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Abstract

The simulated annealing algorithm aims to improve
model convergence through multiple restarts of training.
However, existing annealing algorithms overlook the cor-
relation between different cycles, neglecting the potential
for incremental learning. We contend that a fixed network
structure prevents the model from recognizing distinct fea-
tures at different training stages. To this end, we propose
RepAn, redesigning the irreversible re-parameterization
(Rep) method and integrating it with annealing to enhance
training. Specifically, the network goes through Rep, ex-
pansion, restoration, and backpropagation operations dur-
ing training, and iterating through these processes in each
annealing round. Such a method exhibits good generaliza-
tion and is easy to apply, and we provide theoretical expla-
nations for its effectiveness. Experiments demonstrate that
our method improves baseline performance by 6.38% on
the CIFAR-100 dataset and 2.80% on ImageNet, achieving
state-of-the-art performance in the Rep field. The code is
available at https://github.com/xfey/RepAn.

1. Introduction
Convolutional neural networks (CNNs) [39] have achieved

remarkable results in the field of computer vision [27, 30,

36, 43, 52]. Among them, some classical network architec-

tures such as VGG [56], ResNet [26], DenseNet [34] and

MobileNet [31] have achieved great success by stacking

convolutional modules. Practically, one needs to consider

the trade-off of the model’s overall performance, including

accuracy, inference speed, and memory footprint.

The Re-parameterization technique (Rep) [17, 65] is in-

spired by the characteristics of neural architecture and aims

*Corresponding author.
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Figure 1. (a) The Rep approach is irreversible. (b) Annealing

simply restarts training cyclically. (c) Our approach investigates

the efficacy of Rep in enhancing model accuracy with annealing.

to achieve cost-free efficiency improvements. Rep involves

a series of branch fusion operations that merge multiple par-

allel branches into a single layer. During training, the net-

work utilizes a multi-branch structure to aid in optimization.

After convergence, for convolutional and batch normaliza-

tion (BN) [37] layers, lossless merging operations can be

performed to achieve accelerated inference.

Despite the effectiveness of Rep, its application to model

training is not only counter-intuitive but also technically

challenging. The branch merging operation, designed for

model deployment, is practically a one-way procedure with

an ill-posed inverse operator. As a result, research on Rep

is primarily focused on the diversity of its compatible struc-

tures [14, 16, 58]. In this paper, we explore the overlooked

potential of Rep to benefit the training accuracy of net-

works. Figure 1 illustrates the difference between the tra-

ditional application of Rep and our proposed method.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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The simulated annealing algorithms [45, 57] have been

employed to cyclically restart the training of the network,

re-initializing the network for several rounds, aiming to

achieve better convergence. However, existing algorithms

neglect the changes within the model, relying solely on a

fixed structure for repetition. These methods ignore the

continuity between different training stages, resulting in the

loss of temporal knowledge inheritance [33]. In this paper,

we introduce structural changes into the annealing process,

to achieve the effect of incremental learning.

Our proposed method, RepAn, involves incorporating

the core operation of branch merging from Rep into the

annealing training process. The primary challenge lies in

transforming the irreversible Rep into a recyclable work-

flow, and integrating it effectively into the annealing al-

gorithm. To address this issue, we devised two additional

stages, namely structural expansion and parameter restora-

tion. The workflow is depicted in Fig. 1(c), and consists

of three simple steps: (i) Re-parameterization. Merging

the multi-branch network into a single-branch structure via

Rep. (ii) Unfolding. The model is recovered to a train-

able one through expansion and restoration operations. (iii)

Training. Each annealing training cycle replicates the afore-

mentioned operations, enhancing the training effectiveness.

The overview of our method is shown in Fig. 2, and the

details of RepAn is described in Sec. 3.

We also present a possible explanation for the effective-

ness of our work in Sec. 4. In each cycle, Rep is applied to

inherit previously learned knowledge through lossless com-

pression. This allows the network to preserve its perfor-

mance while reducing its memory footprint. Subsequently,

new branches are introduced and trained to learn additional

features of the current cycle. Adhering to this cyclic proce-

dure leads to an effective annealing training, thus adopts an

incremental learning and ensemble approach, as evidenced

by our experimental results.

Our approach is compatible with all Rep architectures,

making it a flexible and well-generalized training paradigm.

By integrating knowledge and continuously enhancing the

network’s capability, our method achieves improvements in

performance, leading to a accuracy gain of 6.38% on the

CIFAR-100 dataset [38] and 2.80% on ImageNet [13].

Our contributions are summarized as follows.

• For the first time, we explore using Rep for accuracy en-

hancement, taking advantage of its lossless compression

property and designing a new cyclic annealing training

workflow termed RepAn.

• We present a theoretical explanation and proof of the ef-

fectiveness of our method, enhancing the fitting capability

with better optimization procedure.

• Extensive experiments on various datasets, structures, and

downstream tasks verify that our method improves the

performance without increasing extra parameters.

2. Structural Re-parameterization
This section introduces basic definitions and preliminaries

to derive the principles of the re-parameterization, and the

related applications.

2.1. Problem Formulation and Preliminaries

For a convolutional layer F with Cin input channels, Cout

output channels and a kernel size of K, parameters of

F are denoted as W ∈ R
Cout×Cin×K×K , with an op-

tional bias term, b ∈ R
Cout . For an input feature map

X ∈ R
Cin×H×W , its forward propagation through a con-

volutional layer is formulated as: F (X) = X �W + b.

Convolution Linearity. For convolutional layers with

the same configurations (e.g., filter size, stride, input and

output channels), the linearity of convolutional operations

follows the additive constancy:

F1 (X)+F2 (X) = (X �W 1 + b1) + (X �W 2 + b2)

= X � (W 1 +W 2) + (b1 + b2) .
(1)

Let W ′ = W 1 + W 2 and b′ = b1 + b2, then the con-

structed convolution satisfies F′ (X) = F1 (X)+F2 (X).
BN Fusion and Branch Integration. The Batch Nor-

malization (BN) [37] layer can be fused into its preceding

convolutional layer while retaining the output unchanged.

The BN-Conv module is formulated as:

BN(F (X)) =
γ

σ
(X �W + b− μ) + β

= X �
(γ

σ
W

)
+
[γ
σ

(b− μ) + β
]
.

(2)

where μ and σ are the accumulated mean and standard de-

viation of the BN layer, γ and β denote the learned scaling

factor and the bias term, respectively. Let W ′ = γ
σW and

b′ = γ
σ (b− μ) + β, then the constructed convolutional

layer satisfies F′ (X) = BN (F (X)).
According to the above fusion methods, the Rep net-

work can absorb multiple Conv-BN modules from parallel

branches into a single convolutional layer.

2.2. Related Work

The re-parameterization (Rep) technique [17] is originally

proposed to accelerate the inference time of neural net-

works. During training, each block contains multiple paral-

lel branches; when the model converges, parallel branches

are merged into a mathematically equivalent convolutional

layer by following Eqs. (1) and (2). With the help of Rep,

the RepVGG network achieved a speedup of 83% com-

pared to ResNet-50 [17, 26]. Existing methods have pri-

marily focused on the compatibility with advanced archi-

tectures to gain better performance, such as asymmetric

convolution [40], average pooling [16] and residual con-

nection [26]. They increase the network’s capacity during

training, and uses Rep processes to accelerate inference.
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Figure 2. Overview of the proposed RepAn. (a) The Re-parameterization operation. (b) Supported blocks by Rep methods. (c) Rep

is irreversibly used during deployment only by traditional methods. (d) DyRep [35] dynamically performs Rep&Dep during training to

reduce memory consumption. (e) RepAn adheres to a cyclic training flow, inheriting knowledge and facilitating incremental learning to

enhance the effectiveness of annealing training.

Rep-based modules are also widely used in other fields,

involving various hybrid architectures. Transformer-based

structures [21, 48, 59] showed excellent performance re-

cently, and RepMLPNet [18] helps the backbones better ex-

ploit local attentions. RepAdapter [46] improves efficiency

of vision-language pretrain (VLP) tasks. Neural architec-

ture search [25, 68, 69] aims to find suitable structures un-

der constraints, and RepNAS [66] adaptively adds branches

under heavier payloads. Rep can also be regarded as a struc-

tural compression [20, 47] method, thus ResRep [15] ap-

plies Rep into network pruning. Several innovative models

also use Rep to accelerate their models, e.g., large convo-

lution kernels are used in RepLKNet [19]. MobileOne [58]

and YOLOv7 [60] follows Rep rules to build backbones and

achieves low latency on mobile devices.

Few works have discussed the role of Rep during train-

ing, and we draw inspiration from the DyRep [35]. It dy-

namically adjusts network layers during different epochs of

training, aiming to reduce the training FLOPs. While it fo-

cuses on memory savings achieved by compressing, our ap-

proach, conversely, aims at the performance gains result-

ing from the expansion. We also illustrate the differences

in Fig. 2. The parameter reinitialization [2] has also pro-

vided us with insights. This approach cyclically resets a

portion of the parameters and then re-trains the network.

We aim to continually benefit network training while mini-

mizing disruption to the parameters.

The Rep technique has been demonstrated to be effec-

tive on various neural networks and tasks. However, most

existing methods treat Rep merely as a deployment acceler-

ation technique. In contrast, our study aims to explore the

potential of Rep for accuracy enhancement.

3. Annealing through Rep

In this section, we start with the explanation of using Rep as

a lossless compression technique in Sec. 3.1, and then de-

scribe the specific process of our proposed method, which

is divided into three stages: branches expansion (Sec. 3.2),

BN restoration (Sec. 3.3) and training (Sec. 3.4). After com-

pleting the training, the network is compressed again using

Rep, recursively following the annealing process. Finally,

we give a theoretical explanation of the feasibility in Sec. 4.

3.1. Rep as Lossless Compression

The Rep technique is primarily used to accelerate inference

and reduce computational cost. However, we believe that

Rep can also improve model accuracy. This raises the ques-

tion: why has Rep not been used in this manner before?
In order to address this issue, we first examine the im-

plementation of Rep. We observe that the branch merging

operation, which is a key component of Rep, is essentially

irreversible as it incorporates the Batch Normalization (BN)

parameters into the convolutional layers through numerical

multiplication of weights. This makes it difficult to normal-

ize gradients, rendering the transformed network unsuitable

for fine-tuning and the Rep process irreversible. Therefore,

preserving the original BN structure is crucial for ensuring

the network can be continuously trained.

To implement the RepAn algorithm, we first need to ex-

pand the branches and restore the BN structures. In or-

der to achieve this, we have designed corresponding meth-

ods which are described in detail in Secs. 3.2 and 3.3.

We have also found that knowledge distillation can effec-

tively enhance the training process during structural modi-
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fication. This can be viewed as an implementation of both

the ensemble [4, 5, 54] and incremental learning [1, 50, 51]

approaches. While traditional methods preserve newly

learned knowledge through additional structures, our ap-

proach takes full advantage of re-parameterization without

changing the network architecture.

We integrate Rep into the annealing algorithm, propos-

ing RepAn, which comprises the following three steps: (i)

Re-parameterization. The multi-branch network is loss-

lessly merged into a single-branch one using Rep, which is

used for deployment by traditional methods. (ii) Re-expand.
By adding parallel branches to the compressed model and

learning additional knowledge, the network capability is

improved. (iii) Recursive. If the multi-branch structure is

the same as the network, this process can be recursively per-

formed to further enhance the network’s performance.

The overall workflow of RepAn is illustrated in Fig. 2.

Specifically, the annealing process goes through cycles of

re-parameterization, expansion, restoration, and backprop-

agation operations. The implementation and theoretical ex-

planation are specified as follows.

3.2. Branches Expansion

To facilitate continuous training, the network structure is re-

juvenated through the addition of randomly initialized par-

allel branches. Each convolutional layer is expanded into

a re-parameterization block, following the computational

rules outlined in Eqs. (1) and (2). Diverse structures of

branches have been proposed in prior research [14, 16, 17],

shown in Fig. 2(b).

Without losing generality, we design an adjustment

scheme attach rate for these branches to aid optimiza-

tions, denoted by the symbol λ and 0 ≤ λ ≤ 1. The output

Y of the expanded block is represented as

Y = Y inv + λ (Y exp + Y res)

= BNinv (Finv (X))

+ λ

[∑
i

BN(i)
exp

(
Fexp

(i) (X)
)
+ BNres (X)

]
,

(3)

where the subscripts represent the inverted (inv), the ex-

panded (exp) and the residual connection (res) branches, re-

spectively. Considering that multiple branches work in par-

allel, the summation symbol is used to combine the output

of all the branches, based on the linearity of convolution as

demonstrated in Eq. (1). The value of λ controls the training

process, where setting λ = 0 ensures that Eq. (3) maintains

the network’s previous output. As λ increases, the contri-

butions of the expanded branches become more significant,

facilitating the network’s ability to learn new knowledge.

3.3. BN Restoration

The absence of a normalization layer in a pure convolu-

tional network makes normal training difficult. Hence, after

branch expansion, restoring the BN structure is necessary.

However, we noticed that directly performing training with

randomly initialized weights may cause instability during

early stages of training, which can significantly affect in-

herited branch weights. We observed that BN layer initial-

ization at the start of training can cause convolutional layer

weights to change. To facilitate the subsequent training pro-

cess, we propose an independent BN recovery stage.

In contrast to the fusion procedure, since the convo-

lutional layer here has been re-parametrically processed

(which can be abbreviated as Rep-conv) to contain the

affine transform of BN operations, it is necessary to in-

vert Eq. (2) to construct the convolutional layer with the

BN layer, then we have:

BN(F′ (X)) =
γ

σ

(
X �W ′ + b′ − μ

)
+ β

= X �
(γ

σ
W ′

)
+
[γ
σ

(b′ − μ) + β
]
.

(4)

For the given BN parameters, let W ′ = σ
γW and b′ =

σ
γ (b− β) + μ, and the constructed convolution satisfies

the inverted version of Eq. (2). This step restores the BN

layers to help subsequent training proceed smoothly.

During the recursive procedure, the BN layer parame-

ters can be inherited directly from the previous step. Al-

ternatively, the parameters can also be computed during

the forward propagation process using calibration meth-

ods [6, 35, 61, 64]. Calibration uses a single batch of data to

stabilize the weight values. As the branches are expanded, a

data batch is used to perform forward propagation through

the Conv-BN blocks, and the BN coefficients are adjusted to

maintain stable mean and variance. The parameters of both

the convolutional and BN layers can be iteratively updated,

which also mitigates the impact of additional initialization

branches. This effect will be further analyzed in Sec. 5.2.

3.4. Learning Strategies

Optionally, a knowledge-oriented learning strategy en-

hances the training performance of RepAn, e.g., the incor-

poration of Knowledge Distillation (KD) [23, 28]. KD uses

a high-performing teacher network to guide the student net-

work, with soft labels for more accurate training. The an-

nealing training strategy enhances KD’s ability to inherit

knowledge, contributing to RepAn achieving state-of-the-

art performances. Our experiments in Sec. 5.1 validate this

claim. In addition, other training techniques such as boot-

strap [44], hard example mining [55], and curriculum learn-

ing [3, 24] can also be used for progressive training.

The training process for RepAn is presented in Algo-

rithm 1. In summary, our work highlights the overlooked

5801



pAn

Figure 3. The learning curve comparison between RepAn and tra-

ditional training methods.

Algorithm 1: Training with RepAn

Input: Rep network N with weights w, Teacher

network NT , Train dataset D, Adjustment

scheduler Θ, Number of cycles R, Number

of training epochs E.

Output: Network N with optimal weights w

1 Initialize N or load pretrained weights for w
2 Switch N to deployment: Ndeploy ← Rep (N )
3 for r = 1, . . . , R do
4 Expand new branches: N ← Expand (Ndeploy)
5 Restoration: wtrain ← Restore (wdeploy)
6 Calibrate BN: w ← Calibrate (wtrain)
7 for e = 1, . . . , E do
8 Update λ in Eq. (3): λ ← Θ(r, e)
9 Network training: Train (N ,D,NT )

10 end
11 Switch to deployment: Ndeploy ← Rep (Ntrain)

12 end

potential of Rep to benefit training, which is an evolution

of conventional Rep methods and is compatible with all re-

parameterized structures. It can be regarded as incremental

learning with lossless compression, improving the network

during the annealing procedure.

4. Why RepAn Works

The proposed method leverages Rep to better activate the

performance of the annealing algorithm. We demonstrate

the efficacy of our method through the lens of ensemble

learning and training procedures, and conduct experiments

to validate our claims.

Ensemble and Incremental Learning. Ensemble learning

techniques [4, 5] aggregate the outputs of multiple models

to obtain better predictions. We are inspired by these meth-

ods during training [7, 33, 62] and find that models at differ-

ent epochs can also be integrated, similar to the Exponential

Figure 4. Toy example of learning different branches. We com-

pare single-branch, multi-branch, and multi-branch structures that

inherit the weights from the single one.

Moving Average (EMA) technique [29].

Our proposed method, RepAn, achieves a similar effect

to the Snapshot ensemble [33]. By inheriting the weights

and training iteratively, our method converges to a better

endpoint as the model is progressively compressed loss-

lessly and applied to the next round by Rep. As a result,

knowledge from different stages is integrated, which en-

ables implicit ensemble learning. As shown in Fig. 3, the

model starts from a better initialization after each round and

eventually converges to a better endpoint.

Additionally, our method avoids learning from repeated

representations by performing forward propagation together

with the inherited branches. This characteristic aligns with

the definition of incremental learning [9, 49, 50], where dif-

ferent parameters are used to learn additional knowledge.

Since the Rep process merges different branches into a sin-

gle convolutional layer, our method extends the branches to

gain additional representation capability.

The proposed training process of RepAn has several

benefits: it retains learned knowledge, focusing on new

branches for faster optimization and reducing required

training epochs. Inheriting knowledge also accelerates new

branch learning and improves convergence.

We have designed a toy example using RepVGG [17]

on the CIFAR-100 dataset to verify the effectiveness of

the RepAn approach in implementing the aforementioned

learning methods. The results of the experiment are shown

in Fig. 4. The use of multiple branches provides a higher ca-

pacity than a single branch, resulting in better final perfor-

mance. In this example, we loaded the weights from the sin-

gle branch into the multi-branch structure for initialization.

However, due to the modification of the branch structures,

the parameters of the BN layers needed to be updated, re-

sulting in a significantly larger loss value at the beginning of

the training. Nonetheless, the training loss value decreased

rapidly in the early epochs, and the network eventually con-

verged to a better result. This example demonstrates that
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Figure 5. Gradient magnitude comparison between the original

branch and expanded branches.

similar approach like ours can achieve incremental learning

by inheriting the weights, and that knowledge from earlier

stages is integrated into the network. In addition, the neces-

sity of recovering BN parameters is also proved.

Gradient Analysis of Expanded Modules. Analyzing the

differences in gradients can provide insight into whether

knowledge is being transferred correctly. Combining the

convolutional linearity mentioned in Eq. (1) and the fusion

methods mentioned in Eq. (2), the convolution parameters

of Eq. (3) can be expanded as follows:

Y = X �
(
γinv

σinv
W inv + λ

∑
i

γ
(i)
exp

σ
(i)
exp

W (i)
exp

)

+
γinv

σinv
binv + λ

∑
i

γ
(i)
exp

σ
(i)
exp

b(i)exp + C,

(5)

where C is the other term that is not related to the convolu-

tion parameters W and b. According to Eq. (5), the gradi-

ent on the convolution parameters of the expanded branches

can be calculated as:⎧⎪⎪⎨
⎪⎪⎩

∂f(Y )
∂W exp

= X � λ
∑

i

(
∂f(Y )
∂Y · γ(i)

exp

σ
(i)
exp

)
,

∂f(Y )
∂bexp

= λ
∑

i

[∑
u,v

(
∂f(Y )
∂Y

)
u,v

· γ(i)
exp

σ
(i)
exp

]
,

(6)

where the parameters u and v are the expansions of the two

dimensions of the value, which are then summed to match

the shape of the bias term b.

The newly added branches will inevitably perturb the

original output, causing a risk of oscillation in the gradi-

ent changes. To reduce such adverse effects, DyRep [35]

proposes to modify the BN parameter γ artificially during

training. Since γ is updated during the forward propagation,

we argue that such manual intervention could potentially in-

terfere with gradient transfer. However, the introduced pa-

rameter λ works equivalently to the
∑

i

γ(i)
exp

σ
(i)
exp

in Eq. (6), and

Network Method Top-1 Accuracy Accuracy ↑
C-10 C-100 C-10 C-100

RepVGG

(A1) [17]

Baseline 89.60 64.90 − −
+KD [28] 91.53 67.24 1.93 2.34

Ours 92.01 71.28 2.41 6.38

RepVGG

(B1)

Baseline 92.39 68.97 − −
+KD 93.32 72.18 0.93 3.21
Ours 93.98 74.57 1.59 5.60

RepVGG

(B3)

Baseline 92.84 71.71 − −
+KD 93.49 75.11 0.65 3.40
Ours 94.32 76.89 1.48 5.18

ResNet-18

(DBB) [16, 26]

Baseline 93.74 73.44 − −
+KD 94.19 76.96 0.45 3.52
Ours 94.68 77.97 0.94 4.53

ResNet-18

(ACNet) [14]

Baseline 93.96 73.90 − −
+KD 93.89 77.94 -0.07 4.04
Ours 94.44 78.37 0.48 4.47

Table 1. Top-1 accuracy of five networks using different training

methods on the CIFAR-10/100 [38] datasets.

can also be scheduled manually. Therefore, adjusting λ is

more efficient and convenient for facilitating training.

We also compared the mean of the absolute gradient

value of different branches, as shown in Fig. 5. In the early

stages, the gradient magnitude of the expanded branches is

several times higher than the original branch’s. This also

allows for better retention of inherited knowledge in the

early stages of training. This is due to the fact that the

original branch has already been well-trained and is less af-

fected by the perturbations caused by the addition of new

branches, whereas the newly expanded components are not.

This characteristic contributes to better retention of inher-

ited knowledge in the early stages of training.

5. Experimentation

This section presents an evaluation of the proposed method

on several widely-used datasets, structures and downstream

tasks. Besides, ablation studies are performed to analyze

the critical configurations of our method.

5.1. Comparison

We conducted initial experiments on the CIFAR-10 and

CIFAR-100 datasets to validate the effectiveness of our pro-

posed method. We used the VGG [56] and ResNet [26]

architectures and compared them with re-parameterized

branch structures from RepVGG [17], DBB [16], and AC-

Net [14]. To examine the training methods, we compared

training with knowledge distillation (KD) [28]. This com-

parison is conducted because KD has the potential to en-

hance the effectiveness of this method, necessitating control

experiments for elimination. In our experiments, we em-

ploy commonly-used soft labels for knowledge distillation

training.
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Method Network
MobileNet ResNet-18 ResNet-34 ResNet-50

Baseline 71.89 69.54 74.17 76.31
ACNet [14] 72.14 70.53 74.30∗ 76.46
DBB [16] 72.88 70.99 74.33 76.71
DyRep [35] 72.96 71.58 74.68 77.08
KD 73.16 71.88 75.64 77.11
Ours w/o KD 72.46 71.51 74.89 76.82
Ours 73.43 72.34 76.50 77.76

Table 2. ImageNet [13] top-1 accuracy of different training meth-

ods on MobileNet [31] and ResNet [26]. ∗: Our implementation.

Network Speed FLOPs Params Accuracy
(G) (M) (%)

RepVGG-A1 [17] 1621 2.4 12.78 74.46
OREPA-A1 [32] 1621 2.4 12.78 74.85
ODBB-A1 [66] 1621 2.4 12.78 75.24
ResNet-34 [26] 1419 3.7 21.78 74.17
DBB-r34 [16] 1419 3.7 21.78 74.33
OREPA-r34 1419 3.7 21.78 75.04
KD-r34 1419 3.7 21.78 75.64
Ours-r34 1419 3.7 21.78 76.50

RepVGG-A2 1322 5.1 25.49 76.48
OREPA-A2 1322 5.1 25.49 76.72
ODBB-A2 1322 5.1 25.49 76.86
DyRep-A2 [35] 1322 5.1 25.49 76.91
ResNet-50 719 3.9 25.53 76.31
DBB-r50 719 3.9 25.53 76.71
KD-r50 719 3.9 25.53 77.11
Ours-r50 719 3.9 25.53 77.76

ResNeXt-50 [63] 484 4.2 24.99 77.46
ResNet-101 430 7.6 44.49 77.21
VGG-16 [56] 415 15.5 138.35 72.21
RepVGG-B3 363 26.2 110.96 80.52
ODBB-B3 363 26.2 110.96 80.97
DyRep-B3 363 26.2 110.96 81.12
ResNeXt-101 295 8.0 44.10 78.42
KD-B3 363 26.2 110.96 81.26
Ours-B3 363 26.2 110.96 81.60

Table 3. ImageNet top-1 accuracy of different Rep methods and

baselines. The FLOPs and number of parameters are recorded dur-

ing inference.

For these methods, we equivalently use a batch size of

128, a learning rate initialized to 0.2 and cosine annealing

for 160 epochs. SGD [53] with weight decay of 10−4 is

applied. For the RepVGG models, we use a reduced width

of 0.25× channels. Two additional parameters α = 0.9
and temperature = 10 are used for the KD criterion. As

illustrated in Fig. 3, RepAn uses fewer epochs and trains

through multiple recursive steps. We set the epoch num-

ber to 30 and train for 5 time steps, making the maximum

epochs 30× 5 = 150 close to the baseline 160.

Table 1 presents the experimental results, which indicate

that RepAn can improve the accuracy of the CIFAR-100

Training Method KD Hyperparameters Accuracy(%)
α temperature C-10 C-100

Baseline − − 89.60 64.90

RepAn

0 − 90.41 66.22
0.5 4 91.20 69.53
0.9 10 92.01 71.28
0.9 20 91.57 70.40
1.0 10 91.79 69.94

Table 4. Comparison of hyperparameters for knowledge distilla-

tion. The α represents the proportion of the KD criterion, and the

temperature represents the softening effect on the label.

Network Number of Parallel Branches
k = 1 k = 2 k = 3 k = 4 k = 5

MobileOne-S0 70.9 70.7 71.3 71.4 71.1
MobileOne-S1 75.9 75.7 75.6 75.6 75.2

RepVGG-A1 64.9 66.3 67.4 68.0 68.3
RepVGG-A1 (KD) 67.2 68.7 69.1 69.9 70.5
RepVGG-A1 (Ours) 71.3 72.5 72.8 73.3 74.2

Table 5. Comparison of top-1 accuracy for various values k of par-

allel branches. The results for MobileOne [58] and RepVGG are

obtained on the ImageNet and CIFAR-100 datasets, respectively.

Backbone Method ImageNet
(top-1)

COCO
(mAP) [41]

Cityscapes
(mIOU) [11]

ResNet-18
Original 71.2 31.7 74.9

Ours 72.3 32.2 75.5

ResNet-50
Original 76.3 36.3 77.8

Ours 77.8 36.7 78.2

Table 6. Results on object detection and semantic segmentation

tasks. Rep methods are adopted during ImageNet training.

dataset by up to 6.38% and CIFAR-10 by up to 2.41%. Our

method’s generalizability is also verified by its performance

on different Rep structures, achieving 4.53% and 4.47% ac-

curacy improvements with DBB and ACNet on the CIFAR-

100 dataset, respectively. RepAn shows remarkable perfor-

mance improvement in all five settings. Such improvement

is attributed to the effectiveness of the proposed training

paradigm, which further confirms the method’s effective-

ness during the sanity check.

We then perform validation on the ImageNet-1K [13]

dataset, which contains 1.28M training images and 50K val-

idation data in 1000 categories. We set the batch size to 256
on 8 GPUs, and train networks for 120 epochs with an ad-

ditional 5 epochs to warm up. We apply an SGD optimizer

and the cosine annealing scheduler, with an initial learning

rate of 0.1. The KD hyperparameter α is reduced to 0.5 for

larger datasets. For the RepVGG [17] models, we follow the

configuration of the original implementation for both train-

ing and evaluation. We train for 3 time steps and report the

final performance.
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Figure 6. Comparison of using different training epochs for each

recursive time step on CIFAR-100. Best viewed in color.

Table 2 shows comparison results of different train-

ing methods on ImageNet, and RepAn can bring up to

2.80% performance improvement to the baselines. On the

RepVGG-B3 network, our method achieves a performance

of 81.60%, reaching the state-of-the-art among Rep meth-

ods, as shown in Table 3.

5.2. Ablation Studies

Influence of Knowledge Distillation. Knowledge Distilla-

tion (KD) is optional for RepAn to facilitate training. As

indicated in Tables 1 to 3, KD could slightly enhance the

performance of conventional networks. However, our pro-

posed method leverages the benefits of KD and achieves

additional improvements in the experiments.

Training without KD. In addition to the preceding experi-

ment, we conducted tests on training without KD. Specifi-

cally, we removed the teacher network by setting the distil-

lation hyperparameter α to 0. Subsequently, we gradually

increased the values to compare how different distillation

ratios affect the training performance. The results in Ta-

bles 2 and 4 indicate that our method can also achieve per-

formance improvement without KD. Furthermore, large KD

hyperparameters may decrease the training performance

due to the excessive modification of the training labels.

Influence of Parallel Branches. In this experiment, we ex-

plore the effect of diminishing marginal utility on multiple

parallel branches in our approach. The results in Table 5

demonstrate that the performance improves slightly with

the inclusion of more branches, but the improvement dimin-

ishes gradually. A study on MobileOne [58] suggests that

parallel branches do not enhance the performance on Ima-

geNet, which could be due to the networks having sufficient

capacity. When using additional branches, accuracy im-

proves by 2.9% compared to our best reported value. This

observation suggests that there is still potential for further

improvement in our method.

Influence of Epoch Number. As shown in Fig. 3, our

method is trained cyclically with fewer epochs during each

cycle. We recorded the final performance with different

choices of epoch numbers in Fig. 6. Increasing the num-

ber of epochs during initial convergence can enhance model

performance, but all models eventually reach optimal per-

formance with sufficient epochs. Longer training improves

data fitting, while shorter training times can better utilize

recursive learning under similar constraints. Furthermore,

overfitting can occur with too many training epochs, caus-

ing a slight decrease in performance.

Generalizability on Downstream Tasks. Our pre-trained

models are applied as backbones for object detection task on

the MS-COCO dataset using RetinaNet [42] and semantic

segmentation task using PSPNet [67]. We use MMDetec-

tion [8] and MMSegmentation [10] with default settings to

train these models. Our method outperforms the baselines

at these tasks, as shown in Table 6.

More Ablation Studies. Comparison of schedulers for λ,

results of different training epochs on ImageNet, and addi-

tional analyses are reported in supplementary material.

5.3. Discussion

On smaller datasets like CIFAR-10/100, our method out-

performs the baselines with a small number of time steps,

resulting in several times the speedup. However, annealing

algorithms, both traditional methods and ours, require in-

creased training overhead on larger datasets like ImageNet.

We speculate that this is due to the need for more capac-

ity [12, 22] and analyze this in our supplementary material.

6. Conclusion
This paper proposes RepAn, the first method to investi-

gate the efficacy of re-parameterization (Rep) in enhanc-

ing model accuracy. While existing methods simply widen

block structures by constructing diverse branches, our ap-

proach employs Rep as a training modality, utilizing a sim-

ple yet effective training paradigm that involves cycles of

re-parameterization, expansion, restoration, and backprop-

agation operations. By capitalizing on Rep’s lossless com-

pression property, our method optimally activates the poten-

tial of the annealing algorithm. Moreover, RepAn is highly

generalizable and compatible with all Rep structures, de-

livering performance improvements without incurring any

extra inference-time costs.
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