
Attack To Defend: Exploiting Adversarial Attacks for Detecting Poisoned Models

Samar Fares Karthik Nandakumar
Mohamed bin Zayed University of Artificial Intelligence, UAE (MBZUAI)

{samar.fares,karthik.nandakumar}@mbzuai.ac.ae

Abstract

Poisoning (trojan/backdoor) attacks enable an adversary
to train and deploy a corrupted machine learning (ML)
model, which typically works well and achieves good ac-
curacy on clean input samples but behaves maliciously on
poisoned samples containing specific trigger patterns. Using
such poisoned ML models as the foundation to build real-
world systems can compromise application safety. Hence,
there is a critical need for algorithms that detect whether a
given target model has been poisoned. This work proposes a
novel approach for detecting poisoned models called Attack
To Defend (A2D), which is based on the observation that
poisoned models are more sensitive to adversarial pertur-
bations compared to benign models. We propose a metric
called sensitivity to adversarial perturbations (SAP) to mea-
sure the sensitivity of a ML model to adversarial attacks at
a specific perturbation bound. We then generate strong ad-
versarial attacks against an unrelated reference model and
estimate the SAP value of the target model by transferring
the generated attacks. The target model is deemed to be a
trojan if its SAP value exceeds a decision threshold. The
A2D framework requires only black-box access to the target
model and a small clean set, while being computationally
efficient. The A2D approach has been evaluated on four
standard image datasets and its effectiveness under various
types of poisoning attacks has been demonstrated.

1. Introduction
Deep neural networks (DNN) have played a key role in
transforming applications such as autonomous vehicles [3],
security [43], finance [16], and healthcare [2]. However,
training of accurate DNN models requires a large amount of
data and significant computing resources. To mitigate this
problem, it is a common practice among machine learning
(ML) practitioners to (a) leverage third-party datasets, (b)
use pre-trained models obtained from third-party sources as
a starting point for model development (because it requires
less training resources compared to learning a model from
scratch), or (c) completely outsource the model training to

a third-party (e.g., cloud) service provider. The advent of
foundation models [4] can be expected to further accelerate
the trend of transfer learning from pre-trained models. How-
ever, the above approaches may introduce a vulnerability
called backdoor (a.k.a. poisoning or trojan) attack, where
an attacker manipulates the training dataset to control the
prediction behavior of the trained/pre-trained model [17].
A poisoned model works normally for clean (unmodified)
input samples, but behaves maliciously when activated by
specific triggers in the input sample. This can compromise
the safety of systems that make use of the poisoned model.

Techniques for defending ML models from poisoning
attacks can be broadly classified into two categories [17]:
(i) identifying poisoned samples in the training data (e.g.,
[46]) and (ii) detecting and purifying poisoned models (e.g.,
[49]). In this work, we assume that the model has already
been trained by the adversary and the complete dataset used
for training is no longer available to the defender. Hence,
this work focuses only on the latter category of defense tech-
niques, which can be further sub-divided into detection-only
methods and purification (patching) methods. The goal of
poisoned model detection is to determine whether a given
target model is benign or poisoned [17, 28]. On the other
hand, purification methods attempt to remove/mitigate the
backdoor vulnerability from the target model. It is worth
emphasizing that detection is often the first step in any pu-
rification process, and having an effective poisoned model
detector is critical for two reasons. Firstly, as the triggers
become increasingly stealthy [1, 34], purification becomes
inherently hard (especially for unseen attacks). In such cases,
having an accurate trigger-agnostic detector that can reject
suspicious models is the only line of defense. Secondly,
correct identification of benign models can avoid subjecting
them to purification, thereby preserving their clean accuracy
from any degradation introduced during purification.

Though many algorithms have been proposed for detect-
ing poisoned models [17][7, 20, 24, 29, 49, 50, 52, 53, 56],
most existing solutions have one or more of the follow-
ing limitations: (i) poor generalizability: they are effective
against only a specific type of attack (or a small class of at-
tacks) and lack the ability to generalize to new/unseen types

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24726

of attacks [50], (ii) high computational complexity: some
methods require training of numerous shadow models for
meta-learning of a poisoned model detector [24, 53], (iii)
data access: some methods need access to a large set of
clean samples [24, 49] or the entire training data (used to
train the poisoned model) [6], and (iv) knowledge of the tar-
get model: they either require white-box access to the target
model or assume that the target model architecture is known
[6, 49]. The search for an effective poisoned model detec-
tor with good generalization capabilities, low computational
overhead, as well as minimal access to the target model and
clean set has remained elusive thus far.

In this work, we propose a simple yet effective method
for detecting poisoned models by examining their behavior
under adversarial attacks. Adversarial attacks [18] typically
make small (often imperceptible) perturbations to the input
sample during inference in order to fool a given ML model.
While there are some recent studies connecting adversar-
ial and backdoor attacks [32, 35, 55, 56], our approach is
based on the idea that poisoned models are more sensitive to
adversarial samples compared to their benign counterparts.

The three key contributions of this work are as follows:
1. We propose a novel approach called Attack To Defend

(A2D) for detecting whether a given target model has
been poisoned. The A2D framework generates strong
adversarial attacks against a reference model and probes
the target model using the generated attacks.

2. We propose a new metric called sensitivity to adversarial
perturbations (SAP) to quantify the sensitivity of a ML
model to adversarial attacks at a specific perturbation
bound. The SAP metric enables normalized comparison
of the adversarial sensitivity (robustness) of ML models.
If the target model is poisoned, it exhibits higher SAP
compared to a benign model, which can be exploited for
poisoned model detection.

3. Experiments demonstrate that the A2D approach general-
izes well to unseen attacks, while requiring only black-
box access to the target model and a small clean set. We
examine the adversarial pathways of poisoned models and
show that the backdoor path present in poisoned models
renders them more vulnerable to adversarial attacks.

2. Background and Related Work
2.1. Preliminaries

Let Mθ : X → Y be a machine learning (ML) model that
learns the mapping between an input space X and a label
space Y . In this work, we assume that X ⊆ [0, 1]d and
Y = {1, 2, · · · ,m}, where d is the dimension of the input
sample and m is the number of classes.
Clean/Benign Model: Let (x, y) denote a clean labeled
sample, where x ∈ X denotes the input to the ML model,
y ∈ Y is the corresponding ground-truth class label, and

“clean” implies that both the input and the label have not
been modified by any adversary. Let GC : X × Y → R
denote the joint probability distribution of the clean labeled
samples. Let DT = {(xi, yi)}NT

i=1 be a dataset containing
NT clean samples available for model training. The clean
(a.k.a. benign) model is learned by minimizing the following
empirical risk.

min
θ

1

NT

NT∑
i=1

L(Mθ(xi), yi), (1)

where L denotes the loss function used to train the model.
The clean accuracy (AC) of a ML model Mθ is defined as:

AC(Mθ) = E(x,y)∼GC
I[Mθ(x) = y], (2)

where E denotes the expectation operator and I[b] is an indi-
cator random variable that takes value 1 when b is true and 0
otherwise. Note that 0 ≤ AC ≤ 1.
Adversarial Attacks: Given a model Mθ, a clean sample
(x, y) ∼ GC , the adversarial input ẍ = x+r can be obtained
by solving the following constrained optimization problem:

max
r
L(Mθ(x+ r), y), such that ∥r∥p ≤ ϵ, (3)

where r denotes the adversarial perturbation, ϵ is the per-
turbation bound, and ∥.∥p denotes the ℓp norm. Unless
otherwise stated, we use only ℓ∞ norm-constrained adver-
sarial attacks in this work. The robust accuracy (AR) of a
model Mθ for a given perturbation bound ϵ is defined as:

AR(Mθ, ϵ) = E(x,y)∼GC
I[Mθ(x+ r) = y], (4)

where r is obtained using eq. (3). For strong adversarial at-
tacks, the robust accuracy AR(Mθ, ϵ) can be expected to be
small (closer to 0). It must be emphasized that adversarial at-
tacks are prediction-time attacks and do not affect the model
parameters. Some of the well-known adversarial attacks
include FGSM [18], PGD [30], C-W [5], and AutoAttack
[10]. These attacks primarily differ in how the optimization
problem in eq. (3) is solved.
Poisoned Model: Given a clean sample (x, y) ∼ GC , a
trigger pattern t, and a target label ỹ ̸= y for the poisoning
attack, the poisoned sample is obtained as (x̃, ỹ), where the
poisoned input is defined as:

x̃ = Iϕ(x, t). (5)

Here, I denotes the trigger insertion function parameterized
by ϕ. A poisoned (a.k.a. trojaned or backdoored) model is
typically learned by corrupting a fraction ρ (known as the
poisoning rate) of the samples from the training setDT based
on the trigger t and minimizing the following objective:

24727

min
θ

 1

NT

NT∑
i=1

L(Mθ(xi), yi) +
1

NP

Np∑
i=1

L(Mθ(x̃i), ỹ)

 ,

(6)
where NP = ⌊ρNT ⌋, ⌊·⌋ is the floor function, and x̃i =
Iϕ(xi, t). Let θP be the model parameters obtained by
solving eq. (6) and MθP be the poisoned model. The attack
success rate (ASR) of a poisoning attack is defined as:

AP (MθP , t, Iϕ) = E(x,y)∼GC
I[MθP (Iϕ(x, t)) = ỹ]. (7)

To avoid trivial detection, the clean accuracy of a poisoned
model (i.e., AC(MθP)) must also be high. Optimizing for
objective (6) ensures that the poisoned model has both high
clean accuracy and high attack success rate. In the above
formulation, the trigger t is assumed to be same for all
samples (sample-agnostic) and all poisoned samples have the
same target label ỹ (all-to-one attack). The trigger can also
be learned for individual samples (sample-specific) and the
target labels be different for each sample or class (all-to-all
attack). Clean-label attacks that poison without modifying
the labels of the training samples are also possible.

2.2. Related Work

While hidden backdoors (trojans) can be inserted into a ML
model in many ways including direct modification of model
parameters [8, 37] and incorporating additional malicious
modules [26, 44], this work focuses only on poisoning at-
tacks, which incorporate a backdoor into the model during
training that is subsequently exploited by inserting a trigger
into the input at prediction time. Key poisoning attacks and
countermeasures against them are summarized below1.
Poisoning Attacks on ML Models: Many poisoning attacks
have been proposed by varying the nature of the trigger and
the trigger insertion function. These include: Modification
(Modify) - inserting small, visible, and static trigger pat-
terns without covering the original input during both training
and prediction (e.g., BadNets [19]); Input-Aware Dynamic
Attacks (IAD) - inserting visible, but sample-specific trig-
ger patterns [33]; Blending (Blend) - stealthily blending a
trigger of the same size as the input with the original sam-
ple [9]; Invisible Sample-Specific Backdoor Attack (ISS) -
learning to add imperceptible sample-specific triggers [27];
Label-Consistent Backdoor Attack (LC) - injecting inputs
(through adversarial perturbations or generative models) that
are plausible but hard to classify, without modifying the
training labels [47]; Hidden/Concealed Trigger Backdoor
Attacks (HT) - concealing the trigger during training, but
revealing them only during prediction [38, 41, 48]; Warping-
based Backdoor Attack (WaNet) - injecting imperceptible

1The methods highlighted in bold are used in our experiments.

warping-based triggers in lieu of noise perturbations [34];
and Sinusoidal Backdoor Signal (SIG) - injecting sinusoidal
triggers that are imperceptible and label consistent [1].

Poisoned Model Detection and Purification: Detection
of poisoned models is typically achieved by constructing
many benign and poisoned shadow models, querying these
shadow models to extract discriminative features, and learn-
ing a meta-classifier based on these features. While meta-
neural trojan detection (MNTD) [53] dynamically optimizes
a query set along with the meta-classifier to distinguish be-
tween benign and poisoned models, universal litmus patterns
(ULP) are learned in [24] to achieve the same objective. In
[23], poisoned models are detected by analyzing the critical
paths corresponding to different classes in a DNN model.
Most of the purification methods rely on reverse engineering
the trigger pattern and unlearning these patterns. Exam-
ples of such reverse engineering defense (RED) methods
include: Neural Cleanse (NC) [49] - searching for possible
triggers that can push all inputs towards the target class and
unlearning such triggers; DeepInspect (DI) - learning a con-
ditional generative model to generate potential triggers [7];
anti-backdoor scanning (ABS) [29] - identifying potentially
compromised neurons based on their activation behavior;
FeatureRE (FRE)[50] - using feature space constraint to
reverse engineer the triggers; and expected transferability
(ET) [52] - measuring the transferability of trigger patterns
between samples of the same class.

Intersection between Adversarial and Poisoning Attacks:
Recent works have studied the relationship between adver-
sarial and poisoning attacks from multiple perspectives. One
of the directions that has been explored is using adversarial
samples as either triggers for backdoor attacks [55] or probes
for detecting poisoned training samples [54]. Another inter-
esting line of research is the connection between adversarial
training and backdoor attacks [13–15, 32, 35, 45, 51]. For
example, it has been demonstrated that using adversarial
samples with larger perturbation budgets and “spatial” adver-
sarial training can provide better defense against poisoning
attacks [51]. While these studies are illuminating, none of
them directly address the question of whether adversarial
attacks can be used to detect poisoned models. Our pro-
posed approach is closest in theory to Cassandra (CAS)
[56] because it is based on a similar hypothesis that poi-
soned models are more sensitive to adversarial attacks. In
CAS [56], universal adversarial perturbations [31] are used
to probe the target model and a heuristic attack difficulty
measure is used to detect poisoned models. It requires a
large dataset of benign and poisoned models to learn the
meta-classifier, which does not generalize well to stealthy
attacks that are not present during training. In this work, we
overcome the above limitations of CAS and present a simple
and sound approach for detecting poisoned models based on
their sensitivity to standard adversarial attacks.

24728

3. Proposed Methodology
3.1. Problem Statement

Threat Model: In this work, we consider an adversary who
aims to stealthily deploy a poisoned model. Here, stealth-
iness implies that the deployed model has good clean ac-
curacy and behaves maliciously only on poisoned inputs.
We assume that the adversary has full access to the training
set DT and trains the poisoned model based on objective
function 6 (or a close variant of it). The adversary can use
any arbitrary trigger insertion function Iϕ, trigger pattern t
(which could also be sample-specific), poisoning rate ρ.
Defender Goal: Given only black-box (query) access to a
target ML model, denoted as Mθt , the goal of the defender is
to determine if the given target model is benign or poisoned.
This requires designing a poisoned model detector T :M→
{benign, trojan}, whereM represents the model space. In
this work, we design a trojan detector T̃ :M→ [0, 1] and
assign the target model to the trojan class if T̃ (Mθt) ≥ τ ,
where τ is the decision threshold parameter.
Defender Capabilities: We assume that the defender has
access to a small clean set DC = {(xk, yk)}NC

k=1, where
NC << NT . Note thatDC could either be a subset ofDT or
an independent dataset sampled from GC . It must be empha-
sized that the defender has zero knowledge of the (i) target
model architecture or its parameters (black-box scenario)
and (ii) attack characteristics (trigger size/shape/location,
trigger insertion function, poisoning rate, optimization algo-
rithm/hyperparameters, etc.) employed by the adversary.

Figure 1. Overall workflow of Attack to Defend (A2D) framework.

3.2. Attack to Defend (A2D) Framework

The proposed attack-to-defend (A2D) framework consists
of three main steps: (i) learning a reference model, (ii) gen-
erating strong adversarial samples that can circumvent the
reference model, (iii) probing the target model based on the
adversarial samples generated from the reference model to
evaluate the adversarial sensitivity of the target model. These
steps are depicted in Figure 1 and summarized in Alg. 1.

Algorithm 1: Attack To Defend (A2D) Framework
Input: Target model Mθt , clean set DC , parameters:
sample size NA, margin ω, threshold τ

Output: Predicted label of Mθt : benign or trojan
1: Choose reference model architecture M̂
2: Train parameters θr of M̂ based on DC using eq. (8)
3: Select DA ⊆ DC , such that |DA| = NA

4: Estimate SAP Ŝ(M̂θr , ϵ) for different ϵ based on DA

5: ϵmin ← argmin
ϵ

Ŝ(M̂θr , ϵ) ≥ (1− ω)

6: Obtain attack set D̈A with ϵmin as perturbation bound
7: Evaluate Ŝ∗(Mθt , ϵmin) based on DA and D̈A

8: return trojan if Ŝ∗(Mθt , ϵmin) ≥ τ , else benign

1. Reference Model Learning: The defender first picks
a reference model architecture M̂ (which need not be the
same as the target model) and learns the reference model
parameters (θr) by minimizing the following empirical risk
based on the available clean set DC .

θr = argmin
θ

1

NC

NC∑
k=1

L(M̂θ(xk), yk). (8)

2. Adversarial Sensitivity Evaluation of Reference Model:
In this step, the goal is to generate strong adversarial sam-
ples that are highly likely to fool the reference model M̂θr .
The strength of an adversarial attack is primarily determined
by the robust accuracy AR(·, ϵ) of a model, which in turn
depends on the perturbation bound ϵ. Strong adversarial
samples should lead to low robust accuracy. However, robust
accuracy alone is not sufficient to characterize the adversar-
ial attack strength because it is easier to achieve a specific
robust accuracy, if the initial clean accuracy of the model is
low. Hence, we introduce a new metric to characterize the
adversarial attack strength.

Sensitivity to Adversarial Perturbations (SAP) S of a ML
model Mθ is defined as the relative reduction in accuracy
caused by adversarial samples generated using a specific
perturbation bound ϵ. Then,

S(Mθ, ϵ) =
AC(Mθ)−AR(Mθ, ϵ)

AC(Mθ)
. (9)

Intuitively, small values of ϵ will correspond to weaker ad-
versarial samples that fail to mislead the model, resulting
in SAP values closer to zero. In contrast, as ϵ → 1, the
adversarial samples almost certainly fool the model leading
to SAP values closer to one.

To generate strong adversarial samples against the refer-
ence model, we first choose a subset DA of the clean set DC

containing NA samples (DA ⊆ DC and NA ≤ NC) and es-
timate the clean accuracy of the reference model ÂC(M̂θr).

24729

Here, ÂC is an estimate of true clean accuracy AC because
the expectation in eq. (2) is replaced with the sample average
computed over DA. For each input xk ∈ DA, we find the
corresponding adversarial sample ẍk = xk + rk, where rk
is found using eq. (3) based on the reference model M̂θr

and perturbation bound ϵ. This process is repeated over a
range of ϵ values, and for each ϵ, the corresponding robust
accuracy ÂR(M̂θr , ϵ) is estimated. Based on ÂC(M̂θr) and
ÂR(M̂θr , ϵ), the Ŝ(M̂θr , ϵ) values are estimated using eq.
(9). Next, we find the smallest value of ϵ for which the
Ŝ(M̂θr , ϵ) value is very close to 1. Formally,

ϵmin = argmin
ϵ

Ŝ(M̂θr , ϵ) ≥ (1− ω), (10)

where ω → 0 is a margin parameter. After finding ϵmin, let
D̈A = {(ẍk, yk)}NA

k=1 denote the set of strong adversarial
samples generated against the reference model M̂θr with
perturbation bound ϵmin. Thus, at the end of this step, we
have two sets DA and D̈A, with the former consisting of
clean samples and the latter containing adversarial samples
that succeed in fooling the reference model. Note that the
sample labels in both sets remain untouched. 3. Adversarial
Probing of Target Model: The given target model Mθt is
probed (queried) using input samples from the clean (DA)
and adversarial (D̈A) sets obtained from the previous step
and the clean and robust accuracy values of the target model
are estimated as follows:

ÂC(Mθt) =
1

NA

NA∑
k=1

I[Mθt(xk) = yk], (11)

Â∗
R(Mθt , ϵmin) =

1

NA

NA∑
k=1

I[Mθt(ẍk) = yk]. (12)

Here, the notation ∗ indicates that the robust accuracy of
model Mθt has been estimated based on adversarial samples
transferred from a different model M̂θr . Based on ÂC(Mθt)
and Â∗

R(Mθt , ϵmin), the Ŝ∗(Mθt , ϵmin) value of the target
model is estimated using eq. (9). Since poisoned models are
expected to have higher adversarial sensitivity than benign
models, the estimated SAP value can be directly used as a
measure for detecting poisoned models, i.e., T̃ (Mθt , τ) =
Ŝ∗(Mθt , ϵmin). The target model is detected as a trojan
if T̃ (Mθt) is greater than the decision threshold τ . It is
worth highlighting that the poisoned model detector T̃ in the
proposed A2D framework requires only black-box (query)
access to the target model Mθt and a small clean set DC .
More importantly, it does not require any knowledge of the
target model or the attack characteristics. It is worth noting
that the A2D framework can also be extended to the white-
box setting as described in Appendix (A).

4. Experimental Results
We first summarize the implementation details before pre-
senting the results of our evaluation.

4.1. Implementation Details

Datasets: We evaluate the performance of the A2D frame-
work using three well-known image datasets: MNIST [12],
CIFAR10 [25], and GTSRB (German Traffic Sign Recogni-
tion Benchmark) [42]. We also use a real-world chest X-ray
dataset [36] for additional evaluation. More detailed infor-
mation about the datasets is presented in Appendix (B.1).
See Appendix (C.7) for evaluation on ImageNet [11].
Evaluation Metrics: Given an evaluation set of n target ML
models {Mθj , zj}ni=1, where zj ∈ {benign, trojan} is the
ground-truth label of the target models, the accuracy (ACC)
of the poisoned model detector T is defined as:

ACC(T , τ) = 1

n

n∑
j=1

I[T (Mθj) = zj], (13)

where T assigns the target model to the trojan class if
T̃ (Mθj) ≥ τ and to the benign class otherwise. The false
detection rate (FDR) and true detection rate (TDR) of the
detector can be computed as:

FDR(T , τ) =
1

(n− np)

n∑
j=1

zj=benign

I[T (Mθj) = trojan],

TDR(T , τ) =
1

np

n∑
j=1

zj=trojan

I[T (Mθj) = trojan], (14)

where np and (n− np) are the numbers of poisoned and be-
nign target models in the evaluation set, respectively. Finally,
the receiver operating characteristic (ROC) curve of the de-
tector T can be obtained by varying the threshold parameter
τ and the area under the ROC curve (AUC) can be computed.
For most experiments, five runs with different random seeds
are used and the average metrics are reported. For ACC
computation, we select the value of τ that minimizes the
FDR. Typically, we observed that a value of τ between 0.6
and 0.7 is effective for all datasets when ω ≤ 0.01.
Poisoning Attacks: Most of our results are based on the
following seven types of poisoning attacks: (i) Modify [19],
(ii) Blend [9], (iii) WaNet [34], (iv) IAD [33], (v) LC [47],
(vi) SIG [1], and (vii) ISS [27]. More details about the
implementation of these attacks are included in Appendix
(B.3). Note that the above seven poisoning methods cover a
wide range of attack scenarios including sample-agnostic [1,
9, 19, 34, 47] vs. sample-specific [27, 33], label modification
[9, 19, 27, 33, 34] vs. clean label [1, 47], and visible [9,
19] vs. imperceptible triggers [1, 27, 33, 34, 47]. Also, it
must be emphasized that none of these attacks are known

24730

to the defender apriori and are used while constructing the
poisoned model detector.
Baseline Defenses: The core defense methods used for
benchmarking the proposed detector are: (i) MNTD [53],
(ii) ULP [24], (iii) CAS [56], (iv) NC [49], and (v) FRE [50].
Since FRE [50] is a very recent work that is clearly superior
to four other REDs (namely, ABS [29], DI [7], TABOR [20],
and K-arm [39]), we do not compare A2D against these
four approaches (see Appendix (C.7) for comparison against
ABS [29]). For the chest X-ray binary classification task, we
also benchmark against ET [52]. While MNTD [53], ULP
[24], and CAS [56] are detection-only methods, NC [49] and
FRE [50] are purification methods. We evaluate only their
detection components (see Appendix (B.4)).
Reference Model Details: Since the defender only has
black-box access and has no knowledge of the target model
architecture, we use ResNet-18 [21] as the default architec-
ture for the reference model. For each dataset, the defender
is assumed to possess 2% of the samples randomly selected
from the original training dataset as the clean set DC , which
is used to train the reference model from scratch. Details
of the training hyperparameters and clean accuracy of the
reference models are summarized in Appendix (B.2).
Target Model Architecture: The target models for MNIST
use a 2CONV+2FC architecture (following [53]) for experi-
ments with Modify and Blend attacks and a 3CONV+2FC
architecture (following [34]) for WaNet and IAD attacks.
For CIFAR10 and GTSRB datasets, target models are based
on the PREACTRESNET18 architecture [22].
Training Target Models: 50 benign target models are
trained for each dataset using the full training set based
on eq. (1). It is assumed that the adversary has access to the
full training set and trains poisoned models by corrupting a
proportion ρ of the training samples, where ρ is uniformly
sampled from the range [0.05, 0.5]. The adversary can em-
ploy any of the seven poisoning attacks listed earlier to create
the poisoned models. For evaluation, we use 50 models each
of Modify and Blend attacks, and 20 models each of WaNet,
IAD, LC, SIG, and ISS attacks per dataset. Details of the
training hyperparameters and clean accuracy of the target
models are summarized in Appendix (B.2).
Adversarial Attacks: We employ Projected Gradient De-
scent (PGD) [30] as our main adversarial attack to evaluate
the adversarial sensitivity of the reference model and gen-
erate the attack set D̈A. Results on the Fast Gradient Sign
Method (FGSM) [18] are also reported in Appendix (C.1).

4.2. Benchmarking of Detection Accuracy

Performance comparison of the A2D approach against other
state-of-the-art (SOTA) poisoned model detectors is summa-
rized in Table 1. The results clearly show that the proposed
method outperforms the SOTA by a significant margin on
almost all the attacks across the three datasets. Some key

insights from Table 1 are as follows:
(1) While many methods achieve good detection accuracy
for the simple Modify and Blend attacks, their performance
drops substantially when encountering more sophisticated
attacks such as WaNet, IAD, LC, SIG, and ISS, highlighting
their poor generalizability to new/unseen attacks. The pro-
posed approach generalizes well across attacks, though it has
marginally low detection accuracy than SOTA for Modify
and Blend attacks in GTSRB and CIFAR-10, respectively.
(2) It must be emphasized that the low detection accuracy
(50%) of the baseline methods for some attacks (e.g., NC
on LC and ISS attacks in the CIFAR-10 dataset, FRE on LC
and SIG attacks on GTSRB, etc.) is primarily due to their
inability to detect poisoned models (all the target models in
the evaluation set are categorized as benign, leading to low
TDR). This demonstrates the difficulty in detecting invisible
and clean label attacks and overcoming this challenge is the
main strength of the proposed A2D framework. Furthermore,
since NC and FRE are purification methods, failure to detect
a poisoning attack will result in the model evading purifica-
tion and remaining poisoned. This is worse than incorrectly
flagging a few benign models as trojan (degrading their
clean accuracy) because it may give a false sense of security.
(3) The performance metrics of many baseline methods vary
widely across datasets - for example, while NC and FRE
methods achieve high accuracy against ISS attacks on the
GTSRB dataset, they have very poor detection accuracy
for the same attack on the CIFAR-10 dataset. This may
be attributed to their high sensitivity to hyperparameters.
Since we attempt to retain the same hyperparameters across
datasets, settings that are optimal for one dataset may not
work for a different dataset. The consistent performance
of the A2D framework across datasets is a testimony to its
lower sensitivity to hyperparameter values.
(4) The good generalizability of the A2D method in com-
parison to CAS [56] (which is also based on the same core
hypothesis) can be attributed to the fact that there is no meta-
classifier training phase involved and no specific poisoning
attacks are used anywhere in the proposed detection process.
To assess the robustness of our method on real-world
datasets, we conducted additional experiments on the chest
X-ray dataset involving a binary classification task (tubercu-
losis prediction). Since many of the REDs cannot be applied
for binary classifiers, we compare A2D with ET [52] on this
dataset. Table 2 provides a summary of the detection accu-
racy of our method compared to ET on Blend, WaNet, and
IAD attacks. It is evident that our method outperforms ET,
especially in detecting stealthy attacks where the features of
the image and the trigger are intricately mixed.

4.3. Why A2D Framework Works?

Recall that the core hypothesis underlying the A2D frame-
work is that poisoned models are more sensitive to adversar-

24731

Table 1. Benchmarking of different state-of-the-art poisoned model detection methods. The metrics in this Table are averaged over 5 runs.

Metric (%) Method
MNIST CIFAR10 GTSRB

Modify Blend WaNet IAD Modify Blend WaNet IAD LC SIG ISS Modify Blend WaNet IAD LC SIG ISS

MNTD [53] 56.6 54.4 57 59.3 68.9 68.7 75 64.3 57.2 62.5 71 60 55.5 <50 50.2 50 62.5 55
ULP [24] 63 77 <50 82.5 62.3 59.2 52.5 <50 69.4 50 53 54 58 <50 <50 60 50 50ACC(↑)
NC [49] 80 60 57.5 65 74 66 70 70 50 90 50 93 95 75 67.5 50 55 95
FRE [50] - - - - 88 90 75 80 50 55 60 90 90 86 65 50 50 100
CAS [56] 94 74 87.5 70 91 85 57.5 62 85 60 55 99 97 92.5 50 50 50 50
A2D (Ours) 94.6 99.6 100 100 93 86.6 100 95 95 100 100 96.8 97.4 100 100 95 95.5 100

TDR(↑) A2D (Ours) 89.6 99.6 100 100 92.8 80 100 90 90 100 100 98.8 100 100 100 90 91 100
FDR(↓) A2D (Ours) 0.4 0.4 0 0 6.8 6.8 0 0 0 0 0 5.2 5.2 0 0 0 0 0
AUC(↑) A2D (Ours) 95.7 100 100 96.3 89.6 87.7 96.9 86.2 100 100 100 96.4 96 99.9 100 97.9 95.1 100

ial attacks compared to benign models. Independent works
in [35, 56] have also hinted at the same possibility, with-
out offering any theoretical proofs. It has been argued that
poisoning can alter the model’s decision boundary, making
it easier for an adversary to find points that are close to
the boundary but still classified incorrectly by the model
[56]. To verify this hypothesis, we conducted the following
experiment. We observe the behavior of poisoned models
with modification attack when fed with a clean sample (x)
and its corresponding poisoned counterpart (x̃ = Iϕ(x, t)).
Let a(x) and a(x̃) denote the neuron activations based on
the clean and poisoned samples, respectively. The set of
neurons corresponding to the top-K activation differences
between a(x) and a(x̃) (we set K = 10000), denoted as
bp(x, x̃), can be considered as the backdoor pathway created
via poisoning attack.
Next, we adversarially attack the poisoned model based on
the same input x to create the adversarial sample ẍ. Let
a(ẍ) be the neuron activations for the adversarial sample
and ap(x, ẍ) be the top-K activation differences between
a(x) and a(ẍ), which can be considered as the pathway used
by the adversarial attack. We then compute the intersection-
over-union (IOU) metric between the two sets of neurons in
bp(x, x̃) and ap(x, ẍ). A higher IOU value is an indication
that the adversarial attack is leveraging the same pathway
(neurons) inserted into the model by the poisoning attack.
We repeat the same analysis based on benign models and
compute the corresponding IOU values. Figure 2 shows the
density estimate of the IOU values computed using benign
and poisoned models. Clearly, the poisoned models tend to
have higher IOU values than benign models, which demon-
strates that the backdoor inserted by the poisoning attack
indeed creates an easy pathway through the network that
can be exploited by the adversarial attack to find adversarial
samples. While this trend is consistent across different types
of model architectures and poisoning attacks, the degree of
separation between the benign and trojan IOU distributions
varies depending on the specific architecture and poisoning
attack employed. This experiment validates our hypothesis
about the higher adversarial vulnerability of poisoned models

and explains the good performance of the A2D framework.

Figure 2. The density estimate of the IOU values computed using
benign and poisoned models on CIFAR10(left) and GTSRB(right).

4.4. Sensitivity Analysis

The key choices that can potentially impact the effectiveness
of the A2D framework are: (i) reference model architec-
ture M̂ , (ii) adversarial attack type, (iii) size and quality of
the clean set DC and the number of samples NA used for
adversarial sensitivity evaluation, and (iv) trigger properties.
Impact of Reference Model Architecture: To evaluate the
impact of reference model architecture, we consider three
architectures - ResNet18 [21], PREACTRESNET18 [22]
and VGG16 [40], and use all possible combinations of these
architectures for target and reference models. Interestingly,
our findings in Table 3 indicate that the architecture of the ref-
erence model itself does not significantly affect the detection
accuracy. While the detection accuracy is marginally higher
in cases where the reference model architecture is the same
as the target model architecture (gray-box setting), good
detection accuracy can also be achieved in the black-box
scenario when the two architectures are different. This im-
plies that the reference model architecture plays a minor role
and the data distribution is the main factor determining the
adversarial sensitivity of models. While these experiments
indicate good generalizability across a family of convolu-
tional neural network models, more experiments with other
models such as vision transformer are required to confirm
the black-box capabilities of the A2D approach.

24732

Metric (%) Method
Chest X-ray

Blend WaNet IAD

ACC(↑) ET [52] 75 50 50
A2D (Ours) 80 87.5 100

Table 2.
Benchmarking
against ET [52]
on chest X-ray

dataset.

Table 3. Average detection accuracy (ACC %) comparison for
different model architectures.

Dataset Reference Model
Target Model

PreActResNet ResNet18 VGG16

CIFAR10 PreActResNet 95.66 92.79 96.07
ResNet18 95.06 92.86 96.07
VGG16 95.06 97.36 97.93

GTSRB PreActResNet 98.53 98.86 98.14
ResNet18 97.91 99.71 98.43
VGG16 98.29 100.00 98.21

Impact of Sample Sizes: We investigated the impact of
various sample size parameters on the A2D method and the
detailed results are presented in Appendix (C.2). We ob-
served that changing the size of the clean set from 2% to
5% of the training set had little impact on the accuracy and
ϵmin values. Using a clean set drawn from the same distri-
bution GC but is independent of the training set had only a
marginal negative impact on the detection accuracy for both
datasets - detailed results are in Appendix (C.4). However,
the number of samples used for the adversarial attack did
have some impact on the detection accuracy. Specifically,
a minimum of 100 attack samples is required for reliable
poisoned model detection. Furthermore, the margin param-
eter ω should be less than 0.1 (i.e., Ŝ(M̂θr , ϵ) ≥ 0.9) for
achieving high accuracy. This is because only strong attacks
against the reference model transfer well to the target model,
as shown in Appendix (C.1). Impact of Trigger Properties:
We evaluated the effect of trigger transparency (visibility)
and spatial size of the trigger on detection accuracy. The
results in Appendix (C.3) show that the poisoned models are
detectable irrespective of the trigger size and visibility.

4.5. Robustness and Utility of A2D Framework

Adaptive Attack: If the attacker knows that a specific de-
fense mechanism is employed, can an additional objective
be added to the poisoning attack to achieve high ACC and
ASR as well as fool the defense mechanism? In this exper-
iment, we investigated whether the adversary can generate
a poisoned model that is also adversarially robust. This can
be realized by either starting with an adversarially trained
model (see Appendix (C.5) for results) or by incorporating
an additional adversarial loss term during training (to reduce
the adversarial sensitivity of the model) in addition to mini-
mizing the loss of clean and poisoned samples. The results
of this strong adaptive attack are depicted in Figure 3. This
shows the infeasibility of increasing vulnerability to poison-

ing attacks while maintaining a low adversarial sensitivity.
Attempting to minimize the three losses (clean, poison, and
adversarial) together leads to a substantial drop in ASR. This
is due to the conflicting objectives of poisoning attack and
adversarial training. While poisoning aims to push the poi-
soned sample towards the target class, adversarial training
aims to push the perturbed sample back to the source class.

Figure 3. Training loss (left y-axis) and attack success rate (right
y-axis) for an adaptive attack.

Using A2D in conjunction with NC: It must be emphasized
that the A2D approach only detects poisoned models. How-
ever, it can be easily integrated with other purification meth-
ods such as NC or FRE, which often have a low TDR. For
example, in NC [49], the detection step based on anomaly
index can be replaced using the A2D method. If a model is
flagged as trojan by our method, we can utilize the reversed
trigger in NC with the highest anomaly index and apply the
NC patching (unlearning) method. To validate this approach,
we identified 9 poisoned models on the CIFAR10 dataset,
employing PREACTResNet-18, ResNet, and VGG architec-
tures along with SIG, LC, and ISS attacks. Originally, NC
classified these models as benign and failed to purify them,
while our A2D method correctly identified them as trojan.
Results in Appendix (C.6) illustrate the average clean accu-
racy and ASR of these models before and after cleansing.
Although the “cleansed” models experienced ≈ 10% drop
in clean accuracy, the ASR dropped from over 90% to less
than 10%. This proves the utility of our approach, especially
when the option to reject a model is not feasible.

5. Conclusions
We have presented the (A2D) approach for detecting poi-
soned DNN models, which leverages the increased vul-
nerability of poisoned models to adversarial attacks. We
have demonstrated the generalizability of our method across
datasets, attacks, and models, especially in the black-box sce-
nario. Limitations: As with majority of existing methods,
our approach also needs a limited set of clean samples.

24733

References
[1] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new

backdoor attack in cnns by training set corruption without
label poisoning. In IEEE International Conference on Image
Processing (ICIP), pages 101–105. IEEE, 2019.

[2] Chandradeep Bhatt, Indrajeet Kumar, V Vijayakumar, Kam-
red Udham Singh, and Abhishek Kumar. The state of the art of
deep learning models in medical science and their challenges.
Multimedia Systems, 27(4):599–613, 2021.

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[4] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021.

[5] Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In IEEE Symposium on
Security and Privacy (S&P), pages 39–57. IEEE, 2017.

[6] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko
Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and
Biplav Srivastava. Detecting backdoor attacks on deep neural
networks by activation clustering. In Workshop on Artificial
Intelligence Safety. CEUR-WS, 2019.

[7] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
Deepinspect: A black-box trojan detection and mitigation
framework for deep neural networks. In International Joint
Conferences on Artificial Intelligence (IJCAI), page 8, 2019.

[8] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
Proflip: Targeted trojan attack with progressive bit flips. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 7718–7727, 2021.

[9] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[10] Francesco Croce and Matthias Hein. Reliable evaluation of
adversarial robustness with an ensemble of diverse parameter-
free attacks. In International Conference on Machine Learn-
ing (ICML), pages 2206–2216. PMLR, 2020.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In IEEE/CVF International Conference on Computer Vision
(ICCV), pages 248–255. IEEE, 2009.

[12] Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141–142, 2012.

[13] Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geip-
ing, Wojciech Czaja, and Tom Goldstein. Adversarial exam-
ples make strong poisons. Advances in Neural Information
Processing Systems (NeurIPS), 34:30339–30351, 2021.

[14] Yinghua Gao, Dongxian Wu, Jingfeng Zhang, Guanhao Gan,
Shu-Tao Xia, Gang Niu, and Masashi Sugiyama. On the
effectiveness of adversarial training against backdoor attacks.

IEEE Transactions on Neural Networks and Learning Systems
(TNNLS), 2023.

[15] Jonas Geiping, Liam Fowl, Gowthami Somepalli, Micah
Goldblum, Michael Moeller, and Tom Goldstein. What
doesn’t kill you makes you robust (er): How to adversarially
train against data poisoning. arXiv preprint arXiv:2102.13624,
2021.

[16] Hamed Ghoddusi, Germán G Creamer, and Nima Rafizadeh.
Machine learning in energy economics and finance: A review.
Energy Economics, 81:709–727, 2019.

[17] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen,
Avi Schwarzschild, Dawn Song, Aleksander Madry, Bo Li,
and Tom Goldstein. Dataset security for machine learning:
Data poisoning, backdoor attacks, and defenses. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2022.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

[19] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[20] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn
Song. Tabor: A highly accurate approach to inspecting
and restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763, 2019.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE /
CVF Computer Vision and Pattern Recognition Conference
(CVPR), pages 770–778, 2016.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
Conference on Computer Vision (ECCV), pages 630–645.
Springer, 2016.

[23] Wei Jiang, Xiangyu Wen, Jinyu Zhan, Xupeng Wang, Ziwei
Song, and Chen Bian. Critical path-based backdoor detection
for deep neural networks. IEEE Transactions on Neural
Networks and Learning Systems (TNNLS), 2022.

[24] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and
Heiko Hoffmann. Universal litmus patterns: Revealing back-
door attacks in cnns. In IEEE /CVF Computer Vision and Pat-
tern Recognition Conference (CVPR), pages 301–310, 2020.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[26] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and
Yunxin Liu. Deeppayload: Black-box backdoor attack on
deep learning models through neural payload injection. In
2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 263–274. IEEE, 2021.

[27] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He,
and Siwei Lyu. Invisible backdoor attack with sample-specific
triggers. In In IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 16463–16472, 2021.

[28] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Back-
door learning: A survey. IEEE Transactions on Neural Net-
works and Learning Systems (TNNLS), 2022.

[29] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma,
Yousra Aafer, and Xiangyu Zhang. Abs: Scanning neural

24734

networks for back-doors by artificial brain stimulation. In
ACM SIGSAC Conference on Computer and Communications
Security, pages 1265–1282, 2019.

[30] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations (ICLR), 2018.

[31] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. Universal adversarial perturba-
tions. In IEEE /CVF Computer Vision and Pattern Recogni-
tion Conference (CVPR), pages 1765–1773, 2017.

[32] Bingxu Mu, Zhenxing Niu, Le Wang, Xue Wang, Qiguang
Miao, Rong Jin, and Gang Hua. Progressive backdoor erasing
via connecting backdoor and adversarial attacks. In IEEE
/CVF Computer Vision and Pattern Recognition Conference
(CVPR), pages 20495–20503, 2023.

[33] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic back-
door attack. Advances in Neural Information Processing
Systems (NeurIPS), 33:3454–3464, 2020.

[34] Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible
warping-based backdoor attack. In International Conference
on Learning Representations (ICLR), 2021.

[35] Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy
Vorobeychik, Xiapu Luo, Alex Liu, and Ting Wang. A tale
of evil twins: Adversarial inputs versus poisoned models. In
ACM SIGSAC Conference on Computer and Communications
Security, pages 85–99, 2020.

[36] Tawsifur Rahman, Amith Khandakar, Muhammad Abdul
Kadir, Khandaker Rejaul Islam, Khandakar F Islam, Rashid
Mazhar, Tahir Hamid, Mohammad Tariqul Islam, Saad
Kashem, Zaid Bin Mahbub, et al. Reliable tuberculosis detec-
tion using chest x-ray with deep learning, segmentation and
visualization. IEEE Access, 8:191586–191601, 2020.

[37] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Tar-
geted neural network attack with bit trojan. In IEEE/CVF
Computer Vision and Pattern Recognition Conference
(CVPR), pages 13198–13207, 2020.

[38] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsi-
avash. Hidden trigger backdoor attacks. In AAAI Conference
on Artificial Intelligence, pages 11957–11965, 2020.

[39] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An,
Qiuling Xu, Siyuan Cheng, Shiqing Ma, and Xiangyu Zhang.
Backdoor scanning for deep neural networks through k-arm
optimization. In International Conference on Machine Learn-
ing (ICML), pages 9525–9536. PMLR, 2021.

[40] K Simonyan and A Zisserman. Very deep convolutional
networks for large-scale image recognition. In International
Conference on Learning Representations (ICLR), 2015.

[41] Hossein Souri, Liam Fowl, Rama Chellappa, Micah Gold-
blum, and Tom Goldstein. Sleeper agent: Scalable hidden trig-
ger backdoors for neural networks trained from scratch. Ad-
vances in Neural Information Processing Systems (NeurIPS),
35:19165–19178, 2022.

[42] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Chris-
tian Igel. The german traffic sign recognition benchmark: a
multi-class classification competition. In International Joint
Conference on Neural Networks (IJCNN), pages 1453–1460.
IEEE, 2011.

[43] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior
Wolf. Deepface: Closing the gap to human-level performance
in face verification. In IEEE /CVF Computer Vision and
Pattern Recognition Conference (CVPR), pages 1701–1708,
2014.

[44] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and
Xia Hu. An embarrassingly simple approach for trojan attack
in deep neural networks. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages
218–228, 2020.

[45] Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Song-
can Chen. Better safe than sorry: Preventing delusive ad-
versaries with adversarial training. Advances in Neural In-
formation Processing Systems (NeurIPS), 34:16209–16225,
2021.

[46] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral sig-
natures in backdoor attacks. Advances in Neural Information
Processing Systems (NeurIPS), 31, 2018.

[47] Alexander Turner, Dimitris Tsipras, and Aleksander
Madry. Label-consistent backdoor attacks. arXiv preprint
arXiv:1912.02771, 2019.

[48] Eric Wallace, Tony Z Zhao, Shi Feng, and Sameer Singh.
Customizing triggers with concealed data poisoning. arXiv
preprint arXiv:2010.12563, 2020.

[49] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural net-
works. In IEEE Symposium on Security and Privacy (S&P),
pages 707–723. IEEE, 2019.

[50] Zhenting Wang, Kai Mei, Hailun Ding, Juan Zhai, and
Shiqing Ma. Rethinking the reverse-engineering of trojan
triggers. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2022.

[51] Cheng-Hsin Weng, Yan-Ting Lee, and Shan-Hung Brandon
Wu. On the trade-off between adversarial and backdoor ro-
bustness. Advances in Neural Information Processing Systems
(NeurIPS), 33:11973–11983, 2020.

[52] Zhen Xiang, David Miller, and George Kesidis. Post-training
detection of backdoor attacks for two-class and multi-attack
scenarios. In International Conference on Learning Repre-
sentations (ICLR), 2022.

[53] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A
Gunter, and Bo Li. Detecting ai trojans using meta neural
analysis. In IEEE Symposium on Security and Privacy (S&P),
pages 103–120. IEEE, 2021.

[54] Mingfu Xue, Yinghao Wu, Zhiyu Wu, Yushu Zhang, Jian
Wang, and Weiqiang Liu. Detecting backdoor in deep neural
networks via intentional adversarial perturbations. Informa-
tion Sciences, 634:564–577, 2023.

[55] Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo,
Min Yuan, and Yu Jiang. Advdoor: adversarial backdoor
attack of deep learning system. In ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pages
127–138, 2021.

[56] Xiaoyu Zhang, Rohit Gupta, Ajmal Mian, Nazanin Rah-
navard, and Mubarak Shah. Cassandra: Detecting trojaned
networks from adversarial perturbations. IEEE Access, 9:
135856–135867, 2021.

24735

