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Figure 1. (a) The synthetic images generated from Stable Diffusion and our proposed InstaGen, which can serve as a dataset synthesizer
for sourcing photo-realistic images and instance bounding boxes at scale. (b) On open-vocabulary detection, training on synthetic images
demonstrates significant improvement over CLIP-based methods on novel categories. (c) Training on the synthetic images generated from
InstaGen also enhances the detection performance in close-set scenario, particularly in data-sparse circumstances.

Abstract
In this paper, we present a novel paradigm to enhance

the ability of object detector, e.g., expanding categories
or improving detection performance, by training on syn-
thetic dataset generated from diffusion models. Specifically,
we integrate an instance-level grounding head into a pre-
trained, generative diffusion model, to augment it with the
ability of localising instances in the generated images. The
grounding head is trained to align the text embedding of
category names with the regional visual feature of the dif-
fusion model, using supervision from an off-the-shelf object
detector, and a novel self-training scheme on (novel) cat-
egories not covered by the detector. We conduct thorough
experiments to show that, this enhanced version of diffusion
model, termed as InstaGen, can serve as a data synthe-
sizer, to enhance object detectors by training on its gen-
erated samples, demonstrating superior performance over
existing state-of-the-art methods in open-vocabulary (+4.5
AP) and data-sparse (+1.2 ∼ 5.2 AP) scenarios.

1. Introduction
Object detection has been extensively studied in the field
of computer vision, focusing on the localization and cate-
gorization of objects within images [3, 5, 12, 26, 27]. The
common practise is to train the detectors on large-scale im-
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age datasets, such as MS-COCO [20] and Object365 [30],
where objects are exhaustively annotated with bounding
boxes and corresponding category labels. However, the pro-
cedure for collecting images and annotations is often labo-
rious and time-consuming, limiting the datasets’ scalability.

In the recent literature, text-to-image diffusion models
have demonstrated remarkable success in generating high-
quality images [28, 29], that unlocks the possibility of train-
ing vision systems with synthetic images. In general, ex-
isting text-to-image diffusion models are capable of syn-
thesizing images based on some free-form text prompt, as
shown in the first row of Figure 1a. Despite being photo-
realistic, such synthesized images can not support training
sophisticated systems, that normally requires the inclusion
of instance-level annotations, e.g., bounding boxes for ob-
ject detection in our case. In this paper, we investigate a
novel paradigm of dataset synthesis for training object de-
tector, i.e., augmenting the text-to-image diffusion model to
generate instance-level bounding boxes along with images.

To begin with, we build an image synthesizer by fine-
tuning the diffusion model on existing detection dataset.
This is driven by the observation that off-the-shelf diffu-
sion models often generate images with only one or two ob-
jects on simplistic background, training detectors on such
images may thus lead to reduced robustness in complex
real-world scenarios. Specifically, we exploit the existing
detection dataset, and subsequently fine-tune the diffusion
model with the image-caption pairs, constructed by taking
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random image crops, and composing the category name of
the objects in the crop. As illustrated in the second row of
the Figure 1a, once finetuned, the image synthesizer now
enables to produce images with multiple objects and intri-
cate contexts, thereby providing a more accurate simulation
of real-world detection scenarios.

To generate bounding boxes for objects within synthetic
images, we propose an instance grounding module that es-
tablishes the correlation between the regional visual fea-
tures from diffusion model and the text embedding of cat-
egory names, and infers the coordinates for the objects’
bounding boxes. Specifically, we adopt a two-step training
strategies, firstly, we train the grounding module on syn-
thetic images, with the supervision from an off-the-shelf
object detector, which has been trained on a set of base cat-
egories; secondly, we utilize the trained grounding head to
generate pseudo labels for a larger set of categories, includ-
ing those not seen in existing detection dataset, and self-
train the grounding module. Once finished training, the
grounding module will be able to identify the objects of ar-
bitrary category and their bounding boxes in the synthetic
image, by simply providing the name in free-form language.

To summarize, we explore a novel approach to enhance
object detection capabilities, such as expanding detectable
categories and improving overall detection performance,
by training on synthetic dataset generated from diffusion
model. We make the following contribution: (i) We develop
an image synthesizer by fine-tuning the diffusion model,
with image-caption pairs derived from existing object de-
tection datasets, our synthesizer can generate images with
multiple objects and complex contexts, offering a more re-
alistic simulation for real-world detection scenarios. (ii) We
introduce a data synthesis framework for detection, termed
as InstaGen. This is achieved through a novel ground-
ing module that enables to generate labels and bounding
boxes for objects in synthetic images. (iii) We train standard
object detectors on the combination of real and synthetic
dataset, and demonstrate superior performance over exist-
ing state-of-the-art detectors across various benchmarks, in-
cluding open-vocabulary detection (increasing Average Pre-
cision [AP] by +4.5), data-sparse detection (enhancing AP
by +1.2 to +5.2), and cross-dataset transfer (boosting AP by
+0.5 to +1.1).

2. Related Work
Object Detection. Object detection aims to simultane-
ously predict the category and corresponding bounding box
for the objects in the images. Generally, object detec-
tors [3, 4, 6, 26, 27] are trained on a substantial amount of
training data with bounding box annotations and can only
recognize a predetermined set of categories present in the
training data. In the recent literature, to further expand
the ability of object detector, open-vocabulary object detec-

tion (OVD) has been widely researched, for example, OVR-
CNN [37] introduces the concept of OVD and pre-trains a
vision-language model with image-caption pairs. The sub-
sequent works make use of the robust multi-modal repre-
sentation of CLIP [24], and transfer its knowledge to object
detectors through knowledge distillation [9, 36], exploiting
extra data [5, 41] and text prompt tuning [2, 5]. In this paper,
we propose to expand the ability of object detectors, e.g.,
expanding categories or improving detection performance,
by training on synthetic dataset.

Generative Models. Image generation has been consid-
ered as a task of interest in computer vision for decades. In
the recent literature, significant progress has been made, for
example, the generative adversarial networks (GANs) [8],
variational autoencoders (VAEs) [15], flow-based mod-
els [14], and autoregressive models (ARMs) [32]. More
recently, there has been a growing research interest in diffu-
sion probabilistic models (DPMs), which have shown great
promise in generating high-quality images across diverse
datasets. For examples, GLIDE [23] utilizes a pre-trained
language model and a cascaded diffusion structure for text-
to-image generation. DALL-E 2 [25] is trained to gener-
ate images by inverting the CLIP image space, while Ima-
gen [29] explores the advantages of using pre-trained lan-
guage models. Stable Diffusion [28] proposes the diffusion
process in VAE latent spaces rather than pixel spaces, effec-
tively reducing resource consumption. In general, the rapid
development of generative models opens the possibility for
training large models with synthetic dataset.

3. Methodology

In this section, we present details for constructing a dataset
synthesizer, that enables to generate photo-realistic images
with bounding boxes for each object instance, and train an
object detector on the combined real and synthetic datasets.

3.1. Problem Formulation

Given a detection dataset of real images with manual an-
notations, i.e., Dreal = {(x1,B1,Y1), . . . , (xN ,BN ,YN )},
where Bi = {b1, . . . , bm|bj ∈ R2×2} denotes the set of
box coordinates for the annotated instances in one image,
and Yi = {y1, . . . , ym|yj ∈ RCbase} refers to the categories
of the instances. Our goal is thus to exploit the given real
dataset (Dreal), to steer a generative diffusion model into
dataset synthesizer, that enables to augment the existing de-
tection dataset, i.e., Dfinal = Dreal +Dsyn. As a result, detec-
tors trained on the combined dataset demonstrate enhanced
ability, i.e., extending the detection categories or improving
the detection performance.

In the following sections, we first describe the procedure
for constructing an image synthesizer, that can generate im-
ages suitable for training object detector (Section 3.2). To
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(a) Fine-tuning diffusion model on detection dataset. (b) Supervised training and self-training for grounding head (i.e. student).

Figure 2. Illustration of the process for finetuning diffusion model and training the grounding head: (a) stable diffusion model is fine-tuned
on the detection dataset on base categories. (b) The grounding head is trained on synthetic images, with supervised learning on base
categories and self-training on novel categories.

simultaneously generate the images and object bounding
boxes, we propose a novel instance-level grounding mod-
ule, which aligns the text embedding of category name with
the regional visual features from image synthesizer, and in-
fers the coordinates for the objects in synthetic images. To
further improve the alignment towards objects of arbitrary
category, we adopt self-training to tune the grounding mod-
ule on object categories not existing in Dreal (Section 3.3).
As a result, the proposed model, termed as InstaGen, can
automatically generate images along with bounding boxes
for object instances, and construct synthetic dataset (Dsyn)
at scale, leading to improved ability when training detectors
on it (Section 3.4).

3.2. Image Synthesizer for Object Detection

Here, we build our image synthesizer based on an off-the-
shelf stable diffusion model (SDM [28]). Despite of its im-
pressive ability in generating photo-realistic images, it of-
ten outputs images with only one or two objects on sim-
plistic background with the text prompts, for example, ‘a
photograph of a [category1 name] and a [category2 name]’,
as demonstrated in Figure 4b. As a result, object detec-
tors trained on such images may exhibit reduced robustness
when dealing with complex real-world scenarios. To bridge
such domain gap, we propose to construct the image syn-
thesizer by fine-tuning the SDM with an existing real-world
detection dataset (Dreal).
Fine-tuning procedure. To fine-tune the stable diffusion
model (SDM), one approach is to naı̈vely use the sample
from detection dataset, for example, randomly pick an im-
age and construct the text prompt with all categories in the
image. However, as the image often contains multiple ob-
jects, such approach renders significant difficulty for fine-
tuning the SDM, especially for small or occluded objects.
We adopt a mild strategy by taking random crops from the
images, and construct the text prompt with categories in the
image crops, as shown in Figure 2a. If an image crop con-

tains multiple objects of the same category, we only use this
category name once in the text prompt.
Fine-tuning loss. We use the sampled image crop and con-
structed text prompt to fine-tune SDM with a squared error
loss on the predicted noise term as follows:

Lfine-tune = Ez,ϵ∼N (0,1),t,y

[
||ϵ− ϵθ(z

t, t, y)||22
]
, (1)

where z denotes a latent vector mapped from the input im-
age with VAE, t denotes the denoising step, uniformly sam-
pled from {1, . . . , T}, T refers to the length of the diffusion
Markov chain, and ϵθ refers to the estimated noise from
SDM with parameters θ being updated. We have experi-
mentally verified the necessity of this fine-tuning step, as
shown in Table 4.

3.3. Dataset Synthesizer for Object Detection

In this section, we present details for steering the image
synthesizer into dataset synthesizer for object detection,
which enables to simultaneously generate images and ob-
ject bounding boxes. Specifically, we propose an instance-
level grounding module that aligns the text embedding of
object category, with the regional visual feature of the
diffusion model, and infers the coordinates for bounding
boxes, effectively augmenting the image synthesizer with
instance grounding, as shown in Figure 3. To further im-
prove the alignment in large visual diversity, we propose a
self-training scheme that enables the grounding module to
generalise towards arbitrary categories, including those not
exist in real detection dataset (Dreal). As a result, our data
synthesizer, termed as InstaGen, can be used to construct
synthetic dataset for training object detectors.

3.3.1 Instance Grounding on Base Categories
To localise the object instances in synthetic images, we in-
troduce an open-vocabulary grounding module, that aims
to simultaneously generate image (x) and the correspond-
ing instance-level bounding boxes (B) based on a set of
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Figure 3. Illustration of the dataset generation process in InstaGen. The data generation process consists of two steps: (i) Image collection:
given a text prompt, SDM generates images with the objects described in the text prompt; (ii) Annotation generation: the instance-level
grounding head aligns the category embedding with the visual feature region of SDM, generating the corresponding object bounding-boxes.

categories (Y), i.e., {x,B,Y} = ΦInstaGen(ϵ,Y), where
ϵ ∼ N (0, I) denotes the sampled noise.

To this end, we propose an instance grounding head, as
shown in Figure 3, it takes the intermediate representation
from image synthesizer and the text embedding of category
as inputs, then predicts the corresponding object bounding
boxes, i.e., {Bi,Yi} = Φg-head(Fi,Φt-enc(g(Yi))), where
Fi = {f1

i , . . . , f
n
i } refers to the multi-scale dense features

from the image synthesizer at time step t = 1, g(·) denotes
a template that decorates each of the visual categories in the
text prompt, e.g., ‘a photograph of [category1 name] and
[category2 name]’, Φt-enc(·) denotes the text encoder.

Inspired by GroundingDINO [22], our grounding head
Φg-head(·) mainly contains four components: (i) a channel-
compression layer, implemented with a 3×3 convolution,
for reducing the dimensionality of the visual features; (ii) a
feature enhancer, consisting of six feature enhancer layers,
to fuse the visual and text features. Each layer employs a de-
formable self-attention to enhance image features, a vanilla
self-attention for text feature enhancers, an image-to-text
cross-attention and a text-to-image cross-attention for fea-
ture fusion; (iii) a language-guided query selection module
for query initialization. This module predicts top-N anchor
boxes based on the similarity between text features and im-
age features. Following DINO [38], it adopts a mixed query
selection where the positional queries are initialized with
the anchor boxes and the content queries remain learnable;
(iv) a cross-modality decoder for classification and box re-
finement. It comprises six decoder layers, with each layer
utilizing a self-attention mechanism for query interaction,
an image cross-attention layer for combining image fea-
tures, and a text cross-attention layer for combining text

features. Finally, we apply the dot product between each
query and the text features, followed by a Sigmoid function
to predict the classification score ŝ for each category. Addi-
tionally, the object queries are passed through a Multi-Layer
Perceptron (MLP) to predict the object bounding boxes b̂, as
shown in Figure 3. We train the grounding head by align-
ing the category embedding with the regional visual fea-
tures from diffusion model, as detailed below. Once trained,
the grounding head is open-vocabulary, i.e., given any cat-
egories (even beyond the training categories), the ground-
ing head can generate the corresponding bounding-boxes
for the object instances.

Training triplets of base categories. Following [18], we
apply an automatic pipeline to construct the {visual feature,
bounding-box, text prompt} triplets, with an object detec-
tor trained on base categories from a given dataset (Dreal).
In specific, assuming there exists a set of base categories
{c1base, . . . , c

N
base}, e.g., the classes in MS-COCO [20]. We

first select a random number of base categories to construct
a text prompt, e.g., ‘a photograph of [base category1] and
[base category2]’, and generate both the visual features and
images with our image synthesizer. Then we take an off-
the-shelf object detector, for example, pre-trained Mask R-
CNN [12], to run the inference procedure on the synthetic
images, and infer the bounding boxes of the selected cate-
gories. To acquire the confident bounding-boxes for train-
ing, we use a score threshold α to filter out the bounding-
boxes with low confidence (an ablation study on the se-
lection of the score threshold has been conducted in Sec-
tion 4.5). As a result, an infinite number of training triplets
for the given base categories can be constructed by repeat-
ing the above operation.
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(a) Stable Diffusion + Grounding head w/ Super-
vised training.

(b) Stable Diffusion + Grounding head w/
Supervised- and Self-training.

(c) Stable Diffusion w/ Fine-tuning + Grounding
head w/ Supervised- and Self-training.

Figure 4. Visualization of the synthetic images and bounding-boxes generated from different models. The bounding-boxes with green
denote the objects from base categories, while the ones with red denote the objects from novel categories.

Training loss. We use the constructed training triplets to
train the grounding head:

Lbase =
N∑
i=1

[Lcls(ŝi, ci) + 1{ci ̸=∅}Lbox(b̂i, bi)], (2)

where the ith prediction (ŝi, b̂i) from the N object queries
is assigned to a ground-truth (ci, bi) or ∅ (no object) with
bipartite matching. Lcls and Lbox denote the classification
loss (e.g. Focal loss) and box regression loss (e.g. L1 loss
and GIoU loss), respectively.

3.3.2 Instance Grounding on Novel Categories

Till here, we have obtained a diffusion model with open-
vocabulary grounding, which has been only trained with
base categories. In this section, we propose to further lever-
age the synthetic training triplets from a wider range of
categories to enhance the alignment for novel/unseen cat-
egories. Specifically, as shown in Figure 2b, we describe a
framework that generates the training triplets for novel cat-
egories using the grounded diffusion model, and then self-
train the grounding head.
Training triplets of novel categories. We design the text
prompts of novel categories, e.g., ‘a photograph of [novel
category1] and [novel category2]’, and pass them through
our proposed image synthesizer, to generate the visual fea-
tures. To acquire the corresponding bounding-boxes for
novel categories, we propose a self-training scheme that
takes the above grounding head as the student, and apply a
mean teacher (an exponential moving average (EMA) of the
student model) to create pseudo labels for update. In con-
trast to the widely adopted self-training scheme that takes
the image as input, the student and teacher in our case only
take the visual features as input, thus cannot apply data aug-
mentation as for images. Instead, we insert dropout module
within each feature enhancer layer and decoder layer in the
student. During training, we run inference (without dropout
module) with teacher model on the visual features to pro-
duce bounding boxes, and then use a score threshold β to

filter out those with low confidence, and use the remain-
ing training triplets (Fi, b̂i, y

novel
i ) to train the student, i.e.,

grounding head.

Training loss. Now, we can also train the grounding head
on the mined triplets of novel categories (that are unseen in
the existing real dataset) with the training loss Lnovel defined
similar to Eq. 2. Thus, the total training loss for training the
grounding head can be: Lgrounding = Lbase + Lnovel.

3.4. Training Detector with Synthetic Dataset

In this section, we augment the real dataset (Dreal), with syn-
thetic dataset (Dsyn), and train popular object detectors, for
example, Faster R-CNN [27] with the standard training loss:

Ldet = Lrpn cls + Lrpn box + Ldet cls + Ldet box, (3)

where Lrpn cls, Lrpn box are the classification and box regres-
sion losses of region proposal network, and Ldet cls, Ldet box
are the classification and box regression losses of the detec-
tion head. Generally speaking, the synthetic dataset enables
to improve the detector’s ability from two aspects: (i) ex-
panding the original data with more categories, (ii) improve
the detection performance by increasing data diversity.

Expanding detection categories. The grounding head is
designed to be open-vocabulary, that enables to generate ob-
ject bounding boxes for novel categories, even though it is
trained with a specific set of base categories. This feature
enables InstaGen to construct a detection dataset for any
category. Figure 4 demonstrates several synthetic images
and object bounding boxes for novel categories, i.e., the ob-
ject with red bounding box. We evaluate the effectiveness of
training on synthetic dataset through experiments on open-
vocabulary detection benchmark. For more details, please
refer to Figure 1b and Section 4.2.

Increasing data diversity. The base diffusion model is
trained on a large corpus of image-caption pairs, that en-
ables to generate diverse images. Taking advantage of such
capabilities, InstaGen is capable of generating dataset with
diverse images and box annotations, which can expand the
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Method Supervision Detector Backbone AP50box
all AP50box

base AP50box
novel

Detic [41] CLIP Faster R-CNN R50 45.0 47.1 27.8
PromptDet [5] CLIP Faster R-CNN R50 - 50.6 26.6
BARON [34] CLIP Faster R-CNN R50 53.5 60.4 34.0
OADP [33] CLIP Faster R-CNN R50 47.2 53.3 30.0
ViLD [9] CLIP Mask R-CNN R50 51.3 59.5 27.6
F-VLM [16] CLIP Mask R-CNN R50 39.6 - 28.0
RO-ViT [13] CLIP Mask R-CNN ViT-B [1] 41.5 - 30.2
VLDet [19] CLIP CenterNet2 [40] R50 45.8 50.6 32.0
CxORA [35] CLIP DAB-DETR [21] R50 35.4 35.5 35.1
DK-DETR [17] CLIP Deformable DETR [42] R50 - 61.1 32.3
EdaDet [31] CLIP Deformable DETR [42] R50 52.5 57.7 37.8

InstaGen Stable Diffusion Faster R-CNN R50 52.3 55.8 42.3

Table 1. Results on open-vocabulary COCO benchmark. AP50box
novel is the main metric for evaluation. Our detector, trained on synthetic

dataset from InstaGen, significantly outperforms state-of-the-art CLIP-based approaches on novel categories.

original dataset, i.e., increase the data diversity and improve
detection performance, particularly in data-sparse scenar-
ios. We conducted experiments with varying proportions
of COCO [20] images as available real data, and show the
effectiveness of training on synthetic dataset when the num-
ber of real-world images is limited. We refer the readers for
more details in Section 4.3, and results in Figure 1c.

4. Experiment
In this section, we use the proposed InstaGen to construct
synthetic dataset for training object detectors, i.e., generat-
ing images with the corresponding bounding boxes. Specif-
ically, we present the implementation details in Section 4.1.
To evaluate the effectiveness of the synthetic dataset for
training object detector, we consider three protocols: open-
vocabulary object detection (Section 4.2), data-sparse ob-
ject detection (Section 4.3) and cross-dataset object detec-
tion (Section 4.4). Lastly, we conduct ablation studies on
the effectiveness of the proposed components and the selec-
tion of hyper-parameters (Section 4.5).

4.1. Implementation details

Network architecture. We build image synthesizer from
the pre-trained Stable Diffusion v1.4 [28], and use the CLIP
text encoder [24] to get text embedding for the category
name. The channel compression layer maps the dimension
of visual features to 256, which is implemented with a 3×3
convolution. For simplicity, the feature enhancer, language-
guided query selection module and cross-modality decoder
are designed to the same structure as the ones in [22]. The
number of the object queries is set to 900.
Constructing image synthesizer. In our experiments, we
first fine-tune the stable diffusion model on a real detection
dataset, e.g., the images of base categories. During training,
the text encoder of CLIP is kept frozen, while the remaining
components are trained for 6 epochs with a batch size of 16
and a learning rate of 1e-4.

Instance grounding module. We start by constructing the
training triplets using base categories i.e., the categories
present in the existing dataset. The text prompt for each
triplet is constructed by randomly selecting one or two cat-
egories. The regional visual features are taken from the im-
age synthesizer time step t = 1, and the oracle ground-truth
bounding boxes are obtained using a Mask R-CNN model
trained on base categories, as explained in Section 3.3.1.

Subsequently, we train the instance grounding module
with these training triplets for 6 epochs, with a batch size
of 32. In the 6th epoch, we transfer the weights from the
student model to the teacher model, and proceed to train the
student for an additional 6 epochs. During this training, the
student receives supervised training on the base categories
and engages in self-training on novel categories, and the
teacher model is updated using exponential moving average
(EMA) with a momentum of 0.999. The initial learning rate
is set to 1e-4 and is subsequently reduced by a factor of 10
at the 11th epoch, and the score thresholds α and β are set
to 0.8 and 0.4, respectively.
Training object detector on combined dataset. In our ex-
periment, we train an object detector (Faster R-CNN [27])
with ResNet-50 [11] as backbone, on a combination of the
existing real dataset and the synthetic dataset. Specifically,
for synthetic dataset, we randomly select one or two cat-
egories at each iteration, construct the text prompts, and
feed them as input to generates images along with the cor-
responding bounding boxes with β of 0.4. Following the
standard implementation [27], the detector is trained for 12
epochs (1× learning schedule) unless specified. The initial
learning rate is set to 0.01 and then reduced by a factor of
10 at the 8th and the 11th epochs.

4.2. Open-vocabulary object detection

Experimental setup. Following the previous works [5, 39],
we conduct experiments on the open-vocabulary COCO
benchmark, where 48 classes are treated as base categories,
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InstaGen 10% 25% 50% 75% 100%

✗ 23.3 29.5 34.1 36.1 37.5
✓ 28.5 32.6 35.8 37.3 38.5

Table 2. Results on data-sparse object de-
tection. We employ Faster R-CNN with the
ResNet-50 backbone as the default object
detector and evaluate its performance using
the AP metric on MS COCO benchmark.
Please refer to the text for more details.

Method Supervision Detector Extra Data Object365 LVIS

Gao et al. [7] CLIP CenterNet2 ✓ 6.9 8.0
VL-PLM [39] CLIP Mask R-CNN ✓ 10.9 22.2

InstaGen Stable Diffusion Faster R-CNN ✗ 11.4 23.3

Table 3. Results on generalizing COCO-base to Object365 and LVIS. All detectors utilize
the ResNet-50 backbone. The evaluation protocol follows [7] and reports AP50. Extra
data refers to an additional dataset that encompasses objects from the categories within the
target dataset. In both experiments, the extra data consists of all the images from COCO,
which has covered the majority of categories in Object365 and LVIS.

G-head ST FT AP50box
all AP50box

base AP50box
novel

✓ 50.6 55.3 37.1
✓ ✓ 51.1 55.0 40.3
✓ ✓ ✓ 52.3 55.8 42.3

Table 4. The effectiveness of the proposed components. G-head,
ST and FT refer to the grounding head, self-training the grounding
head and fine-tuning SDM, respectively.

and 17 classes as the novel categories. More results for
LVIS can be found in the supplementary material. To
train the grounding head, we employ 1250 synthetic images
per category per training epoch. While for training the ob-
ject detector, we use 3000 synthetic images per category,
along with the original real dataset for base categories. The
object detector is trained with input size of 800 × 800 and
scale jitter. The performance is measured by COCO Aver-
age Precision at an Intersection over Union of 0.5 (AP50).

Comparison to SOTA. As shown in Table 1, we eval-
uate the performance by comparing with existing CLIP-
based open-vocabulary object detectors. It is clear that our
detector trained on synthetic dataset from InstaGen out-
performs existing state-of-the-art approaches significantly,
i.e., around +5AP improvement over the second best. In
essence, through the utilization of our proposed open-
vocabulary grounding head, InstaGen is able to generate
detection data for novel categories, enabling the detector to
attain exceptional performance. To the best of our knowl-
edge, this is the first work that applies generative diffusion
model for dataset synthesis, to tackle open-vocabulary ob-
ject detection, and showcase its superiority in this task.

4.3. Data-sparse object detection

Experimental setup. Here, we evaluate the effectiveness
of synthetic dataset in data-spare scenario, by varying the
amount of real data. We randomly select subsets compris-
ing 10%, 25%, 50%, 75% and 100% of the COCO training
set, this covers all COCO categories. These subsets are used
to fine-tune stable diffusion model for constructing image
synthesizer, and train a Mask R-CNN for generating oracle
ground-truth bounding boxes in synthetic images. We em-
ploy 1250 synthetic images per category to train a Faster R-

CNN in conjunction with the corresponding COCO subset.
The performance is measured by Average Precision [20].

Comparison to baseline. As shown in Table 2, the Faster
R-CNN trained with synthetic images achieves consistent
improvement across various real training data budgets. No-
tably, as the availability of real data becomes sparse, syn-
thetic dataset plays even more important role for perfor-
mance improvement, for instance, it improves the detector
by +5.2 AP (23.3→28.5 AP) when only 10% real COCO
training subset is available.

4.4. Cross-dataset object detection

Experimental setup. In this section, we assess the ef-
fectiveness of synthetic data on a more challenging task,
namely cross-dataset object detection. Following [39], we
evaluate the COCO-trained model on two unseen datasets:
Object365 [30] and LVIS [10]. Specifically, we consider
the 48 classes in the open-vocabulary COCO benchmark
as the source dataset, while Object365 (with 365 classes)
and LVIS (with 1203 classes) serve as the target dataset.
When training the instance grounding module, we acquire
1250 synthetic images for base categories from the source
dataset, and 100 synthetic images for the category from the
target dataset at each training iteration. In the case of train-
ing the object detector, we employ 500 synthetic images per
category from the target dataset for each training iteration.
The detector is trained with input size of 1024 × 1024 and
scale jitter [39].

Comparison to SOTA. The results presented in Table 3
demonstrate that the proposed InstaGen achieves supe-
rior performance in generalization from COCO-base to Ob-
ject365 and LVIS, when compared to CLIP-based methods
such as [7, 39]. It is worth noting that CLIP-based methods
require the generation of pseudo-labels for the categories
from the target dataset on COCO images, and subsequently
train the detector using these images. These methods neces-
sitate a dataset that includes objects belonging to the cate-
gories of the target dataset. In contrast, InstaGen possesses
the ability to generate images featuring objects of any cat-
egory without the need for additional datasets, thereby en-
hancing its versatility across various scenarios.
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#Images AP50box
all AP50box

base AP50box
novel

1000 51.6 55.9 39.7
2000 51.7 55.4 41.1
3000 52.3 55.8 42.3

Table 5. Number of generated images.

α AP50box
all AP50box

base AP50box
novel

0.7 51.3 55.1 40.6
0.8 52.3 55.8 42.3
0.9 51.8 55.6 41.1

Table 6. α for bounding-box filtration.

β AP50box
all AP50box

base AP50box
novel

0.3 46.4 53.3 26.9
0.4 52.3 55.8 42.3
0.5 51.2 55.4 39.2

Table 7. β for bounding-box filtration.

4.5. Ablation study

To understand the effectiveness of the proposed compo-
nents, we perform thorough ablation studies on the open-
vocabulary COCO benchmark [20], investigating the ef-
fect of fine-tuning stable diffusion model, training instance
grounding module, self-training on novel categories. Addi-
tionally, we investigate other hyper-parameters by compar-
ing the effectiveness of synthetic images and different score
thresholds for base and novel categories.

Fine-tuning diffusion model. We assess the effective-
ness of fine-tuning stable diffusion model, and its impact
for synthesizing images for training object detector. Fig-
ure 4c illustrates that InstaGen is capable of generating
images with more intricate contexts, featuring multiple ob-
jects, small objects, and occluded objects. Subsequently, we
employed these generated images to train Faster R-CNN for
object detection. The results are presented in Table 4, show-
ing that image synthesizer from fine-tuning stable diffusion
model delivers improvement detection performance by 2.0
AP (from 40.3 to 42.3 AP).

Instance grounding module. To demonstrate the effective-
ness of the grounding head in open-vocabulary scenario, we
exclusively train it on base categories. Visualization exam-
ples of the generated images are presented in Figure 4a.
These examples demonstrate that the trained grounding
head is also capable of predicting bounding boxes for in-
stances from novel categories. Leveraging these generated
images to train the object detector leads to a 37.1 AP on
novel categories, surpassing or rivaling all existing state-of-
the-art methods, as shown in Table 1 and Table 4.

Self-training scheme. We evaluate the performance after
self-training the grounding head with novel categories. As
shown in Table 4, training Faster R-CNN with the generated
images of novel categories, leads to a noticeable enhance-
ment in detection performance, increasing from 37.1 to 40.3
AP. Qualitatively, it also demonstrates enhanced recall for
novel objects after self-training, as shown in Figure 4b.

Number of synthetic images. We investigate the perfor-
mance variation while increasing the number of the gener-
ated images per category for detector training. As shown in
Table 5, when increasing the number of generated images
from 1000 to 3000, the detector’s performance tends to be
increasing monotonically, from 39.7 to 42.3 AP on novel
categories, showing the scalability of the proposed training
mechanism.

Score thresholds for bounding box filtration. We com-
pare the performance with different score thresholds α and
β for filtering bounding boxes on base categories and novel
categories, respectively. From the experiment results in Ta-
ble 6, we observe that the performance is not sensitive to the
value of α, and α = 0.8 yields the best performance. The
experimental results using different β are presented in Ta-
ble 7. With a low score threshold (α = 0.3), there are still
numerous inaccurate bounding boxes remaining, resulting
in an AP of 26.9 for novel categories. by increasing β to
0.4, numerous inaccurate bounding boxes are filtered out,
resulting in optimal performance. Hence, we set α = 0.8
and β = 0.4 in our experiments.

5. Limitation
Using synthetic or artificially generated data in training AI
algorithms is a burgeoning practice with significant poten-
tial. It can address data scarcity, privacy, and bias issues.
However, there remains two limitations for training object
detectors with synthetic data, (i) synthetic datasets com-
monly focus on clean, isolated object instances, which lim-
its the exposure of the detector to the complexities and con-
textual diversity of real-world scenes, such as occlusions,
clutter, varied environmental factors, deformation, there-
fore, models trained on synthetic data struggle to adapt to
real-world conditions, affecting their overall robustness and
accuracy, (ii) existing diffusion-based generative model also
suffers from long-tail issue, that means the generative model
struggles to generate images for objects of rare categories,
resulting in imbalanced class representation during training
and reduced detector performance for less common objects.

6. Conclusion
This paper proposes a dataset synthesis pipeline, termed
as InstaGen, that enables to generate images with ob-
ject bounding boxes for arbitrary categories, acting as a
annotation-free approach for constructing large-scale syn-
thetic dataset to train object detector. We have conducted
thorough experiments to show the effectiveness of train-
ing on synthetic data, on improving detection performance,
or expanding the number of detection categories. Signif-
icant improvements have been shown in various detection
scenarios, including open-vocabulary (+4.5 AP) and data-
sparse (+1.2 ∼ 5.2 AP) detection.
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