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Abstract

Text-to-video (T2V) synthesis has gained increasing at-
tention in the community, in which the recently emerged dif-
fusion models (DMs) have promisingly shown stronger per-
formance than the past approaches. While existing state-
of-the-art DMs are competent to achieve high-resolution
video generation, they may largely suffer from key limita-
tions (e.g., action occurrence disorders, crude video mo-
tions) with respect to the intricate temporal dynamics mod-
eling, one of the crux of video synthesis. In this work, we in-
vestigate strengthening the awareness of video dynamics for
DMs, for high-quality T2V generation. Inspired by human
intuition, we design an innovative dynamic scene manager
(dubbed as Dysen) module, which includes (step-1) extract-
ing from input text the key actions with proper time-order
arrangement, (step-2) transforming the action schedules
into the dynamic scene graph (DSG) representations, and
(step-3) enriching the scenes in the DSG with sufficient and
reasonable details. Taking advantage of the existing power-
ful LLMs (e.g., ChatGPT) via in-context learning, Dysen re-
alizes (nearly) human-level temporal dynamics understand-
ing. Finally, the resulting video DSG with rich action scene
details is encoded as fine-grained spatio-temporal features,
integrated into the backbone T2V DM for video generat-
ing. Experiments on popular T2V datasets suggest that our
Dysen-VDM consistently outperforms prior arts with signif-
icant margins, especially in scenarios with complex actions.
Codes at http://haofei.vip/Dysen-VDM/.

1. Introduction
Recently, AI-Generated Content (AIGC) has witnessed

thrilling advancements and remarkable progress, e.g., Chat-
GPT [46], DELLE-2 [49] and Stable Diffusion (SD) [51].
As one of the generative topics, text-to-video synthesis that
generates video content complying with the provided tex-
tual description has received an increasing number of atten-
tion in the community. Prior researches develop a variety
of methods for T2V, including generative adversarial net-
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Figure 1. Common issues in the existing text-to-video (T2V) syn-
thesis. We run the video diffusion model (VDM) [23] with random
100 prompts, and ask users to summarize the problems.

works (GANs) [1, 42, 53], variational autoencoders (VAEs)
[8, 34, 82], flow-based models [4, 32], and auto-regressive
models (ARMs) [11, 30, 75]. More recently, diffusion mod-
els (DMs) have emerged to provide a new paradigm of
T2V. Compared with previous models, DMs advance in
superior generation quality and scaling capability to large
datasets [17, 25], and thus showing great potential on this
track [39, 41, 43, 85].

Although achieving the current state-of-the-art (SoTA)
generative performance, DM-based T2V still faces several
common yet non-negligible challenges. As summarized in
Figure 1, four typical issues can be found in a diffusion-
based T2V model, such as lower frame resolution, un-
smooth video transition, crude video motion and action oc-
currence disorder. While the latest DM-based T2V explo-
rations paid much effort into enhancing the quality of video
frames, i.e., generating high-resolution images [43, 85, 91],
they may largely overlook the modeling of the intricate
video temporal dynamics, the real crux of high-quality
video synthesis, i.e., for relieving the last three types of
aforementioned issues. According to our observation, the
key bottleneck is rooted in the nature of video-text modality
heterogeneity: language can describe complex actions with
few succinct and abstract words (e.g., predicates and mod-
ifiers), whereas video requires specific and often redundant
frames to render an action.

Picturing that, whenever we humans create a film from
a given instruction, we always first extract the key actions
from the instruction into an event playlist with time order.
We then enrich the simple events with more possible spe-
cific scenes, i.e., with our imagination. With such integral
screenplay, it can be effortless to project the whole video
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Figure 2. The architecture of the dynamics-aware T2V diffusion model, Dysen-VDM. The dynamic scene manager (Dysen) module
operates over the input text prompt and produces the enriched dynamic scene graph (DSG), which is encoded into the resulting fine-
grained spatio-temporal scene features are integrated into the video generation (denoising) process.

successfully. Correspondingly, from the above intuition we
can draw four key points of effective T2V modeling, es-
pecially for the scenario with complex dynamics. First, se-
quential language mentions a set of movements that may not
necessarily coincide with the physical order of occurrence,
it is thus pivotal to properly organize the semantic chrono-
logical order of events. Second, as prompt texts would
not cover all action scenes, reasonable enrichment of video
scenes is indispensable to produce delicate videos with de-
tailed movements. Third, the above processes should be
carried out based on effective representations of structured
semantics, to maintain the imagination of high-controllable
dynamic scenes. Finally, fine-grained spatio-temporal fea-
tures modeling should be realized for temporally coherent
video generation.

Based on the above observations, in this work we present
a nichetargeting solution to achieve high-quality T2V gen-
eration by strengthening the awareness of video dynam-
ics. We propose a dynamics-aware T2V diffusion model,
as shown in Figure 2, in which we first employ the existing
SoTA video DM (VDM) as the backbone T2V synthesis,
and meanwhile devise an innovative dynamic scene man-
ager (namely Dysen) module for video dynamics modeling.
To realize the human-level temporal dynamics understand-
ing of video, we take advantage of the current most power-
ful LLM, e.g., OpenAI ChatGPT (GPT3.5/GPT4); we treat
ChatGPT as the consultant for action planning and scene
imagination in Dysen. Specifically, in step-I, we extract the
key actions from the input text, which are properly arranged
in physically occurring orders. In step-II, we then convert
these ordered actions into sequential dynamic scene graph
(DSG) representations [26]. DSGs represent the intrinsic
spatial&temporal characteristic of videos in semantic struc-
tures, allowing effective and controllable video scene man-
agement [35]. In step-III, we enrich the scenes in the DSG

with sufficient and reasonable details. We elicit the knowl-
edge from ChatGPT with the in-context learning [74]. At
last, the resulting DSGs with well-enriched scene details are
encoded with a novel recurrent graph Transformer, where
the learned delicate fine-grained spatio-temporal features
are integrated into the backbone T2V DM for generating
high-quality fluent video.

We evaluate our framework on the popular T2V datasets,
including UCF-101 [58], MSR-VTT [80], as well as the
action-complex ActivityNet [31], where our model consis-
tently outperforms existing SoTA methods on both the au-
tomatic and human evaluations with significant margins.
We show that our Dysen-VDM system can generate videos
in higher motion faithfulness, richer dynamic scenes, and
more fluent video transitions, and especially improves on
the scenarios with complicated actions. Further in-depth
analyses are shown for a better understanding of how each
part of our methods advances.

Overall, this paper addresses the crux of high-quality
T2V synthesis by strengthening the motion dynamics mod-
eling in diffusion models. We contribute in multiple as-
pects. (i) To our knowledge, this is the first attempt to
leverage the LLMs for action planning and scene imagina-
tion, realizing the human-level temporal dynamics under-
standing for T2V generation. (ii) We enhance the dynamic
scene controllability in diffusion-based T2V synthesis with
the guidance of dynamic scene graph representations. (iii)
Our system empirically pushes the current arts of T2V syn-
thesis on benchmark datasets. Our codes will be open later
to facilitate the community.

2. Related Work
Synthesizing videos from given textual instructions, i.e.,

T2V, has long been one of the key topics in generative AI.
A sequence of prior works has proposed different genera-
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tive neural models for T2V. Initially, many attempts extend
the GANs [13] models from image generation [60, 81, 92]
to video generation [7, 10, 14, 29, 56]. While GANs of-
ten suffer from the issue of mode collapse leading to hard
scalability, other approaches have proposed learning the
distribution with better mode coverage and video quality
than GAN-based approaches, such as VAEs [8, 34, 82],
flow-based models [4, 32] and ARMs [11, 30, 75]. Re-
cently, diffusion models [22] have emerged, which learn a
gradual iterative denoising process from the Gaussian dis-
tribution to the data distribution, generating high-quality
samples with wide mode coverage. Diffusion-based T2V
methods help bring better results with more stable train-
ing [17,21,25,39,41,47,78]. Further, latent diffusion mod-
els (LDMs) [52] have been proposed to learn the data dis-
tribution from low-dimensional latent space, which helps
sufficiently reduce the computation costs, and thus receive
increasing attention for T2V synthesis [18, 43, 85, 91]. In
this work, we inherit the advance of LDMs, and adopt it as
our backbone T2V synthesizer.

Compared with the text-to-image (T2I) generation [52,
57, 81, 92] that mainly focuses on producing static visions
in high-fidelity resolutions, T2V further places the empha-
sis on the modeling both of spatial&temporal semantics,
especially the scene dynamics. Previously, some T2V re-
search explores video dynamics modeling for generating
high-quality videos [9, 38, 67, 86, 87], i.e., higher tempo-
ral fluency, and complex motions, while they may largely
be limited to the coarse-level operations, such as the spatio-
temporal convolutions [67]. In the line of DM-based T2V
[12, 36, 71, 72, 77, 79, 88, 90], most of the methods consider
improving the video quality by enhancing the frame reso-
lution [43, 85, 91], instead of the perception of dynamics.
Most of the LDM-based T2V work also uses the spatio-
temporal factorized convolutions in the 3D-UNet decoder
[18, 69, 70, 91]. For example, [2] tries to strengthen mo-
tion awareness with a temporal shift operation. All of these
attempts, unfortunately, can be seen as a type of coarse-
grained modeling. In this work, we take fine-grained spatio-
temporal feature modeling based on DSG representations.
We propose a systematic solution to enhance the diffusion
awareness of the action dynamics.

3. Preliminary
3.1. Text-to-video Latent Diffusion Model

We first formalize T2V task as generating an video
X={x1, · · · , xF } ∈ RF×H×W×C that specifies the de-
sired content in the input prompt text Y ={w1, · · · , wS}.
Here F,H,W,C are the frame length, height, width, and
channel number of video, respectively. A latent diffu-
sion model (LDM) is adopted for T2V which performs
a forward (diffusion) process and a reverse (denoising)
process in the video latent space. Firstly, an encoder

E maps the video frames into the lower-dimension la-
tent space, i.e., Z0 = E(X), and later a decoder D
re-maps the latent variable to the video, X = D(Z0).
Given the compressed latent code Z0, LDM gradually cor-
rupts it into a pure Gaussian noise ZT ∼ N (ZT , 0, I)
over T steps by increasingly adding noisy, formulated as
q(Z1:T |Z0) =

∏T
t=1 q(Zt|Zt−1). and the learned reverse

process pθ(Z0:T ) = p(ZT )
∏T

t=1 pθ(Zt−1|Zt, Y ) gradu-
ally reduces the noise towards the data distribution condi-
tioned on the text Y . T2V LDM is trained on video-text
pairs (X,Y ) to gradually estimate the noise ϵ added to the
latent code given a noisy latent Zt, timestep t, and condi-
tioning text Y :

LLDM = EZ∼E(X),Y,ϵ,t

[
||ϵ− ϵθ(Zt, t, C(Y ))||2

]
, (1)

where C(Y ) denotes a text encoder that models the condi-
tional text, and the denoising network εθ(·) is often imple-
mented via a 3D-UNet [23], as illustrated in Figure 2.

3.2. Dynamic Scene Graph Representation
DSG [26] is a list of single visual SG of each video

frame, organized in time-sequential order. We denote an
DSG as G={G1, · · · , GM}, with each SG (Gm) corre-
sponding to the frame (xm). An SG contains three types
of nodes, i.e., object, attribute, and relation, in which some
scene objects are connected in certain relations, forming
the spatially semantic triplets ‘subject-predicate-object’.
Also, objects are directly linked with the attribute nodes
as the modifiers. Besides, since a video comes with in-
herent continuity of actions, the SG structure in DSG is
always temporal-consistent across frames. This character-
izes DSGs with spatial&temporal modeling. Figure 2 (right
part) simply visualizes a DSG.

4. Methodology
Overall Framework. The architecture of our proposed

dynamics-aware T2V diffusion framework is shown in Fig-
ure 2. The backbone T2V synthesizer is an LDM (cf. §3.1).
During the denoising, the dynamic scene manager (Dysen)
module (cf. §4.1) effectively captures the intrinsic spatial-
temporal characteristic of input texts to better guide the T2V
generation in the mainstay LDM (cf. §4.2).

4.1. Dynamic Scene Manager
As cast earlier, the input language instruction can often

be succinct and abstract, which causes trouble generating
concrete dynamic visual scenes in videos, especially when
the actions are semantically complex. To bridge the gap of
dynamic scenes between texts and videos, here we propose
a dynamic scene manager. With Dysen, we carry out three
steps of operations: action planning, event-to-DSG conver-
sion, and scene enrichment. Recently, the rise of LLMs has
revealed the amazing potentials [6, 45, 62], among which,
ChatGPT [46] is the most outstanding one in content un-
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Figure 3. Based on the given text, Dysen module carries out three steps of operations to obtain enriched DSG: 1) action planning, 2) event-
to-DSG conversion, and 3) scene imagination, where we take advantage of ChatGPT (i.e., GPT3.5 or GPT4) with in-context learning.

derstanding, and perceiving complex events from language
and comprehending the dynamic scenes in the way humans
do [68, 76]. Thus, we elicit such action planning and scene
imagination abilities from ChatGPT.

Step-I: Action Planning. We first ask ChatGPT to extract
the key actions from the prompt texts. Technically, we em-
ploy in-context learning (ICL) [74]. We write the prompts,
which include 1) a job description (Instruction), 2) a
few input-output in-context examples (Demonstration),
and 3) the desired testing text (Test). Feeding the ICL
prompts, we expect ChatGPT to return the desired action
plans, as illustrated in Figure 3. Specifically, we represent
an action scene as “(agent, event-predicate, target, (start-
time, end-time))”, in which ‘agent, event-predicate, target’
is the event triplet corresponding to the relational triplets as
described in DSG (cf. §3.2); ‘start-time, end-time’ is the
temporal interval of this event. Note that the atomic time
interval is assumed as v, which is disentangled from a phys-
ical time duration. Both the event scene triplets and the time
arrangements are decided via ChatGPT’s understanding of
the input. This way, even complex actions with multiple
overlapped or concurrent events will be well supported.

Step-II: Event-to-DSG Conversion. With the event
schedule at hand, we then transform it into a holistic DSG

structure. Note that this DSG can be quite primitive, as each
SG structure within DSG almost contains one triplet, which
can be seen as the skeleton of the dynamic scenes. Specif-
ically, we construct the DSG along with the time axis in-
crementally, i.e., with each frame step having a correspond-
ing SG. According to the occurrence order and duration of
events, in each frame we add or remove a triplet, until han-
dling the last event. This also ensures the SG at each frame
step is globally unique. The resulting DSG well represents
the skeleton spatial-temporal feature of the events behind
the input. Figure 3 illustrates the conversion process.

Step-III: Scene Imagination. Based on the above ini-
tial DSG (denoted as G={G1, · · · , GM}), we finally en-
rich the scenes within each SG. For example, for each SG,
there should be visually abundant scenes, e.g., objects will
have various possible attributes, and different objects can
be correlated with new feasible relations within the scene.
Also, the temporal changes between SG frames should be
reflected, instead of the constant SG across a period. This
is intuitively important because all the events are continu-
ous in time, and all the motions happen smoothly, e.g., in
‘a person sitting on a chair’, the motion ‘sitting’ can be
broken down into a consecutive motion chain: ‘approach-
ing’→‘near to’→‘sitting’. We again adopt the ChatGPT to
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complete the job, as it is effective in offering rich and rea-
sonable imagination [15, 16]. Concretely, the scene enrich-
ment has two rounds. The first round preliminarily enriches
each SG one by one, i.e., by either adding some new triplets
or changing the existing triplets. As shown in Figure 3, the
ICL technique is again used to prompt ChatGPT to yield the
triplets to be added for the current SG, given the raw input
text. To ensure the dynamic scene coherency, we consider
a sliding window context (SWC) mechanism, when operat-
ing for the current SG, takes into account the current, previ-
ous (enriched), and following contexts of SGs (e.g., [Gm−1,
Gm, Gm+1]). This way, Gm can inherit from the previous
well-established scene Gm−1, and meanwhile decide what
to add or change to better transit to the next scene Gm+1.
The second round further reviews and polishes the overall
scenes of DSG from a global viewpoint, also via ChatGPT
in another ICL prompting process. This ensures all the ac-
tions go more reasonably and consistently. The resulting
final DSG is denoted as G={G1, · · · , GM}).

4.2. Scene Integration for T2V Generation
The enriched DSG (G) entails fine-grained spatial and

temporal features. Instead of using the general graph neu-
ral networks to encode the DSG structure, e.g., GCN, GAT,
and RGNN [40, 44, 66], we consider the Transformer ar-
chitecture [65] that allows highly-parallel computation with
the self-attention calculation. To further model the tempo-
ral dynamics of the graphs, we consider the recurrent graph
Transformer (RGTrm). RGTrm has L stacked layers, with a
total of M recurrent steps of propagation for each SG. The
representation H l

m of SG Gm of l-th layer is updated as:

H l+1
m = Ol

k ||k=1 (
∑
j∈Ni

wk,l
i,j,m V k,l

m ) , (2)

wk,l
i,j,m = Softmaxj(

Q̂k,l
m ·Kk,l

m√
dk

) · Ek,l
m , (3)

Q̂k,l
m = (1− zm) ·Qk,l

m−1 + zm ·Qk,l
m , (4)

zm = σ(W z ·Qk,l
m ·Kk,l

m ) , (5)

where k denotes the attention head number. Ol
k is

the k-th attention head representation. Kk,l
m =WKH l

m,
Qk,l

m =WQH l
m, V k,l

m =WV H l
m are the key, query and value

representations in the Transformer. Ek,l
m =WE{ei,j,m} is

the embedding of edge ei,j,m in DSG. And || is the concate-
nation operation. We denote the final DSG representation
as HG = {HG

1 , · · · , HG
M}, where HG

m is the one of m-th
SG (Gm).

Next, we integrate the fine-grained spatial-temporal
DSG features (HG) into the 3D-UNet decoder for enhanced
T2V generation, i.e., denoising process. Although the orig-
inal 3D-UNet [23] has a spatial-temporal feature model-
ing (as the green dotted box in Figure 4), it is limited by
the coarse-grained operations, e.g., convolutions over 3D
patches and attention over frames. Thus, we insert an ad-
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Figure 4. Illustration of the DSG integration.

ditional Transformer block with cross-attention for fusing
the fine-grained HG representations, followed by another
cross-attention to further fuse the raw text feature HY :

Ĥ = Softmax(
H ·HG

√
d

)·HG , Ĥ ← Softmax(
Ĥ ·HY

√
d

)·HY ,

(6)
where H is the coarse-grained spatio-temporal features.
The text representation HY is encoded by CLIP [48].

4.3. Overall Training

The overall training of Dysen-VDM system entails three
major steps.

• Stage-I: Pre-training backbone Latent VDM with au-
toencoder based on WebVid data [3].

• Stage-II: Further pre-training the backbone VDM for
text-conditioned video generation, based on WebVid
data. We update the backbone diffusion model of
Dysen-VDM, where the 3D-UNet includes an RGTrm
encoder, and they all will be updated. There we will
use the DSG annotations generated from Dysen.

• Stage-III: Updating the overall Dysen-VDM with the
dynamic scene managing (Dysen).

5. Experiments

5.1. Setups
We experiment on two popular T2V datasets, including

the UCF-101 [58] and MSR-VTT [80]. In UCF-101, the
given texts are the simple action labels. In MSR-VTT, there
are integral video caption sentences as input prompts. To
evaluate the action-complex scenario, we also adopt the Ac-
tivityNet data [31], where each video connects to the de-
scriptions with multiple actions (at least 3 actions), and the
average text length is 50.4. To relieve the computation bur-
den, during the sampling phase in diffusion, we evenly sam-
ple 16 keyframes from a two-second clip, and then interpo-
late them twice with higher frame rates. We perform im-
age resizing and center cropping with a spatial resolution of
256×256 for each input text. The latent space is 32×32×4.
The denoising sampling step T is 1000. In default, we use
the ChatGPT (GPT-3.5 turbo) via OpenAI API.1 For action
planning and scene imagination, we sample D=5 in-context

1https://platform.openai.com
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Table 1. Zero-shot results on UCF-101 and MSR-VTT data. The
results of baselines are copied from their raw paper. The best
scores are marked in bold.

Method UCF-101 MSR-VTT

IS (↑) FVD (↓) FID (↓) CLIPSIM (↑)
CogVideo [24] 25.27 701.59 23.59 0.2631
MagicVideo [91] / 699.00 / /
MakeVideo [55] 33.00 367.23 13.17 0.3049
AlignLatent [5] 33.45 550.61 / 0.2929
Latent-VDM [52] / / 14.25 0.2756
Latent-Shift [2] / / 15.23 0.2773
VideoFactory [70] / 410.00 / 0.3005
InternVid [73] 21.04 616.51 / 0.2951
Dysen-VDM 35.57 325.42 12.64 0.3204

Table 2. Fine-tuning results on UCF-101 without pre-taining.

Method IS (↑) FVD (↓)
VideoGPT [82] 24.69 /
TGANv2 [53] 26.60 /
DIGAN [86] 32.70 577±22
MoCoGAN-HD [61] 33.95 700±24
VDM [23] 57.80 /
LVDM [18] 27.00 372±11
TATS [11] 79.28 278±11
PVDM [85] 74.40 343.60
ED-T2V [37] 83.36 320.00
VideoGen [33] 82.78 345.00
Latent-VDM [52] 90.74 358.34
Latent-Shift [2] 92.72 360.04
Dysen-VDM 95.23 255.42

demonstrations. RGTrm takes L=12 layers and k=8 atten-
tion heads. All dimensions are set as 768. Initial β is set
0.5, and then decays gradually.

Following previous works [2, 5, 18], we use the Incep-
tion Score (IS) and Fréchet Video Distance (FVD) for UCF-
101, and Fréchet Image Distance (FID) and CLIP similar-
ity (CLIPSIM) for MSR-VTT. We also use human eval-
uation for a more intuitive assessment of video quality.
We consider two types of settings: 1) zero-shot, where
our pre-trained model makes predictions without tuning on
on-demand training data; 2) directly fine-tuned on train-
ing data without large pre-training. We consider several
existing strong-performing T2V systems as our baselines,
which are shown later. Also, we re-implement several open-
sourced baselines for further customized evaluations, in-
cluding CogVideo [24], VDM [23] and Latent-VDM [52].
Scores from our implementations are averaged in five runs
with random seeds, and the results of other baselines are
copied from the raw papers. All our training is conducted
on 16 NVIDIA A100 GPUs.

5.2. Main Comparisons and Observations

Zero-shot Performance. We first present the comparison
results on the zero-shot setting on UCF-101 and MSR-VTT
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Figure 5. Performance on the action-complex scene video genera-
tion of ActivityNet data.

datasets, respectively. As shown in Table 1, Dysen-VDM
outperforms the baselines on both IS and FVD metrics with
big margins on UCF-101 data, where the given texts are
the simple action labels, and the dynamic scene imagination
capability is especially needed. This shows the capability
of our model. Note that on MSR-VTT data we calculate the
frame-level metrics between the testing captions and video
frames, and we see that our system secures the best results.

On-demand Fine-tuning Results. Table 2 further
presents the results of the fine-tuned setting on UCF-101
data. We see that with the on-demand training annotations,
the winning scores of our system over the baselines become
more clear. In particular, Dysen-VDM model achieves
95.23 IS and 255.42 FVD scores, respectively, becoming a
new state-of-the-art.

5.3. Results on Action-complex T2V Generation
Now we consider a more strict comparing setting of

action-complex scenario. We use the ActivityNet data
under the fine-tuning setup. We consider three different
testing T2V scenarios: 1) the input texts containing mul-
tiple concurrent (or partially overlapped) actions, 2) the
prompts having different lengths,2 and 3) generating dif-

2As the text length in ActivityNet is no less than 20, we randomly add
some test sets from MSR-VTT data.
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Table 3. Human evaluation on ActivityNet data.

Action
Faithfulness

Scene
Richness

Movement
Fluency

CogVideo [24] 67.5 75.0 81.5
VDM [23] 62.4 58.8 46.8
Latent-VDM [52] 70.7 66.7 60.1
Dysen-VDM 86.6 92.4 87.3

Table 4. Model ablation (fine-tuned results in FVD). ‘w/o Dysen’:
degrading our system into the Latent-VDM model.

Item UCF-101 ActivityNet
Dysen-VDM 255.42 485.48

w/o Dysen 346.40(+90.98) 627.30(+141.82)

w/o Scene Imagin. 332.92(+77.50) 597.83(+112.35)

w/o SWC 292.16(+36.74) 533.22(+47.74)

w/o RL-based ICL 319.01(+63.59) 520.76(+35.28)

RGTrm→RGNN [44] 299.44(+44.02) 564.16(+78.68)

ferent lengths of video frames. We make comparisons with
CogVideo, VDM and Latent-VDM, where the last two are
diffusion-based T2V methods. As plotted in Figure 5, over-
all Dysen-VDM evidently shows stronger capability than
the baseline methods, on all three tests of action-complex
T2V generation. We also see that the superiority becomes
more clear when the cases go harder, i.e., with more co-
occurred events, longer input prompts and longer video gen-
eration. We note that CogVideo uses large pre-training, thus
keeping comparatively better performance than the other
two T2V diffusion models. In contrast, without additional
pre-training, our system is enhanced with scene dynamics
modeling can still outperform CogVideo significantly.

5.4. Human Evaluation
The standard automatic metrics could largely fail to fully

assess the performance with respect to the temporal dynam-
ics of generated videos. We further show the human evalu-
ation results on the ActivityNet test set, in terms of action
faithfulness, scene richness, and movement fluency, which
correspond to the issues shown in Figure 1. We ask ten peo-
ple who have been trained with rating guidelines, to rate a
generated video from 0-10 scales, and we average the fi-
nal scores into 100 scales. As seen in Table 3, overall, our
system shows very exceptional capability on the complex-
scene T2V generation than other comparing systems. In
particular, Dysen-VDM receives a high 92.4 score on the
scene richness, surpassing CogVideo by 17.4, and also wins
over Latent-VDM on action failthfulness by 15.9. We can
give the credit to the action planning and scene imagination
mechanism in Dysen module.

5.5. System Ablations
We further conduct ablation studies to quantify the spe-

cific contribution of each design of our system. As shown
in Table 4, we can find that, first of all, removing the whole

Prompt #1: A man with his dog walks on the countryside road. 
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Prompt #2: A man dressed as Santa Claus is riding a motorcycle on a big city road. 

Figure 6. Qualitative results on video generation with two pieces
of examples. Visit the live demos at http://haofei.vip/
Dysen-VDM/ for more cases.

Dynsen module (then equal to the Latent-VDM model) re-
sults in the most crucial performance loss, with +90.98 FVD
on UCF-101 and +141.82 FVD on ActivityNet. This ev-
idently verifies the efficacy of the Dynsen module and in-
directly indicates that the core of high-quality T2V synthe-
sis lies in modeling the motion dynamics. Further, remov-
ing step 3 of Dynsen, the scene imagination part, we see
there are also significant drops, only second to the whole
Dynsen. When only without the sliding window context
(SWC) mechanism, the performance can be also hurt, in-
dicating the importance of generating reasonable and fine
scene details for T2V. Then, if canceling the RL optimiza-
tion for ICL, the performance is hurt, especially on UCF-
101 data, as the short labels require much more high-quality
demonstrations to prompt ChatGPT for correct action plan-
ning and scene enrichment. Finally, the proposed RGTrm
also serves irreplaceable roles for the fine-grained spatio-
temporal feature encoding.

5.6. Qualitative Results
To gain a more direct understanding of how better our

system succeeds in generating videos with smooth and com-
plex movements, we present qualitative comparisons with
the baseline models in Figure 6. As can be observed,
Dysen-VLM has exhibited overall better performance. For
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both two prompts, our model shows smooth video frames
with accurate motions occurring in order, while the videos
by LVDM have quite jumpy transitions between different
frames, and also the dynamic video scenes are not delicate,
with some erroneous actions. The main reason largely lies
in whether the T2V system models the intricate temporal
dynamics. Also we see that the video by baseline may fail
to faithfully reflect all the predicates mentioned in the input
instructions; baseline missed certain actions. For example
in prompt #1, ‘man walks’ is missed by VDM.

5.7. In-depth Analyses

Controllability with DSG. SG has shown to have bet-
ter semantic controllability, due to its semantically struc-
tured representations [28, 83, 84]. Here we examine such
superiority of our system where our dynamic scene en-
hancement is built based on DSG. Following [78], we use
the Triplet Recall (TriRec.) to measure the fine-grained
‘subject-predicate-object’ structure recall rate between the
SGs of input texts and video frames. Given a set of ground
truth triplets, denoted GGT , and TriRec. is computed as:

TriRec. =
|GPT ∩GGT |

|GGT |
, (7)

where GPT are the relation triplets of the SG in the gener-
ated video DSG by a visual SG parser. As plotted in Figure
7, Dysen-VDM achieves the highest score than two base-
lines with clear margins.

Change of Scenes. We then make statistics of the struc-
ture changes before and after the scene imagination in
Dysen module. We mainly observe the ‘object-attribute’
and ‘subject-predicate-object’ SG structures, where the for-
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Figure 9. Accuracy of action annotation (overall triplet, predicate
and argument (subject&object) using GPT3.5 and GPT4.

mer reflects the static contents, and the latter reflects the dy-
namic scenes. From Figure 8 we learn that both two types
of SG structures are increased in numbers via scene imag-
ination by LLM. This indicates a clear scene enrichment,
leading to better video generation.

Action Parsing via ChatGPT. Action planning, as the
first step, is pivotal to the overall following performance,
where we employ the ChatGPT for inducing majorly-
occurring events/actions. Here we analyze the quality of ac-
tion parsing, and the influence of using GPT3.5 and GPT4.
We randomly select 100 samples from the MSR-VTT data,
and then compare between the ChatGPT-generated annota-
tions and manually annotated ones. From Figure 9 we see
that both GPT3.5 and GPT4 shows quite satisfied accurate
induction, with GPT4 advancing more slightly.

6. Conclusion
In this work, we enhance the intricate temporal dynam-

ics modeling of video diffusion models (VDMs) for text-
to-video (T2V) synthesis. Inspired by human intuition of
video filming, we design an innovative dynamic scene man-
ager (Dysen) module, which performs three steps of tem-
poral dynamics understanding: first extracting key actions
with proper time-order arrangement; second, transforming
the ordered actions into dynamic scene graph (DSG) rep-
resentations; third, enriching the DSG scenes with suffi-
cient reasonable details. We implement the Dysen based on
ChatGPT, for human-level temporal dynamics understand-
ing, where the in-context learning is optimized via rein-
forcement learning. Finally, we newly devise a recurrent
graph Transformer to learn the fine-grained delicate spatio-
temporal features from DSG, and then integrate them into
the backbone T2V DM for video generation. Experiments
on three T2V datasets show that our dynamics-aware video
DM achieves new best results, especially performs stronger
in scenarios with complex actions.
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[30] Nal Kalchbrenner, Aäron van den Oord, Karen Si-
monyan, Ivo Danihelka, Oriol Vinyals, Alex Graves,
and Koray Kavukcuoglu. Video pixel networks. In
Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the ICML, pages 1771–1779, 2017. 1, 3

[31] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei,
and Juan Carlos Niebles. Dense-captioning events in
videos. In Proceedings of the ICCV, pages 706–715,
2017. 2, 5

[32] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Er-
han, Chelsea Finn, Sergey Levine, Laurent Dinh, and
Durk Kingma. Videoflow: A conditional flow-based
model for stochastic video generation. In Proceedings
of the ICLR, 2020. 1, 3

[33] Xin Li, Wenqing Chu, Ye Wu, Weihang Yuan,
Fanglong Liu, Qi Zhang, Fu Li, Haocheng Feng,
Errui Ding, and Jingdong Wang. Videogen: A
reference-guided latent diffusion approach for high
definition text-to-video generation. arXiv preprint
arXiv:2309.00398, 2023. 6, 18

[34] Yitong Li, Martin Min, Dinghan Shen, David Carlson,
and Lawrence Carin. Video generation from text. In
Proceedings of the AAAI, pages 7065–7072, 2018. 1,
3

[35] Yiming Li, Xiaoshan Yang, and Changsheng Xu. Dy-
namic scene graph generation via anticipatory pre-
training. In Proceedings of the CVPR, pages 13864–
13873, 2022. 2

[36] Han Lin, Abhay Zala, Jaemin Cho, and Mohit Bansal.
Videodirectorgpt: Consistent multi-scene video gen-
eration via llm-guided planning. arXiv preprint
arXiv:2309.15091, 2023. 3

[37] Jiawei Liu, Weining Wang, Wei Liu, Qian He, and
Jing Liu. Ed-t2v: An efficient training framework
for diffusion-based text-to-video generation. In 2023
International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2023. 6, 18

[38] Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan
Huang, Liang Wang, Yujun Shen, Deli Zhao, Jinren
Zhou, and Tieniu Tan. Decomposed diffusion mod-
els for high-quality video generation. arXiv preprint
arXiv:2303.08320, 2023. 3

[39] Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan
Huang, Liang Wang, Yujun Shen, Deli Zhao, Jingren
Zhou, and Tieniu Tan. Videofusion: Decomposed
diffusion models for high-quality video generation.
CoRR, abs/2303.08320, 2023. 1, 3

[40] Diego Marcheggiani and Ivan Titov. Encoding sen-
tences with graph convolutional networks for seman-
tic role labeling. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 1506–1515, 2017. 5

[41] Kangfu Mei and Vishal M. Patel. VIDM: video im-
plicit diffusion models. CoRR, abs/2212.00235, 2022.
1, 3
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