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Abstract

The unauthorized use of personal data for commercial
purposes and the covert acquisition of private data for train-
ing machine learning models continue to raise concerns. To
address these issues, researchers have proposed availabil-
ity attacks that aim to render data unexploitable. However,
many availability attack methods can be easily disrupted
by adversarial training. Although some robust methods can
resist adversarial training, their protective effects are lim-
ited. In this paper, we re-examine the existing availability
attack methods and propose a novel two-stage min-max-min
optimization paradigm to generate robust unlearnable noise.
The inner min stage is utilized to generate unlearnable noise,
while the outer min-max stage simulates the training pro-
cess of the poisoned model. Additionally, we formulate the
attack effects and use it to constrain the optimization ob-
Jjective. Comprehensive experiments have revealed that the
noise generated by our method can lead to a decline in test
accuracy for adversarially trained poisoned models by up to
approximately 30%, in comparison to SOTA methods. '

1. Introduction

Over the last decade, remarkable advancements have been
made in the field of Artificial Intelligence (Al), leading to
significant impacts across a wide range of domains. The key
driving force behind impressive achievements of deep learn-
ing has been access to vast quantities of high-quality data.
In fact, many major Al breakthroughs have been realized
only after obtaining the appropriate training data. The recent
advances in large foundation models [4, 21] and generative
models [22, 25] stand as strong evidence. Nonetheless, be-
hind these remarkable accomplishments lies an issue that
cannot be overlooked: the unauthorized collection and uti-
lization of data. There is evidence to suggest that technology
corporations are engaged in the collection and utilization of
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unauthorized data for the purpose of training their commer-
cial models [2, 9, 33,42, 43].

To mitigate the unauthorized use of data, availability at-
tacks have been proposed [1]. Numerous studies demonstrate
that injecting imperceptible noise, known as unlearnable
noise, into data can considerably impair the performance of
models reliant on such poisoned data [6, 7, 13, 27, 28, 35—
37, 41]. The poisoned data is called unlearnable examples,
which is firstly proposed by Error-Minimizing (EM) [13].
Nevertheless, the unlearnable noise produced by these ap-
proaches can be readily neutralized by adversarial train-
ing [7, 8, 13, 27, 32, 34], thereby undermining the pro-
tective efficacy with respect to the unlearnable examples.
Researches have argued that EM [13] noise is inadequately
equipped to defend against adversarial training due to its
standard training of the surrogate model, which solely ex-
tracts non-robust features [14]. To address this limitation,
Robust Error-Minimizing (REM) [8] and Entangled Features
(EntF) [34] have been introduced to diminish the detrimental
impact of adversarial training on unlearnable examples.

Although REM [8] and EntF [34] noise partially mitigate
the detrimental effects of adversarial training on unlearnable
examples, their theoretical underpinnings remain uncertain.
Upon examining their optimization objectives, it becomes
evident that the goal of REM [8] closely resembles that
of EM [13], suggesting that the surrogate model employed
in REM also lacks robustness. Furthermore, concerning
EntF [34], previous research [10, 24] has demonstrated that
constraining noise with only features makes it challenging
to achieve conservation effects in classification tasks.

Building upon these analyses, we put forward two key
proposals: (1) A surrogate model, trained from scratch uti-
lizing adversarial training techniques, has the potential to
generate more robust protective noise, thereby mitigating
the adverse effects of adversarial training. (2) Furthermore,
EM [13] provides a definition for the performance of poi-
soned models on clean examples, stating that “DNNs trained
on unlearnable examples will exhibit performance equiva-
lent to random guessing on normal test examples”. This
definition has been overlooked in previous research. For the
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first time, we propose Average Randomness Constraint to for-
malize the intended effect of unlearnable noise based on its
definition and adapt our optimization objective to encompass
this understanding. As a result, our method attains remark-
able protective performance in both standard and adversarial
training. In summary, our contributions are as follows:

* We provide an overview of prior methods for availability
attacks and assess the limitations of these strategies.

* We propose a reliable optimization objective (min-max-
min) that efficiently mitigates the disruptive effects of
adversarial training, offering robust data protection.

* For the first time, we propose average randomness con-
straint to formulate the expected effect of unlearnable
examples and use this constraint to adjust our optimiza-
tion objective, subsequently resulting in significant perfor-
mance improvements.

* We establish a foundation for future research, allowing
for the easy integration of additional constraints into our
optimization objective, thus promoting further progress.

2. Related Work
2.1. Poisoning Attacks

Data poisoning attacks aim to compromise the training pro-
cess of a model by introducing noise into the training dataset,
resulting in significant testing errors on specific or unseen
samples during the testing phase. Backdoor attacks consti-
tute a prevalent form of data poisoning attack, often char-
acterized by the injection of triggers into training samples,
which subsequently provokes the misclassification of images
containing these triggers during the testing phase [16, 17, 20].
However, it is worth noting that these attacks usually impact
only samples with trigger patterns, while leaving clean sam-
ples unaffected and accurately classified [3, 29].

2.2. Availability Attacks

Auvailability Attacks aim to safeguard data from unauthorized
exploitation by generating imperceptible, unlearnable noise.
The data compromised by this type of attack are referred to
as unlearnable examples. Deep neural networks trained on
unlearnable examples display performance similar to random
guessing on clean test examples.

Model-free Attacks. These attacks generally produce
unlearnable noise at the pixel level instead of the feature
level. As a result, methods in this category, such as LSP [36],
AR [28], CUDA [27] and OPS [35], do not require any
feature information on clean data, leading to an unrelated
connection with data features. However, this inherent design
principle makes unlearnable examples susceptible to feature-
based defense methods, such as adversarial training [8, 18].

Model-based Attacks. These attacks typically gener-
ate unlearnable noise using surrogate models. This group
of methods trains a surrogate model, also referred to as a

noise generator. The training process of the surrogate model
is used to mimic the training process of poisoned models.
Based on whether the surrogate models employ adversarial
training techniques, these methods can be classified into two
distinct categories. EM [13] and REM [8] have substanti-
ated that prevalent data augmentation techniques, such as
Cutout [5], Mixup [40], and CutMix [38], do not compro-
mise the protective efficacy of unlearnable noise.

I. Non-robust Model-based Attacks. This type of attack
involves training surrogate models as non-robust models that
learn non-robust features, such as TAP [7], NTGA [37], and
EM [13]. As aresult, the unlearnable noise generated by this
approach only targets poisoned models subjected to standard
training and merely prevents models from learning standard
data features. Once the poisoned models undergo adversarial
training, the protective effects are disrupted.

I1. Robust Model-based Attacks. This type of attack entails
training surrogate models as robust models that learn robust
features, such as REM [8] and EntF [34]. Although these
methods can withstand adversarial training, their protective
effect remains limited.

3. Methodology

We provide the list of symbols used throughout the main
manuscript. These symbols are summarized in Table 1.

Symbol | Description

z; € Rlwxhxel The i-th example from a dataset D.

yi €Y ={1,...,K} The class label associated with x; for
supervised learning (one-hot encoded).

D ={(z1,y1),...,(zN,yN)} Training set: N data-label pairs.

fé The surrogate model(noise generator).

8, € [—pu, pul The i-th unlearnable noise associated
with z; generated by the surrogate
model f§.

Tz =z + 5 The i-th unlearnable example.

07 € [—pa,pal The i-th adversarial noise associated
with z} generated by the surrogate
model fj.

pu €ER Unlearnable noise radius.

po ER Adversarial noise radius.

Lor L Loss function.

P cRK Predicted probability vector

ReR Averaged prediction randomness

R = % K Random guessing probability

© R Predicted probability

Table 1. The list of symbols used in this paper.

3.1. Limitations of Robust Model-based Methods

As we have discussed in Section 2.2, to resist the disrup-
tive effects of adversarial training on unlearnable examples,
currently, there is only one way to go, which is robust model-
based availability attacks. However, REM [8] and EntF [34]
have some flaws.

REM [8] posits that the protective effect of unlearnable
examples is compromised in adversarial training because
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\ REM \ Ours
Optimization Object min-(min-max) | (min-max)-min
Surrogate Model non-robust robust
Randomness Constrain w/o w

Table 2. The main differences between REM and our method.
Randomness Constraint is detailedly introduced in Section 3.3.

the model can learn knowledge from adversarial examples
during the process. Based on this perspective, REM gen-
erates unlearnable noise for adversarial examples. REM
proposes a min-(min-max) optimization procedure. The
training objective of REM is as follows:

1 n
ki min - max £(fg(zi + 6 4+ 67),p:). (1)
0 ”;”5;‘L\\Sm 116211 < pa (fo(xs : @) )

The optimization objective in Equation | can be partitioned
into two distinct steps. The initial step involves the inner
min-max as depicted, which is employed to generate adver-
sarial samples and produce the corresponding unlearnable
noise. Subsequently, the second step consists of the outer
ming, which functions to update the surrogate model.

Given that p, < p,, the inputs utilized for updating
the surrogate model are essentially the same as those in
EM [13]. Consequently, REM is fundamentally akin to EM,
with both surrogate models exhibiting non-robust charac-
teristics. Nonetheless, the poisoned model becomes robust
following adversarial training, even when the training data
comprises unlearnable instances. As such, we posit that a ro-
bust surrogate model should be employed to generate robust
unlearnable noise. We propose a min-max-min optimization
objective that significantly deviates from REM. Table 2 illus-
trates the primary distinctions. Section 3.2 offers a detailed
overview of our optimization objective. An in-depth analysis
and extensive experiments highlighting the insufficiency of
REM objective can be found in Appendix B.

EntF [34] utilizes a pre-trained robust feature extractor,
aiming to challenge the premise of adversarial training by
making similar features more aggregated. However, accord-
ing to previous studies [10, 24], the noise generated via
feature constraints cannot protect classification tasks.

3.2. Two-Stage Optimization Procedure

In light of our analysis, we regard that a robust surrogate
model is essential for generating unlearnable noise that can
effectively protect unlearnable examples against adversarial
training. We propose a two-stage min-max-min optimiza-
tion process to train a robust surrogate model capable of
generating robust unlearnable noise. The two stages have
different targets. The first stage involves an inner minimiza-
tion process, where unlearnable noise is obtained for a noise

Algorithm I: Training the noise generator

Input: Training data set D, training iteration M,
1: classes K, learning rate
2: PGD parameters p,,, a,, and K, for stage 1,
3: PGD parameters p,, o, and K, for stage 2.
Output: Our noise generator f;.
4: Initialize source model parameter 6.
5: foriinl,--- , M do
6: Sample a minibatch (x, y) ~ D.
7: Initialize 6.
8 forkinl,--- K, do
9 g — 55 (fo(z +6"),y)

10: 6" < I151<p. (0" — ay - sign(gr)) stagel
11: end for

12: for kinl,--- , K, do

13: gk %é(fé(x—l—(w +46%),y)

14: 0% < I1jjsy<p. (0% + aq - sign(gr))

15: end for stage?2
16 g Fll(folx+ 6" +6%),y)

17 +e X (Fy@) k] = )7

18: 0+—0—n-gk

19: end for

20: return fj

generator that undergoes adversarial training. Since adversar-
ial training can extract robust features, the unlearnable noise
generated by robust models can naturally resist adversarial
training. The second stage consists of an external min-max
optimization process equivalent to adversarial training. The
input for this stage includes images with robust unlearnable
noise added, allowing the external procedure to simulate the
adversarial training process and closely resemble the train-
ing process of a poisoned model using adversarial training.
Consequently, both the first and second stages complement
each other, and the internal generation of unlearnable noise
results in better protective effects. The two-stage min-max-
min optimization process is specified below:
a) Generate unlearnable examples x’ from the surrogate
model f; by
i= min (fp(wi 4 07), yi)- 2
63 11<pu
b) Perform adversarial training of the surrogate model fj to
extract the robust features of the unlearnable examples

n

. 1 ! u a
min — 2 Hégl\?gxpa U fo(zi 4+ 0 +67),9:). (3
Additionally, we expect p, < p,. As suggested in REM [8],
when p, > p,, the generated unlearnable noise d,, could not
suppress any learnable knowledge.
However, the optimization objective in Equation 3 does
not reflect the constraint on the prediction performance for
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Figure 1. The test accuracy of the clean examples on the training
phase of the surrogate model.

clean samples. Therefore, we need to add constraints to this
optimization objective. The Algorithm I shows the two-stage
optimization procedure with constraints on the performance
for clean examples. Section 3.3 will introduce this constraint
in detail.

3.3. Average Randomness Constraint

EM [13] posits that a model trained on unlearnable examples
should exhibit random guessing behavior when applied to
clean samples. Noting that the majority of prior studies did
not constrain performance on clean samples. Additionally, as
illustrated in Figure 1, the test accuracies of clean examples
during noise generator training reveal that the noise produced
by REM [8] still permits the surrogate models to learn a
substantial amount of information. For the first time, we
propose the Average Randomness Constraint to formulate
the behavior of surrogate models on clean examples and
utilize it to modify the optimization objective of Equation 3
in the second stage. Figure 1 showcases the effects of our
method, with further details provided below.

Definition 1 (Average Prediction Randomness). Let D in-
dicate a dataset consisting of N samples, where x; € X
is the i-th sample and vy; is the corresponding label. Let a
classifier denote C : X — ). Let Py, be the probability
vector of model predictions on samples with ground-truth
label k, where the j-th element of Py is

pi o i UC(w) =3} Ty = )
k= N — .
> iz Ky = k}

The average prediction randomness metric R, is defined as

4

N 1 K N
szﬁzzﬂ{yizk}'ﬁ(fjk), ®)

k=1 i=1
where L(-) denotes a distance function.

R, measures the distance between the current predicted
distribution and the uniform distribution. The smaller the
value of R, the better dispersion. However, R, is non-
differentiable and cannot be optimized directly. We intro-
duce a differentiable modified formulation to alleviate this
problem, that is Definition 2.

Definition 2 (Differentiable Average Randomness). Let D
represent a dataset consisting of N samples, where v; € X
is the i-th sample and y; is the corresponding label. Let a
parameterized machine learning model be represented as fy.
The averaged sample-wise randomness of predictions given
by the classifier fo(-) is defined as

1 N
R, 2 N;uﬂxi)). (6)

The differentiable average randomness represents the av-
erage dispersion of predicted probability vectors.

Theorem 1. Let fo(x;)[k] indicates the k-th value of the
predicted vector. Let R = (4,...,+) € R¥ denotes the
random guess probability. Then, we have

K
0< }(;(ﬁ;(z)m -V <

Distance function £ in Definition 2 assessing the distance
between the predicted distribution and a uniform distribution
is of paramount importance. There are three common types
of loss functions: Mean Squared Error (MSE), Kullback-
Leibler (KL) divergence, and Cross-Entropy (CE). We ana-
lyze these three loss functions in detail below.

(1) Previous study [23] suggests that models trained using
a distance-based loss function frequently outperform those
trained with non-distance loss functions. Cross-entropy and
KL divergence are prevalent measures for calculating the dis-
tance between distributions; nevertheless, neither constitutes
a distance function. While MSE is a distance function. (2)
CE and KL are equivalent as demonstrated by Lemma in Ap-
pendix A. In most cases (under our experimental settings),
the MSE is smaller than the CE loss. Additionally, both
loss functions achieve their minimum values under the same
conditions, suggesting that optimizing MSE is equivalent to
optimizing CE. (3) MSE is smoother. Concerning KL loss,
when the prediction probability for a specific class fy(-)[k] is
exceedingly small, both the loss and gradient become infinite,
leading to gradient explosion and complicating the training
process. In contrast, MSE showcases relative smoothness
within its value range, possessing well-defined upper and
lower bounds (given in Theorem 1), thereby easing model
training.

Based on these insights, MSE serves as the distance func-
tion £ in Definition 2 to assess Differentiable Average Ran-
domness (DAR). A smaller DAR implies increased random-
ness in the output probability of fy on clean samples, in-
dicating a reduced degree of knowledge acquisition by the
model. The sample-wise DAR (i.e., our average randomness
constraint) is then defined as follows:
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Dataset Adv. Train.  Clean  EM TAP NTGA REM EntF Ours
e pa = 4255 po=4/255 po = 4/255

0 9466 1320 2251 16.27 22.93 94.65 1271

1/255 9374 2208  92.16 41.53 30.00 93.56 1471

CIFAR-10 2/255 9237 7143 90.53 85.13 30.04 92.00 15.38

3/255 9090 8771  89.55 89.41 31.75 91.04 15.51

4/255 89.51  88.62  88.02 88.96 48.16 89.52 23.12

0 7627  1.60 13.75 322 11.63 75.83 327

1/255 7190 7147  70.03 65.74 14.48 71.88 7.79

CIFAR-100 2/255 6891 6849 6691 66.53 16.60 68.94 7.73

3/255 6645 6566  64.30 64.80 20.70 66.43 9.91

4/255 6450 6343 6239 62.44 27.35 63.94 23.00

0 80.66  1.26 9.10 8.42 13.74 78.96 408

mageNet 1/255 7620 7488  75.14 63.28 21.58 75.34 11.80

- 2/255 7252 7174 70.56 66.96 29.40 72.10 16.88

3/255 69.68 6690  67.64 65.98 35.76 67.88 22.34

4/255 6662 6340  63.56 63.06 41.66 63.60 31.64

Table 3. Test accuracy (%) of models adversarially trained with different perturbation radii. The training data, namely unlearnable examples,

is generated by different availability attacks.

}(i (st~ %) )

In summary, we use Equation 7 to modify Equation 3
in the second step. The final optimization objective in the
second step is given by Equation 8. By adding the constraint
of Equation 7, the model will learn less knowledge. Figure |
also demonstrates the effectiveness of this constraint item.

177.
min — max  {(fp(z; + 6 + 08), yi
> (Fy(wi + 62 + 62, )

o n 168 1|<pa

_ +f1<§:_1 (s~ 2]

4. Experiments

®)

In this section, we have conducted extensive experiments to
showcase the effectiveness and generalization ability of our
method from various perspectives. Detailed settings can be
found in Appendix C.

4.1. Experiment Setup

Datasets. To verify the effectiveness of our method on
images of varying categories and resolutions, we use three
commonly employed datasets in our experiments: CIFAR-
10, CIFAR-100 [15], and ImageNet subset [26] (consists of
the first 100 classes). The data augmentation technique [30]
is applied in each experiment.

Surrogate Models. Following EM [13] and REM [8], we
use ResNet-18 [11] as the surrogate model f, for traing-

ing our noise generator with Eq. (2) and Eq. (8). The L.-
bounded noises |0, |00 < pu, are adopted in our experiments.
In all training phrases of surrogate models, the value of p,,
is set to 8/255, and the value of p, is set to 4/255. Fur-
thermore, we also employ other surrogate models, including
VGG-16[31], ResNet-50[11], and DenseNet-121[12], to test
the generalization ability of our method.

Compared Methods. Our proposed method is compared
with other state-of-the-art availability attacks, TAP [7],
NTGA [37], EM [13], REM [8], and EntF [34].

Noise Test. Noise generated by our method is tested on
both standard training and adversarial training [19]. We
focus on L,-bounded noise ||d4]|c0c < p, in adversarial
training. In all training phrases of poisoned models, the
adversarial training radius p, is set 4/255 unless otherwise
specified. We conduct adversarial training on unlearnable
examples created by our method using different poisoned
models, including VGG-16 [31], ResNet-18, ResNet-50 [11],
DenseNet-121 [12], and wide ResNet-34-10 [39]. It is im-
portant to note that when p,, is set to 0, adversarial training
degenerates to standard training.

Metric. We evaluate the data protection ability of unlearn-
able noise by measuring the test accuracy of the model
trained on unlearnable examples. Low test accuracy indi-
cates that the model has learned little from the unlearnable
examples, suggesting strong protection ability.

4.2. Effectiveness on standard and adversarial
training

To evaluate the robustness against adversarial training, we
first introduce unlearnable noise to the entire training set,
generating unlearnable CIFAR-10 [15], CIFAR-100 [15],
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Dataset Model Clean EM TAP NTGA REM EntF Ours
Pa =4/255  p, =4/255  p, =4/255

VGG-16 87.51 87.24 86.27 86.65 65.23 87.71 37.78

RN-18 89.51 88.62 88.02 88.96 48.16 89.52 23.12

CIFAR-10 RN-50 89.79 89.66 88.45 88.79 40.65 89.92 19.30

DN-121 83.27 81.77 81.72 80.73 82.38 83.52 72.42

WRN-34-10 91.21 79.87 90.23 89.95 48.39 91.30 18.67

VGG-16 57.46 56.94 55.24 55.81 58.07 57.86 55.05

RN-18 64.50 63.43 62.39 62.44 27.35 63.94 23.00

CIFAR-100 RN-50 66.93 66.43 64.44 64.91 26.03 66.46 21.47

DN-121 53.73 53.52 52.93 52.40 56.63 53.89 52.25

WRN-34-10 68.64 68.27 65.80 67.41 27.71 69.42 20.14

Table 4. Test accuracy (%) of different models adversarially trained on unlearnable CIFAR-10 and CIFAR-100 datasets.

and ImageNet-subset [26]. The unlearnable noise pertur-
bation radius, denoted as p,, is set to 8/255 for all noise-
generating methods and the adversarial perturbation radius
Pa 18 set as 4/255 for REM [8], EntF [34] and our method.
We then train models using different adversarial training
perturbation radii p,. Table 3 presents the accuracies of the
adversarially trained models on the unlearnable examples
generated by different availability attacks.

As shown in Table 3, the adversarial training perturbation
pa ranges from 1/255 to 4/255, with ResNet-18 [11] as the
surrogate models. For adversarial training, we observe that
even a small adversarial training perturbation radius of 2 /255
can damage the protecting effects of TAP [7], NTGA [37],
EM[13], and EntF [34]. Table 3 demonstrates that when the
unlearnable noise perturbation radius is fixed, the protec-
tive effect decreases as the adversarial training perturbation
radius increases. This finding suggests that to protect data
against adversarial training with a perturbation radius p,,
one must set the unlearnable perturbation radius p,, of robust
methods to a value relatively larger than p,. Notably, our
method consistently outperforms other approaches regard-
less of the adversarial perturbation radii. In standard training
scenarios, our method also exhibits superior performance
compared to other methods.

Furthermore, our method retains significant protective ef-
fects across different datasets, irrespective of their resolution
or class composition, particularly when subjected to adver-
sarial training. Overall, these experiments indicate that our
method effectively safeguards data across various datasets
and adversarial training perturbation radii.

4.3. Transferability on different poisoned model ar-
chitectures

Thus far, we have conducted adversarial training exclusively
with ResNet-18 [11], which is the same as the source model
used in unlearnable noise generation. We now evaluate the ef-
fectiveness of the unlearnable noise generated by our method

under various poisoned models. Specifically, we perform ad-
versarial training with a perturbation radius of 4/255 and five
different models, including VGG-16 [31], ResNet-18 [11],
ResNet-50 [11], DenseNet-121 [12], and Wide ResNet-34-
10 [39], on data protected by noise generated via ResNet-18.
We set the unlearnable perturbation radius p,, for each type
of unlearnable noise at 8/255. Table 4 presents the test
accuracies of the trained models on CIFAR-10 and CIFAR-
100 [15]. The results in Table 4 reveal that our unlearnable
noise, generated from ResNet-18, can effectively protect
data against various adversarially trained models, surpassing
the performance of other methods.

4.4. Transferability on different surrogate models

So far, our method has used ResNet-18 as a surrogate model
to generate noise. ResNet-18’s specific properties may con-
tribute to our method’s effectiveness. To evaluate the gener-
alization performance of our approach, we employ different
surrogate models to generate unlearnable noise. Addition-
ally, since our ASR is not tied to any specific model archi-
tecture, it should remain effective regardless of the surrogate
model used. The adversarial training perturbation radius
is set to 4/255, and the unlearnable perturbation radius p,,
for each type of unlearnable noise is set at 8/255. We test
four noise generators with different architectures, includ-
ing VGG-16 [31], ResNet-18 [11], ResNet-50 [11], and
DenseNet-121 [12]. Each type of noise is tested on five dif-
ferent models: VGG-16, ResNet-18, ResNet-50, DenseNet-
121, and WRN-34-10 [39]. Test accuracies of poisoned
models on unlearnable CIFAR-10 and CIFAR-100 [15] are
presented in Table 5.

As depicted in Table 5, our method demonstrates excep-
tional generalizability. Regardless of the surrogate model’s
capabilities, our method consistently outperforms other avail-
ability attacks, both robust and non-robust. In detail, us-
ing different noise generators, the average accuracy of our
method on CIFAR-10 is reduced by approximately 7% to
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Datasets Surrogate Model Method VGG-16  ResNet-18  ResNet-50  DenseNet-121 ~ WRN-34-10  Average
EM 87.75 89.21 90.19 83.58 90.83 88.31
VGG-16 REM 73.60 74.73 74.16 77.63 74.94 75.01
Ours 63.11 67.50 64.37 61.02 65.65 64.33
EM 87.24 88.62 89.66 81.77 79.87 85.43
ResNet-18 REM 65.23 48.16 40.65 82.38 48.39 58.96
CIFAR-10 Ours 37.78 23.12 19.30 72.42 18.67 34.26
EM 87.57 89.17 89.83 82.64 90.68 87.98
ResNet-50 REM 51.88 44.27 37.79 82.01 42.09 51.61
Ours 49.33 39.95 36.50 79.69 41.57 49.41
EM 87.59 84.51 85.57 82.76 85.68 85.22
DenseNet-121 REM 67.30 69.62 66.42 60.51 72.09 67.19
Ours 61.41 58.77 58.55 58.66 63.38 60.15
EM 57.33 63.55 65.44 53.45 68.23 61.60
VGG-16 REM 41.13 52.00 51.77 48.92 56.05 49.97
Ours 36.67 45.82 46.45 45.52 48.59 44.61
EM 56.94 63.43 66.43 53.52 68.27 61.72
ResNet-18 REM 58.07 27.35 26.03 56.63 27.71 39.16
CIFAR-100 Ours 55.05 23.00 21.47 52.25 20.14 34.38
EM 56.82 64.19 66.93 54.51 68.56 62.20
ResNet-50 REM 54.61 35.50 3043 54.26 35.11 41.98
Ours 52.57 26.17 29.38 52.19 25.91 37.24
EM 57.39 63.73 66.37 54.62 68.43 62.11
DenseNet-121 REM 47.22 41.89 45.49 41.15 50.66 45.28
Ours 38.15 34.70 34.46 37.84 32.30 35.49

Table 5. Test accuracy (%) of different models adversarially trained on CIFAR-10 and CIFAR-100 generated by different noise generators.

25% compared to state-of-the-art (SOTA) methods, and the
average accuracy on CIFAR-100 is reduced by roughly 4%
to 10% compared to SOTA methods. These results indicate
that our approach possesses superior generalizability, and
we have successfully proposed a generalizable method rather
than a specific noise.

4.5. Protective effects on different protection per-
centages

In a more realistic and challenging scenario, only a portion
of the data is protected, while the rest remains clean.

Specifically, we randomly select a subset of the training
data from the entire set and introduce unlearnable noise to it.
Subsequently, we conduct adversarial training with ResNet-
18 on the combined noisy and clean data. The unlearnable
perturbation radius for each noise is set to 8/255, while the
adversarial perturbation radius p, of REM [8], Entf [34],
and our method is set to 4/255. The difference between
the test accuracies on mixed data and clean data reflects the
knowledge gained from the protected training data. The
accuracies on clean test data are reported in Table 6.

Table 6 illustrates that as the percentage of data protection
decreases, the performance of the trained model improves,
indicating that the model can still learn from clean data. Fur-
thermore, Table 6 reveals that in all cases, our method offers
superior data protection compared to other approaches. This

observation confirms that the unlearnable noise generated
by our method is more effective, even when combined with
clean data. Additionally, it suggests that our methods are
capable of concealing more information.

When the protection ratio is relatively low, the protective
effects of all methods are not particularly pronounced, which
may be associated with the composition of the dataset. For
example, in the CIFAR-10 [15] training set, each category
contains 5,000 samples. Even if unlearnable noise is intro-
duced to a small portion of the data, a significant amount
of clean data remains. The remained clean data is sufficient
for the model to acquire ample knowledge, so the addition
of a small number of unlearnable examples does not lead to
substantial accuracy changes. However, when the proportion
of unlearnable examples increases, our method exhibits a
noticeable performance improvement.

5. Conclusion and Discussion

Conclusion. In this paper, we have systematically reviewed
existing availability attacks that aim to safeguard data from
unauthorized usage by generating unlearnable noise and ana-
lyzed their limitations. Drawing from prior research and our
experiments, we argue that a robust surrogate model, trained
from scratch, is crucial for generating robust unlearnable
noise capable of withstanding the detrimental effects of ad-
versarial training. Moreover, we recognize that the current
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Data Protection Percentage

Adv. Noise

Dataset Train.  Type 0% 20% 40% 60% 80% 100%
Pa 7 Mixed Clean | Mixed Clean | Mixed Clean | Mixed Clean 7

EM 92.33 92.18 92.00 92.06 71.43

TAP 92.17 91.62 91.32 91.48 90.53

NTGA 92.41 92.19 92.23 91.74 85.13

2/255 REM 92.37 92.23 91.30 90.79 90.31 28,85 88.65 23.70 83.37 30.04

EntF 92.14 91.85 91.02 90.54 92.00

CIFAR-10 Ours 92.03 90.34 87.98 83.32 15.38
EM 89.39 89.09 89.41 89.41 88.62

TAP 89.01 88.66 88.40 88.04 88.02

NTGA 89.56 89.35 89.22 89.17 88.96

4/255 REM 89.51 2071 88.17 20,89 86.76 20.63 85.07 717 79.41 43,16

EntF 89.98 88.59 88.56 88.53 89.52

Ours 88.79 88.36 88.25 84.84 23.12

EM 68.68 68.80 68.28 68.70 68.49

TAP 68.40 67.93 67.25 67.09 66.91

NTGA 68.52 68.82 68.36 68.71 66.53

2/255 REM 68.91 68.90 66.54 68.29 64.21 61.42 58.35 51.99 47.99 16.60

EntF 69.38 66.93 65.80 66.92 68.94

CIFAR-100 Ours 68.39 65.60 60.74 49.97 7.73
EM 64.65 63.82 64.19 64.32 63.43

TAP 64.36 63.35 62.58 63.15 62.39

NTGA 63.48 63.59 63.64 62.83 62.44

4/255 REM 64.50 6407 61.73 64.67 57.61 64.99 53.86 63.14 44.79 2735

EntF 64.76 64.06 62.86 61.68 63.94

Ours 63.46 63.24 61.24 58.91 23.00

Table 6. Test accuracy (%) on CIFAR-10 and CIFAR-100 with different protection percentages.

optimization process of robust model-based availability at-
tacks is suboptimal, leading to the potential invalidation of
their protective effects during adversarial training. To tackle
these challenges, we introduce a two-stage (min-max)-min
optimization procedure for training robust surrogate models
from scratch. The inner min step employs a robust surro-
gate model to generate robust unlearnable noise for clean
examples, while the outer min-max step simulates the ad-
versarial training process of the poisoned model to enhance
its robustness, using unlearnable examples as input. Addi-
tionally, we propose Differentiable Average Randomness
(DAR) to formally define the protective effect of unlearnable
examples and constrain the optimization objective during the
surrogate model’s training phase. Through extensive experi-
ments, we showcase the superior protective performance of
our approach, laying a solid foundation for future research.
Limitations and future works. The method proposed in
this paper necessitates the incorporation of an adversarial
training process to generate robust unlearnable examples,
resulting in substantial computational costs when applied to
large-scale datasets, such as ImageNet. In our future work,
we aim to explore efficient robust methods to accelerate
our approach. Furthermore, the current method has not

been optimized for situations involving partial protection of
data. When unlearnable noise is added to only a fraction
of the data, the anti-learning effect is considerably weaker
compared to scenarios where protective noise is introduced
to the entire dataset. This gap presents a valuable avenue
for future research, as it is crucial to develop techniques
that can effectively safeguard data privacy even when only
a subset of the data is targeted for protection. In future
work, we may consider incorporating misleading erroneous
high-level semantic information into unlearnable examples,
ensuring that any knowledge acquired by the model consists
of incorrect information.
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