1.560 0.250 0.770 0.070 0.070 0.110 0.040 0.200 0.080 0.430
OKVIS1 M O 0.330 0.470 0.570 0.260 0.390 0.060 0.110 0.070 0.030 0.070 0.040 0.218
BASALT1 S O 0.340 0.420 0.350 0.210 0.370 0.090 0.070 0.130 0.050 0.130 0.020 0.198
DM-VIO1 M O 0.190 0.470 0.240 0.130 0.160 0.030 0.130 0.090 0.040 0.060 0.020 0.141

ROVIO1 M F 0.470 0.750 0.850 0.130 2.090 0.160 0.330 0.150 0.090 0.120 0.050 0.471
OpenVINS2 S F 0.413 0.322 1.536 0.186 0.644 0.062 0.093 0.079 0.027 0.074 0.020 0.314
SV2 S F 0.329 0.285 0.555 0.162 0.274 0.048 0.160 0.066 0.049 0.054 0.021 0.182
1 results taken from [34].
2 evaluated by author manually.

Table 2. Accuracy evaluation on TUM-VI datasets. c1 to c5 denote corridor1 to corridor5 in TUM-VI datasets. r1 to r6 denote room1 to
room6 in TUM-VI datasets. Best result in bold, underline is the best result among filter-based methods.

the fact that the lost landmarks in short time is capable to be
tracked again. Depth-filter is utilized to execute landmark
position initialization. Once the landmark is initialized
sufficiently, it would be transferred to the proposed EKF-
based landmark solver to proceed estimation with sliding
window jointly.

Based on First In First Out (FIFO) strategy, local map
only maintains the most recent ten keyframes to support
landmark tracking. Since high accuracy is already achieved,
the traditional LBA is no longer necessary, which is
abandoned in the proposed SchurVINS.

3.6. Keyframe Selection

The strategy of keyframe selection is important in VINS
system. There are three strategies to select keyframes in
SchurVINS. If the average parallax between the candidate
frame and the previous keyframe reaches the threshold or
the count of tracked landmarks drops below the certain
threshold, the corresponding frame is defined as keyframe.
Once the keyframe is selected, the FAST corners [31]
are extracted to generate new landmarks via depth-filter
module. Additionally, when the gap in both orientation
and position between the candidate frame and the co-visible
keyframes maintained in the local map is out of the certain
range, the keyframe would be determined, by which the
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Avg CPU Std CPU Speed

DM-VIO 98/1721 -/30 1x/1.76x
BASALT 46/2031 -/46 1x/4.37x
VINS-Mono 45 13 1x
OpenVINS 37 10 1x
OpenVINS-4 32 8 1x
SMSCKF[30] 25 4 1x
SVO2.0 89 20 1x
SVO2.0-wo2 17 6 1x
SV 18 6 1x

1 The 1x evaluation results of DM-VIO and BASALT are the converted results by
author manually.

2 SVO2.0-wo means SVO2.0 without the enabled LBA.

Table 3. Evaluation of CPU overhead for different wellknown
VINS algorithms. GBA, PGO and LC are disabled on
all the mentioned algorithms, with the exception of SVO2.0,
which has the LBA module enabled. Our method provides a
notable improvement in efficiency compared to the SOTA VINS
algorithms.

tracking module could overcome divergence between the
candidate frame and the local map.

4. Experiments
The accuracy and efficiency of SchurVINS algorithms are
evaluated by two experiments. And the additional ablation
experiment is carried out to demonstrate the effectiveness
of the proposed EKF-based landmark solver.

System Configuration: We have developed SchurVINS
based on the open source code repository of SVO2.0,
specifically, svo pro open. The majority of system
parameters are not required to be modified. For high
efficiency, edgelet features, loop closure (LC), pose graph
optimization (PGO), LBA and Global BA (GBA) are
discarded or deactivated. For our experiments below, we
have configured the threshold on the quantity of keyframes
in the local map to a maximum of ten. This local map
mainly maintains co-visible keyframes and landmarks to
achieve feature alignment. In the backend of SchurVINS,
there is a sliding window consists of 2 old keyframes and 2
latest temporal frames. The keyframe strategy is similar to
original SVO2.0.

4.1. Accuracy

The overall accuracy of the mentioned algorithms is
evaluated using Root Mean Square Error (RMSE) on two
wellknown datasets, EuRoC [3] and TUM-VI [27]. The
corresponding experimental trajectory and point cloud of
SchurVINS on TUM-VI and EuRoC datasets are shown
on Fig. 4. To prevent the fluctuation of the algorithm from
causing unreasonable evaluation results, our own evaluation
method is to run the algorithm for 7 rounds, remove the
maximum and minimum values, and then calculate the
average of the remaining results as the evaluation result.
In Tab. 1, our method obtains the lowest average RMSE in
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SparseImageAlign - - 1.35 1.43 - - -
FeatureAlign 1.39 1.39 1.79 1.91 - - -
KLT - - - - 2.63 2.69 2.67
Propagation 0.11 0.11 - - 0.55 0.21 0.18
optimizePose 0.67 0.67 0.48 - 3.16 0.99/4.302 0.34/2.462

optimizeStructure 0.11 0.42 0.07 - - 0.93 0.44
LBA - - - 26.33 - - -

Total time4 3.83 4.11 3.77 9.28 8.53 10.91 7.89
1 denotes SchurVINS with Gauss-Newton optimization-based (GN-based) land-

mark estimation as originally used in SVO2.0.
2 Running time of MSCKF update and SLAM update.
3 It contains some running time of SVO2.0 LBA in asynchronous thread.
4 The total time also contains other modules.

Table 4. Running time evaluation of the main parts of SchurVINS
compared with SVO2.0 and OpenVINS on EuRoC MH01 (mean
time in ms). Note that the different overhead of optimizeStructure
between SVO-NonBA and SchurVINS-GN is primarily attributed
to the variation in the count of feature matches, which is a
consequence of the localization accuracy.

filter-based methods reported on the dataset so far, as well
as outperforms the majority of optimization-based methods.
Besides, our approach obtains the similar accuracy
with wellknown optimization-based method BASALT and
slightly lower accuracy than the recent competitor DM-
VIO. Besides, the well-known VINS algorithms, VINS-
Fusion [24] and SMSCKF [30], are not included in Tab. 1,
since VINS-mono and OpenVINS surpass VINS-Fusion
and SMSCKF in terms of accuracy, respectively [10, 25].
The re-evaluation experiment in Tab. 2 is within expectation
absolutely. It is worth highlighting that, although degrading
in accuracy slightly compared with the two optimization-
based competitors, our method achieves obviously lower
computational complexity than both of them with details in
the next subsection.

4.2. Efficiency

The efficiency evaluations are carried out on Intel i7-9700
(3.00GHZ) desktop platform. Global BA (GBA), pose
graph optimization and loop closure are disabled on all of
the following algorithms. Besides, LBA is only enabled on
the original SVO2.0. The efficiency experiment is divided
into two parts: profiling processor usage and overhead time,
which are reported in Tab. 3 and Tab. 4, respectively.

As demonstrated in Tab. 3, SchurVINS achieves almost
the lowest processor usage compared with all the mentioned
VINS algorithms. Especially, SVO2.0-wo requires similar
cpu usage with SchurVINS, but it suffers from notable
inaccuracy since it is almost pure Visual Odometry
(VO). To thoroughly investigate the underlying reasons
contributing to the efficiency advantages of SchurVINS,
the experiment to meticulously analyze the overhead time
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Sequence MH1 MH2 MH3 MH4 MH5 V11 V12 V13 V21 V22 Avg

SV 0.049 0.077 0.086 0.125 0.125 0.035 0.053 0.082 0.046 0.075 0.075
SV-GN 0.057 0.055 0.097 0.135 0.116 0.038 0.051 0.068 0.037 0.083 0.073
SV-OFF1 0.067 0.103 0.107 0.137 0.143 0.038 0.062 - 0.057 0.255 0.107

1 SV-OFF denotes SchurVINS with disabled EKF-based landmark solver only uses depth-filter to initialize landmark.

Table 5. Ablation Evaluation on EuRoC.

of SchurVINS including the comparison with SVO2.0, the
widely-recognized filter-based OpenVINS and SMSCKF is
carried out in Tab. 4.

In Tab. 4, the optimizeStructure module in SchurVINS
is nearly 3 times faster than that of SchurVINS-GN.
Because our method obtains significant computational
savings by leveraging the intermediate results of Schur
complement. In contrast, SchurVINS-GN reconstructs
problems to estimate landmarks. Compared with SVO2.0-
wo, SchurVINS is faster due to its replacement from
the high-computational SparseImageAlign to propagation
module. In contrast, the optimizeStructure of SVO2.0-
wo is obviously faster than SchurVINS-GN. The reason
is that the latter utilizes almost 4 times measurements
than the former to conduct optimization. Compared with
SVO2.0, the root cause leads to the obviously increased
run time of algorithm is the high computational complexity
of LBA. In consideration of OpenVINS, it is noteworthy
that neither the default configuration nor the configuration
with a maximum size of sliding window of 4 could achieve
that OpenVINS outperforms SchurVINS in efficiency.
What stands out from this analysis is that the update
of SLAM points in OpenVINS requires noticeably more
computational resources compared with the EKF-based
landmark estimation presented in SchurVINS. Illustrated on
Fig. 3, SchurVINS makes full use of the sparsity of problem
than both hybrid MSCKF and optimization-based methods.

4.3. Ablation Study

The experiments above strongly support SchurVINS. And
thus it is necessary to study the impact of different
components of our algorithm. Based on SchurVINS,
we replace or discard the EKF-based landmark solver to
analyse its effectiveness.

As illustrated in Tab. 5, if without either GN-based or
EKF-based landmark solver, SchurVINS cannot sufficiently
limit the global drift. Moreover, in some challenge
scenarios, lack of estimating landmarks simultaneously
in SchurVINS may lead to system divergency. The
comparison between SchurVINS and SchurVINS-GN in
Tab. 5 indicates that both the proposed EKF-based landmark
solver and the GN-based landmark solver belonging to
original SVO2.0 are effective and reliable to guarantee
high precision. In addition, the comparison between
them in Tab. 4 and Tab. 5, illustrates that although

the proposed EKF-based landmark solver leads to slight
accuracy degradation, it could achieve the obviously low
computational complexity. An intuitive explanation for the
decreased accuracy is that our method only uses all the
observations in sliding window for landmark estimation.

5. Conclusions and Future Work
In this paper, we have developed an EKF-based VINS
algorithm, including the novel EKF-based landmark solver,
to achieve 6-DoF estimation with both high efficiency
and accuracy. In particular, the formulated equivalent
residual model consisting of Hessian, Gradient and the
corresponding observation covariance is utilized to estimate
poses and landmarks jointly to guarantee high-precision
positioning. To achieve high efficiency, the equivalent
residual model is decomposed as pose residual model
and landmark residual model by Schur complement to
conduct EKF update respectively. Benefited from the
probabilistic independence of surrounding environment
elements, the resulting landmark residual model are split as
a bunch of small independent residual models for the EKF
update of each landmark, which significantly reduces the
computational complexity. To best of our knowledge, we
are the first to utilize Schur complement factorizing residual
model in EKF-based VINS algorithms for acceleration.
The experiments based on EuRoC and TUM-VI datasets
demonstrate that our approach notably outperforms the
overall EKF-based methods [10, 30] and the majority
of optimization-based methods in both accuracy and
efficiency. Besides, our approach requires almost less than
50% computational resource than the SOTA optimization-
based methods [33, 34] with comparable accuracy. In
the meanwhile, the ablation studies clearly demonstrate
that our proposed EKF-based landmark solver is not only
significantly efficient but also capable of ensuring high
accuracy.

In future work, we will focus on the local map refinement
in SchurVINS to explore more accuracy.

6. Acknowledgment
We would like to thank Taoran Chen, Chen Chen, and
Jiatong Li in ByteDance as well as Zihuan Cheng in SCUT
for their kind help. Moreover, I (Frank) would like to deeply
thank my wife, Linan Guo.

17971



References
[1] Sameer Agarwal, Noah Snavely, Steven M Seitz, and

Richard Szeliski. Bundle adjustment in the large. In
Computer Vision–ECCV 2010: 11th European Conference
on Computer Vision, Heraklion, Crete, Greece, September
5-11, 2010, Proceedings, Part II 11, pages 29–42. Springer,
2010. 1

[2] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland
Siegwart. Robust visual inertial odometry using a direct ekf-
based approach. In 2015 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 298–304.
IEEE, 2015. 1, 6

[3] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas
Schneider, Joern Rehder, Sammy Omari, Markus W
Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics
Research, 35(10):1157–1163, 2016. 7

[4] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez,
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