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Abstract

Out-of-Distribution (OOD) detection aims to address the
excessive confidence prediction by neural networks by trig-
gering an alert when the input sample deviates significantly
from the training distribution (in-distribution), indicating
that the output may not be reliable. Current OOD detec-
tion approaches explore all kinds of cues to identify OOD
data, such as finding irregular patterns in the feature space,
logit space, gradient space, or the raw image space. Sur-
prisingly, we observe a linear trend between the OOD score
produced by current OOD detection algorithms and the net-
work features on several datasets. We conduct a thorough
investigation, theoretically and empirically, to analyze and
understand the meaning of such a linear trend in OOD de-
tection. This paper proposes a Robust Test-time Linear
method (RTL) to utilize such linear trends like a ‘free lunch’
when we have a batch of data to perform OOD detection.
By using a simple linear regression as a test time adap-
tation, we can make a more precise OOD prediction. We
further propose an online variant of the proposed method,
which achieves promising performance and is more practi-
cal for real applications. Theoretical analysis is given to
prove the effectiveness of our methods. Extensive experi-
ments on several OOD datasets show the efficacy of RTL
for OOD detection tasks, significantly improving the re-
sults of base OOD detectors. Project will be available at
https://github.com/kfan21/RTL.

1. Introduction
Deep neural networks are renowned for their exceptional
performance on image recognition tasks [4, 7, 13, 29].
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Figure 1. Illustration of our RTL. Blue/orange points denote
in/out-of-distribution features. The probability density plot of the
OOD score distributions of in and out-of-distribution samples are
different. We fit a linear regression between the OOD scores and
features as a robust test-time learning method. Then we calibrate
the OOD scores to get better OOD predictions.

Nevertheless, the reliability of model predictions is con-
tingent on the input data conforming to the distribution
of the training dataset. In situations where the input data
significantly deviates from the training data, the neural
networks tend to make excessively overconfident predic-
tions [25, 32], thereby impairing the dependability of the
deep model in real-world applications. To address this is-
sue, several techniques [8, 11, 14, 18, 19, 21, 27, 31] have
been proposed to enable trained models to identify irregular
out-of-distribution input data and abstain from generating
predictions.

Generally, the task of detecting out-of-distribution
(OOD) data typically involves discerning a mixture of test
data comprising both in-distribution and data from a dis-
tinct dataset [8, 11, 17–19]. Currently, sophisticated algo-
rithms, denoted as f , are predominantly used to derive an
(unnormalized) OOD score, s ∈ R, that indicates the like-
lihood of the data being OOD. Subsequently, a threshold is
applied to the score. To evaluate the efficacy of OOD detec-
tion algorithms, all test data must be gathered to determine
the threshold and compute false positive rate at 95% recall
(FPR95) and area under the receiver operating characteristic
curve (AUROC).

The intuition of our method is illustrated in Fig. 1. Al-
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though OOD detection algorithms typically rely on com-
plex calculations and sophisticated models, we have dis-
covered a surprising linear relationship between the esti-
mated OOD score s and the network feature x before the
final fully-connected layers, regardless of the selection of
the algorithm f . To establish the validity of this trend, we
conducted experiments in Sec. 3.2 using various OOD de-
tection algorithms and benchmark datasets, including iNat-
uralist and SUN. We found that the linear trend holds across
a wide range of scenarios and datasets, indicating its broad
applicability. To further confirm the significance of this re-
lationship, we conducted canonical-correlation analysis to
measure the strength of the linear correlation between the
features and OOD scores. Our analysis shows a strong cor-
relation coefficient, providing the evidence of the relation-
ship’s significance. Overall, our findings provide a valu-
able insight into the nature of OOD detection algorithms
and may inform the development of more efficient and ac-
curate models for this task.

We present a novel approach, Robust Test-Time Linear
method (RTL) for out-of-distribution detection, to explore
the influence of linear trends on OOD benchmarks and en-
hance OOD detection performance. Our RTL utilizes the
linear trend as a ”free lunch” to rectify the OOD score di-
rectly from input features, with the OOD score initialized
using a base OOD detection algorithm. Our experiments
demonstrate that this approach significantly improves the
performance of various OOD detection algorithms, includ-
ing those that were originally weak in detecting OOD sam-
ples. Essentially, RTL requires a batch of testing data for
OOD detection, classifying it as test-time adaptation. How-
ever, this setting does not diminish the advantages of RTL
over previous OOD methods, as calculating FPR95 and AU-
ROC also demands a batch of testing data for computation.
Critically, RTL can be easily implemented as an online ver-
sion, making it more practical for real-world applications.

Furthermore, To address potential issues of errors intro-
duced by the base OOD detection algorithm, we propose an
improved version of our method, RTL++, which reduces the
impact of these errors. We provide theoretical analysis to re-
veal the insights of our RTL improving the base OOD meth-
ods. We show that with a moderate error strength, the wrong
prediction of these base OOD detectors can be rectified.
Empirically, we conduct extensive experiments to demon-
strate the effectiveness of RTL across different datasets and
base OOD detection algorithms. In summary, RTL is a valu-
able addition to OOD detection methods, offering a robust
and practical solution to enhance detection performance.

To sum up, we identify an important property of OOD
benchmarks and propose a novel approach that effectively
leverages this property. Through extensive experiments on
various datasets and base OOD detection algorithms, we
demonstrate the effectiveness of our approach. Specifically,

we make the following contributions:
• We investigate the presence of a linear trend in current

OOD detection benchmarks, where the estimated OOD
score is linearly related to the network features before the
final fully-connected layer, independent of the OOD de-
tection algorithm employed.

• We propose a straightforward and effective test-time
adaptation approach – RTL, that utilizes this linear trend.
To improve its robustness, we introduce several variants
of RTL, including RTL++, and an online version of RTL
for improved practicality.

• We provide theoretical analysis that illuminates the bene-
fits of utilizing the linear trend for OOD detection in test
time, providing insights that can inform future research in
the field.

2. Related Work
Out-Of-Distribution Detection. In [8], a method for de-
tecting out-of-distribution (OOD) examples using the max-
imum softmax probability (MSP) of pre-trained neural net-
works was proposed, analogous to the detection of misclas-
sified examples. ODIN [19] improved MSP using input pre-
processing inspired by the idea of adversarial examples [6].
Lee et al. [18] introduced a Mahalanobis distance-based
method for OOD detection, which achieved better results
than MSP but required hyperparameter optimization on a
validation or in-distribution set. To address this issue, Liu
et al. [21] proposed an energy-based score as a parameter-
free OOD detector. Further, Huang et al. [14] introduced
GradNorm, which uses the gradient information to mini-
mize the KL discrepancy between the predicted posterior
and the uniform distribution. These post hoc OOD detec-
tion methods [41] can be applied to any pre-trained classifi-
cation network trained with cross entropy loss. In contrast,
Outlier Exposure (OE) methods [2, 9, 22] directly train an
OOD detector using an auxiliary OOD dataset.
Test-Time Adaptation (TTA). TTA is a method introduced
in [15, 30, 34] to address the distributional shift problem
between training and testing data that can cause deep mod-
els to perform poorly on test data from an unseen distribu-
tion. During testing, TTA adapts the trained model to the
novel data by updating its parameters with a mini-batch or
full unlabeled test data. Batch-norm parameters/statistics
are updated to fit the testing data [12, 34], or the prediction
inconsistency [44] between different data augmentations of
a single data point is minimized. TTA is related to but dif-
ferent from Transductive learning (TL), where models are
trained jointly on both the train and test data (without test-
ing labels). In contrast, TTA updates the model with the
unlabeled test data at test time, as in [34]. Conceptually,
our approach follows the TTA setup since we have access
to the mini-batch or full test data. However, we differ in
our focus on using the inferred OOD signal at test time and
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the linear relationship between features and OOD scores to
improve OOD detection, rather than adapting the model to
the test data. This distinguishes our approach from TTA.
Outlier Detection. Outlier detection [26] is a pressing
problem as sampled data is often contaminated with out-
liers. OOD detectors usually process a single test sample
at a time, whereas outlier detectors assume accessibility to
all the test samples. However, in the test-time adaptation
setup for evaluating OOD detection, the two settings be-
come similar. Therefore, we also compare our algorithms
with some outlier detection methods, such as Local Outlier
Factor [1], which identifies outliers as samples with sub-
stantially lower density than their neighbors, and Isolation
Forest [20], which employs decision trees to detect outliers.

3. Methodology
Problem Setup. In image classification tasks, one typi-
cally learns a mapping f : X → Y from image space
X ⊆ Rm to label space Y = {1, 2, · · · , C} with a given
training set D = {(xi, yi)}ni=1. Then at inference, the
predicted label can be achieved according to the maximum
score ŷ = argmaxj fj (x).

In general, OOD detection involves using continuous
OOD scores to identify instances not belonging to these la-
bels by setting a threshold below which they are rejected.
For this purpose, we use an OOD score estimator S(x) for
each x and manually set a threshold γ.

g(x) =

{
in, if S(x) ≥ γ,

out, if S(x) < γ.
(1)

This paper addresses OOD detection for a group of data,
either with full access to all test data like TTA, or with a
batch of test data, similar to online TTA. To this end, we
propose a Robust Test-time Linear method (RTL) that lever-
ages OOD scores generated by a fixed pretrained network
with full or batch test data. Importantly, our approach does
not require access to the training set and incurs low learn-
ing cost. In Table 1, we compare our TTA OOD detection
method with others. OOD methods can be broadly classi-
fied as either post hoc or outlier exposure. Post hoc OOD
can be applied to any network at little extra cost, while out-
lier exposure requires both in-distribution and OOD data to
train a network. During test time, both methods are applied
to samples individually.

Our TTA OOD method only requires additional access
to batches of test data in addition to post hoc OOD. This
is a reasonable assumption, as in- and out-of-distribution
data may come simultaneously. Furthermore, unlike outlier
exposure methods, our TTA OOD method does not require
retraining the entire network, which can be prohibitively ex-
pensive, especially when collecting in-distribution data is
difficult or the amount of data is large.

Access to train data Access to test dataset Cost

Post hoc OOD No No Low
Outlier Exposure Yes No High
Outlier Detection Yes Yes High
TTA OOD No Yes Low

Table 1. The difference between several settings.

In addition, we examine outlier detection methods,
which detect samples that deviate significantly from the ma-
jority by observing all samples. However, this approach is
expensive and requires access to both the training and test
datasets. Our TTA OOD method, on the other hand, only
needs access to the test set. Furthermore, when OOD data
constitutes a significant proportion of the dataset, outlier de-
tection methods may fail due to assumptions being violated.

3.1. Baselines

Here we briefly review several recent OOD score methods
before presenting our contributions in next sections.
MSP. It [8] is defined as OOD score given by a trained net-
work fj(·) (for class label j).

SMSP(x) :=
exp (fŷ(x)/T )∑C
j=1 exp (fj(x)/T )

, (2)

where T is the temperature coefficient to make the soft-
max prediction sharp, while Vanilla MSP [8] did not include
temperature scaling.
Energy. Energy-based model (EBM) [16] aims to find a
suitable energy function E (x, y) defined on X × Y , and
model the posterior probability by the Gibbs distribution

p(y | x) = exp(−E(x, y)/T )

exp(−E(x)/T )
. (3)

The Helmholtz free energy E (x) of a given data point x
can be expressed as the negative of the log partition function

E(x) = −T · log
∫
y′
exp(−E (x, y′) /T ). (4)

The Helmholtz free energy for x ∼ Pin pushes down dur-
ing the training process, and therefore can serve as an al-
ternative metric for OOD detection [21]. Direct connecting
Helmholtz free energy with softmax probability, we get an-
other baseline OOD detector,

Senergy(x) :=−E(x) = T · log
C∑
i

exp(fi(x)/T ) (5)

KL. Samples from the in-distribution are expected to have
low prediction entropy, whereas OOD samples, which are
not well-defined in the training label space, should have
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Figure 2. Visualization of Canonical-Correlation Analysis of Ima-
geNet and two OOD datasets’ features and OOD scores.

high predictive entropy. To address this, [17] proposed us-
ing the Kullback-Leibler (KL) divergence between the soft-
max output and a uniform distribution to improve OOD
scoring.

SKL(x) :=DKL (u∥SoftMax(f(x))) (6)

ODIN. It [19] was inspired by adversarial attacks [6] and
found that including adversarially perturbed inputs during
training improves the final OOD scoring. ODIN generates
a perturbed image by first taking an input image x and its
predicted softmax probability,

x̃ = x− ε · sign (−∇x logSMSP(x)) , (7)

Then perturbed image x̃ produces OOD score as,

SODIN(x) = SMSP(x̃). (8)

3.2. Robust Test-Time Linear Method

Discussion of the linear relationship We will demonstrate
a linear relationship between the extracted features and in-
ferred scores during test time. To test whether there is a
correlation, we use canonical-correlation analysis [10] be-
tween the features and OOD scores. Specifically, given an
in-distribution dataset and a distinct dataset for OOD data,
we empirically observe that a simple linear relationship ex-
ists between the features extracted from the neural network
and the inferred OOD scores by those base OOD detection
algorithms, as shown in Fig. 2. Scatter plots between the
first pair of canonical components show that there is a rough
linear relation between the features and scores. Therefore,
although those OOD scores are from different scoring al-
gorithms, the input features and OOD scores are well fitted
with a linear regression.

We think that the above four OOD scores are likely to be
sub-optimal because they only deal with a single sample and
ignore the interaction between samples. In this paper, we
show that with a mini-batch (full) test data in hand, we can
improve the baseline OOD methods significantly. Despite
the presence of some inaccurately inferred OOD scores due
to model over-confidence, training a linear regression at test
time can rectify these scores.

Mathematical Formulation Let us denote the (un-
normalized) OOD score of an input image as s : =S(x).
Due to the linear relationship between features and OOD
scores, we assume a linear relation between the OOD score
s and the input feature z extracted by the trained model:

s = z⊤β + ε. (9)

Where z⊤β determines whether the image x is in or out-
of-distribution samples while ε is the error introduced by
OOD detectors. We aim to estimate the β from the feature-
score pair (zi, si); hence we can get a more precise estima-
tion of z⊤i β.

We propose two test-time linear training methods that
differ in the type of error they account for. The first for
instances that are scored with moderate strength of errors
and the second for samples with too much error to train a
linear model directly.
RTL (Robust Test-Time Linear Method). When linear re-
lation is recognizable, a simple linear regression model is
sufficient to estimate the β value such that:

β̂ = argmin
β

n∑
i=1

(si − z⊤i β)
2, (10)

which yields the closed-form solution

β̂ = (Z⊤Z)†Z⊤S, (11)

where Z and S are the stack of zi and si by rows and (·)† re-
fer to Moore-Penrose inverse. With this estimator, we could
directly provide our OOD estimator for instance i as:

ŝours = z⊤i β̂. (12)

RTL++. We further consider the challenging case that
OOD scoring method does not work good enough. And this
results in large errors of inferred OOD scores. Thus, we can
inject the outlier detection concept to improve our RTL by
removing those data scores before estimating β.

Formally, we present an improved Robust Test-Time
Linear Method (RTL++). Specifically, we introduce an ex-
plicit data-dependent variable γi to model this small amount
of large error, such that

si = z⊤i β + γi + εi. (13)

The |γ| will be very sparse since the just a few samples
will have such huge error, while |γi| will be relatively large
when it is not equal to 0. The γ is called incidental param-
eter, originated from statistics [24] and have applications in
many topics [5, 28, 35–38]. We would like to find samples
with zero γi to fit β. Based on this intuition, we design the
following optimization problem:

min
β,γ

n∑
i=1

[
1

2
(si − z⊤i β − γi)

2 + λ|γi|
]
. (14)
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Algorithm 1: Subser selection of RTL++

1 Input: features zi and OOD score si, 1 ≤ i ≤ n,
2 Normalize zi to unit Euclidean norm
3 Apply dimensionality reduction on zi to d ≪ n
4 Stack zi and si by rows to Z and S

5 Calculate projection Z̃ = I− Z(Z⊤Z)†Z⊤ and
S̃ = Z̃S

6 Solving Lasso γ̂ = argminγ
1
2∥S̃− Z̃γ∥22 + λ∥γ∥1

7 Select a subset Ẑ with the lowest p% of |γ̂i|.
8 return Ẑ

The ℓ1 penalty imposed on γ encourages sparse solution.
When all γi are resolved, we can directly get the closed-
form estimation of β as β̂ = (Z⊤Z)†Z⊤(S − γ). Substi-
tuting it into the objective and further defining that Z̃ =
I − Z(Z⊤Z)†Z⊤ and S̃ = Z̃S, we can simplify the objec-
tive as

min
γ

1

2
∥S̃− Z̃γ∥22 + λ∥γ∥1, (15)

which is a standard LASSO problem for γ. We can then take
a proper λ to solve γ, as well as the most reliable subset to
estimate β as

β̂ = (Z⊤
subZsub)

†Z⊤
subSsub, (16)

where (·)sub means select a subset of rows to form a new
matrix, and we specifically wrote down the selection pro-
cess in Algorithm 1.

3.3. Theoretical Analysis

This section will explain how our RTL improves the base
OOD detectors. The core of our analysis is that when the
error strength of base OOD detector is moderate, the wrong
prediction can be rectified. We first regard OOD detec-
tion as a ranking problem. Suppose there exist a ground-
truth OOD score s = z⊤β perfectly rank in and out-of-
distribution samples z⊤inβ > z⊤outβ. If the error distorted
the ranking

z⊤inβ + εin < z⊤outβ + εout, (17)

it means OOD detectors make mistakes. Our method is
based on this insight: the errors of scores can be reduced
to a neglected level for ranking when we have enough sam-
ples. Although z⊤β̂ can be different from z⊤β, it will be
able to recover the ranking of ID/OOD samples.

Let si, zi and ϵi denote the predicted OOD score, ex-
tracted feature and prediction error of the ith example, we
have si = z⊤i β + ϵi, where ϵi are independent and identi-
cally distributed (i.i.d.) among different samples. We fur-
ther assume that:

(C1: Ground-Truth Ranking) The ground-truth score can
perfectly rank the ID and OOD samples with a margin t >
0, which means z⊤inβ > z⊤outβ + t for all samples.
(C2: Sub-Gaussian Error) The error ϵ follow a sub-Gaussian
distribution SubGau(0, ν2) with zero mean and parameters
ν2, where ν is not too larege.

Note that C2 is a weak assumption for detectors. Denote
β̂ as the fitted β of linear regression. We have

Theorem 1 (Ranking Recovery of RTL). Denote r as the
rank of the feature matrix Z and n as the sample number. If
the ratio of the margin to error strength t/ν follow:

t/ν > min{2
√
2log(n/δ), 2

√
2r log(2r/δ)},

with at least probability 1−δ, z⊤i β̂ rank all ID samples over
OOD samples.

Please refer to our supplementary for the full proof and ex-
tensive experiments. We conclude that if the error strength
ν is kept at a moderate level, even if the base OOD detec-
tor could produce predictions that deviate from the ground
truth, our RTL can reduce the error for ranking and perfectly
detect in and out-of-distribution samples.

It is worth noting that the second part of the bound t/ν >
2
√

2r log(2r/δ) is irrelevant to the sample numbers n.
Since r is always bounded by the dimension of feature space
d, this bound is effective when n → ∞. Thus no matter how
many samples we get, the model can perfectly rectify OOD
scores with high probability. Since 2

√
2r log(2r/δ) is a

monotone increasing function, the smaller the rank r, the
more efficient our RTL. Note that most deep learning mod-
els’ features lie on a low-dimensional manifold of feature
spaces or can be determined by a low-dimensional mani-
fold, we can expect r ≪ d for most networks. For example,
in Fig. 4, the ImageNet and iNaturalist features can roughly
be determined by two-dimensional PCA features.

For RTL++ cases, the model assume another error distri-
bution

si = z⊤i β + γi + εi, (18)

due to the sparsity and relatively large scale of γi, we can
regard γi + εi follows a mixture of two Sub-Gaussian dis-
tribution

γi + εi ∼ π1SubGau(0, ν21) + π2SubGau(0, ν22), (19)

where π1 + π2 = 1 and π2 is very small. The two Sub-
Gaussian errors have rather different scales ν2 ≫ ν1. Direct
use of RTL will be difficult since ν2 determines the error
strength due to the following lemma:

Lemma 2. The mixture of two Sub-Gaussian of
SubGau(0, a2) and SubGau(0, b2) is still a Guassian
Mixture with parameter max{a2, b2}
Since RTL++ first filters those samples with large errors and
then applies linear regression, the analysis of RTL can be
applied.
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Figure 3. Kernel density estimate plot of the in- and out-of-
distribution samples.

3.4. Online OOD Detection

We propose a methodology that assumes the availability of
the full set of test instances. However, we acknowledge that
in practice, accessing the entire test set may not be feasible.
Therefore, we also provide an online version, inspired by
previous test-time adaptation works [15, 30, 34].

In the online version, test data arrives in a stream, batch
by batch. We derive a batch-wise version of our RTL, which
updates the linear model iteratively with the current and
past mini-batch data. To estimate β online, we use the wis-
dom of processing two mini-batch data pairs (Z1,S1) and
(Z2,S2). We then obtain two block matrices,

Z =

[
Z1

Z2

]
, S =

[
S1

S2

]
.

Recall that β̂ = (Z⊤Z)†Z⊤S, then we can get

Z⊤Z =
[
Z⊤

1 Z⊤
2

] [ Z1

Z2

]
= Z⊤

1 Z1 + Z⊤
2 Z2, (20)

Z⊤S =
[
Z⊤

1 Z⊤
2

] [ S1

S2

]
= Z⊤

1 S1 + Z⊤
2 S2. (21)

When more mini-batch data pairs (Zi,Si) come, we thus
can update Z⊤Z and Z⊤S.

4. Experiment Results
Experiment Setting. We conduct experiments on both
small scale datasets and large scale datasets. For small
scale datasets, we conduct experiments on the CIFAR-10
and CIFAR-100 datasets. Although CIFAR datasets con-
tain easy classification images, it is hard for OOD detection
due to its low resolution, especially on CIFAR-100. We use
a Wide ResNet [43] trained on CIFAR-10 and CIFAR-100.
We use the CIFAR test set as in-distribution data and sample
2000 images from six different out-of-distribution datasets
including Textures [3], SVHN [23], Places365 [45], LSUN-
Crop [42], LSUN-Resize [42], and iSUN [40] following the
setting in [21]. For large scale OOD detection, we use the
ImageNet-1k benchmark following [14]. We use the vali-
dation set of ImageNet-1k as the in-distribution data, which
consists of 50000 natural images with 1000 categories. The

out-of-distribution data consist of four datasets, iNatural-
ist [33], SUN [39], Places [45] and Textures [3].

4.1. Visualization

Given an in-distribution dataset, and we sample the OOD
data from a specific dataset. We empirically show that the
OOD features behave normally in Fig. 4. We visualize the
features with PCA. The OOD features scatter normally in
the space, like different classes of data from in-distribution
data. This is counter-intuitive, since OOD feature do not
disperse in the void of the ID sample like common assump-
tion of outliers. What’s more, it is worth noting that OOD
data may not just account for a small portion of data. In our
example, the test including 50000 in-distribution samples
and 10000 OOD samples, which make is extremely hard to
apply outlier detection methods.

We draw OOD scores of in-distribution and out-of-
distribution data using popular baseline OOD detection al-
gorithms as in Fig. 3. This suggests that the OOD score dis-
tributions are not disjoint between in-distribution and out-
of-distribution data. Hence they cannot produce a perfect
OOD detection. However, we can still observe the different
tendency for two kinds of data.

4.2. Small-scale OOD Experiments

Due to randomness, we repeat 10 times trials and report the
average results. We set temperature T = 1 for all detectors.
For ODIN, noise level is set to ϵ = 0.0024. We set p = 80
in Algorithm 1. Besides those popular base OOD detec-
tors, we also compare our algorithm with GradNorm [14]
and three traditional methods: Gaussian Mixture Models
(GMM), Local Outlier Factor (LOF) and Isolation Forest
(IF).

The results are shown in Tab. 2, where results show
that our test time RTL can improve the base OOD detection
methods in almost all cases. Moreover, results in Tab. 2
show that our robust method RTL++ can boost the per-
formance further. Our RTL++ outperforms RTL by 7.9%
FPR95 and 2.56% AUROC on CIFAR-100 when using
MSP as our base scoring function. Consistent improve-
ments can be observed when using other scoring functions,
such as Energy, ODIN and KL. We can also see that our
RTL and RTL++ outperforms the other transductive meth-

Figure 4. Visualization of features from ImageNet and two OOD
datasets. The dimension of features is reduced to two by PCA.
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In Dataset CIFAR-10 CIFAR-100
Metric FPR95↓ AUROC↑ FPR95↓ AUROC↑

Softmax 51.37 90.87 80.21 75.67
+RTL 12.30 97.01 51.63 84.50
+RTL++ 13.50 96.42 43.73 87.06

Energy 32.98 91.88 73.46 79.67
+RTL 18.01 94.96 60.63 81.15
+RTL++ 16.14 95.64 58.06 82.43

ODIN 35.77 90.96 74.55 77.23
+RTL 37.94 86.10 51.87 81.52
+RTL++ 35.79 87.24 51.73 82.74

KL 32.98 91.88 73.46 79.67
+RTL 18.01 94.96 60.63 81.15
+RTL++ 16.12 95.64 58.06 82.43

IF 79.96 62.47 80.91 66.15
LOF 95.81 56.45 98.23 43.32
GMM 87.70 58.28 94.06 69.96
GradNorm 59.84 71.65 86.55 57.56

Table 2. Results on CIFAR. The best and second best results are
highlighted by fonts of text bold and underlined, respectively.

ods IF, LOF and GMM and an advanced OOD method
GradNorm. As explained in Sec. 4.1, the assumption of
outlier detection is violated and IF, LOF and GMM fails. It
is worth noting that our algorithm perform even competitive
with Outlier Exposure [9] and fine-tuned energy score [21],
which utilize an extra outlier dataset to direct train the net-
work to distinguish in- and out-of-distribution data.

4.3. Large-scale OOD Experiments

Google BiT-S models of ResNetV2-101 trained on
ImageNet-1k is used as the feature extractor. For MSP, en-
ergy score and KL divergence, we set temperature T = 1.
For ODIN, temperature is set to T = 1000, with noise level
of ε = 0 since FGSM will not improve the results. We set
p = 95 for MSP and ODIN, p = 90 for energy score and
KL divergence in RTL++ in Algorithm 1.

The results are shown in Tab. 3, where every OOD
set are test separately and the mean results are calculated.
The results show that our algorithms achieve consistent
improvement over the four baseline OOD detectors. For
MSP, our linear revision improve FPR95 from 76.96% to
45.97%, about the 30.99% of the improvement, and out-
perform GradNorm by 8.73%. For AUROC, the linear cal-
ibrated MSP produce the best result. In most experiments
our RTL++ can bring further gain, which proves the efficacy
of filtering large error prediction.

4.4. Online Test-Time Adaptation

In the previous experiments, the full test set is accessed dur-
ing OOD detection, which is a special case of online test-
time learning [15, 30, 34], i.e. the batch size equals the total
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Figure 5. The ROC curves of baseline OOD detector and RTL.

number of test data. Here we further check how the perfor-
mance varies when the batch size gets smaller, i.e. the test
time data comes in stream. We compare our online RTL
with those popular base OOD methods in this online setup
in Tab. 4. From the results, we can see that our online
RTL still consistently outperforms the base OOD detection
methods, only except ODIN on CIFAR-10, demonstrating
the efficacy of our online RTL. More importantly, the re-
sults of our online RTL are close to the results in Tab. 2,
where the full test data set was accessed during model train-
ing. These nearly identical results clearly indicates that the
effectiveness of our proposed method is not from the access
of the full test set, but from the effective test-time learning
as those TTA methods [15, 30, 34].

4.5. Ablation Study

ROC curves analysis of RTL We visualize the receiver
operating characteristic curve to illustrate the effectiveness
of our proposed RTL in Fig. 5. The ROC curves of RTL
can wrap up the curves of baseline OOD detectors, provid-
ing a better AUROC. What’s more, intersection points of a
horizontal line with the two curves indicate our RTL give
smaller false positive rate when the true positive rates are
kept at the same level.
Effect of Subset Selection of RTL++ We plot the perfor-
mance improvement of our RTL++ as a function of the per-
centile of chosen subset on CIFAR-100 over two base OOD
scoring metrics MSP and ODIN, as shown in Fig. 6. The
percentile of chosen data varies from 0.5 to 1, with step
0.05. When percentile is 1, it is equivalent to our RTL.
No matter with MSP or ODIN, when we decrease the per-
centile, the AUROC and FPR95 improve first, which means
our RTL++ selects proper subsets for learning the regres-
sion, eliminating the samples with large error. When we
further decrease the percentile, the performances start get-
ting worse as the training data is too limited to learn a good
regressor.
Batch Size Effect of Online RTL We check how the per-
formance of our online RTL varies upon batch size num-
bers. We run our online RTL with MSP in Tab. 5 by vary-
ing the batch size from 32 to full on CIFAR OOD bench-
marks. From the results we can see that the performance of
our online RTL is insensitive to batch size number. The last
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OOD Dataset iNaturalist SUN Places Textures Average
Metric FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95↓ AUROC↑

IF 88.58 61.60 90.12 57.85 93.45 50.24 54.34 87.76 81.62 64.36
LOF 95.16 51.57 94.89 52.27 93.05 56.37 82.02 65.39 91.28 56.40
GMM 87.90 68.43 89.99 63.29 96.85 52.83 95.37 35.34 92.53 54.97
GradNorm 50.03 90.33 46.48 89.03 60.86 84.82 61.42 81.07 54.70 86.31

MSP 63.69 87.59 79.98 78.34 81.44 76.76 82.73 74.45 76.96 79.29
+RTL 21.03 94.98 50.68 87.14 57.22 84.48 58.48 80.24 46.85 86.71
+RTL++ 18.76 95.60 48.40 88.70 56.72 85.32 59.98 79.91 45.97 87.38

Energy 64.91 88.48 65.33 85.32 73.02 81.37 80.87 75.79 71.03 82.74
+RTL 45.48 91.04 52.06 88.68 62.68 84.35 69.49 75.39 57.43 84.87
+RTL++ 41.57 92.03 49.84 89.32 62.37 84.05 70.44 76.52 56.06 85.48

KL 64.91 88.48 65.32 85.31 73.02 81.37 80.87 75.79 71.03 82.74
+RTL 45.48 91.04 52.06 88.68 62.68 84.35 69.49 75.39 57.43 84.87
+RTL++ 41.57 92.03 49.84 89.32 62.37 84.05 70.44 76.52 56.06 85.48

ODIN 62.69 89.36 71.67 83.92 76.27 80.67 81.31 76.30 72.99 82.56
+RTL 35.27 92.87 51.59 88.40 60.71 84.44 66.72 76.78 53.57 85.62
+RTL++ 36.10 92.78 51.87 88.23 61.35 84.28 67.06 76.58 54.09 85.47

Table 3. Results on ImageNet-1k and iNaturalist/SUN/Places/Textures datasets. The best and second-best results are highlighted in bold
and underlined font, respectively.

In Dataset CIFAR-10 CIFAR-100
Metric Size FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 51.37 90.87 80.21 75.67
+Online RTL 15.06 96.05 55.84 83.31

Energy 32.98 91.88 73.46 79.67
+Online RTL 18.57 94.89 62.00 80.91

ODIN 35.77 90.96 74.55 77.23
+Online RTL 40.30 85.15 54.66 80.24

KL 32.98 91.88 73.46 79.67
+Online RTL 18.57 94.89 62.00 80.91

Table 4. Results on CIFAR under different OOD detector.

In Dataset CIFAR-10 CIFAR-100
Batch Size FPR95↓ AUROC↑ FPR95↓ AUROC↑

Raw Softmax 51.37 90.87 80.21 75.67
32 15.06 96.05 55.84 83.31
64 15.04 96.07 55.77 83.34
128 14.99 96.10 55.64 83.38
256 14.79 96.24 55.29 83.53
512 14.53 96.38 54.79 83.69
1024 14.16 96.52 53.98 83.89
All data 12.30 97.01 51.63 84.50

Table 5. Online RTL on CIFAR with different batch size.

row utilize all data for a batch, which is essentially the re-
sults of ordinary RTL. The gap between online version and
non-online version is small, proving the practicality of our
methods.
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Figure 6. RTL++ results with different percentile of selected sub-
set data on CIFAR-100 with MSP(left) and ODIN(right).

5. Conclusion

In this paper, we present an investigation of the linear trend
observed between the OOD score produced by current OOD
detection algorithms and the network features on several
datasets. Drawing from this observation, we propose a ro-
bust test-time linear learning model, RTL, to rectify the
original OOD scores. To address cases where the origi-
nal OOD scores are noisy, we introduce a variant of RTL,
named RTL++. Our methods significantly enhance the per-
formance of popular OOD detection methods on various
benchmarks. Moreover, we conduct theoretical analysis of
the linear trend and provide a sufficient condition to ensure
the effectiveness of RTL. Furthermore, We propose an on-
line version of RTL to demonstrate the practicality of our
approach, which yields promising results in the online test-
time adaptation setup. Based on these results, we suggest
that treating OOD detection from test-time adaptation and
online learning perspectives is vital and more practical for
read-world applications.
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