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Abstract

Autonomous systems need to process large-scale, sparse,
and irregular point clouds with limited compute resources.
Consequently, it is essential to develop LiDAR perception
methods that are both efficient and effective. Although naive-
ly enlarging 3D kernel size can enhance performance, it will
also lead to a cubically-increasing overhead. Therefore, it is
crucial to develop streamlined 3D large kernel designs that
eliminate redundant weights and work effectively with larger
kernels. In this paper, we propose an efficient and effective
Large Sparse Kernel 3D Neural Network (LSK3DNet) that
leverages dynamic pruning to amplify the 3D kernel size.
Our method comprises two core components: Spatial-wise
Dynamic Sparsity (SDS) and Channel-wise Weight Selection
(CWS). SDS dynamically prunes and regrows volumetric
weights from the beginning to learn a large sparse 3D ker-
nel. It not only boosts performance but also significantly
reduces model size and computational cost. Moreover, CWS
selects the most important channels for 3D convolution dur-
ing training and subsequently prunes the redundant channels
to accelerate inference for 3D vision tasks. We demonstrate
the effectiveness of LSK3DNet on three benchmark datasets
and five tracks compared with classical models and large ker-
nel designs. Notably, LSK3DNet achieves the state-of-the-art
performance on SemanticKITTI (i.e., 75.6% on single-scan
and 63.4% on multi-scan), with roughly 40% model size re-
duction and 60% computing operations reduction compared
to the naive large 3D kernel model.

1. Introduction
Autonomous systems are equipped with 3D LiDAR sensors
and data processing platforms. The LiDAR sensor gener-
ates point clouds, which serve as the input for the process-
ing platform. The platform performs perception tasks such
as semantic segmentation [1–3] and object detection [4–6],
providing a foundation for motion planning and decision-
making [7] in autonomous systems. On the one hand, the
processing platform is required to handle large-scale, sparse,
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Figure 1. Illustrations on Spatial-wise Group Convolution [18],
SDS, and CWS. The spatial dimensions Ks (i.e., K1, K2, K3) and
channel dimensions (Din/Dout) are shown. Spatial-wise Group
Convolution shares the weights within each spatial group during
training, leading to redundant model weights. In contrast, SDS
removes non-salient weights and redundancies that are not sensitive
to the input in each group, while CWS eliminates redundant weights
in a channel-wise manner (Sec.1).

and irregular point clouds. On the other hand, the plat-
form’s computing resources are limited. Therefore, it is
crucial to develop effective and efficient LiDAR perception
methods. Point-based methods [1, 8, 9] rely on computa-
tionally expensive, memory inefficient, and time-consuming
point sampling strategy [10]. In contrast, sparse convolu-
tion [11–14] has been widely adopted for processing large-
scale point clouds up to 160×160×20 meters [5, 11, 12, 15–
17]. Nevertheless, the application of such a technique in
autonomous systems has also been hindered by limited com-
putational resources [16]. PV-KD [19] attempts to reduce the
model size with knowledge distillation, but its performance
is bounded by its teacher model [15]. In opposition, large
kernels can enhance performance through the advantages of
large receptive fields [18, 20, 21]. However, naive 3D large
kernels will significantly increase computational burdens.
LargeKernel3D [18] explores large 3D kernels with Spatial-
wise Group Convolution to circumvent optimization and
efficiency problems caused by naive 3D large kernels. How-
ever, LargeKernel3D has a lot of redundant model weights
during training as it shares the weights in each spatial group.
Moreover, the performance of LargeKernel3D [18] drops
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Figure 2. Performance (mIoU) vs. Inference Speed (FPS) on Se-
manticKITTI [25] single-scan challenge (Sec.1).

when scaling up the kernel size over 7×7×7.
In this study, we propose a Large Sparse Kernel 3D Neu-

ral Network (LSK3DNet), which is an efficient and effective
3D perception model. LSK3DNet incorporates two key com-
ponents, namely Spatial-wise Dynamic Sparsity (SDS) and
Channel-wise Weight Selection (CWS). These components
enhance performance on perception tasks and overcome the
challenges of high computational costs. SDS enlarges 3D
kernels and reduces model parameters by learning sparse 3D
kernels from scratch. CWS increases the model width and
learns channel-wise importance during training, resulting in
accelerated inference by pruning redundant channels [26].
As shown in Fig.1, SDS can prune 3D kernels to remove re-
dundant weights, while CWS can eliminate redundant chan-
nels in an online manner. Our SDS and CWS complement
each other following a guideline of “using spatial sparse
groups, expanding width without more parameters”, in con-
trast to “using sparse groups, expanding more” [21].

Specifically, SDS implements a remove-and-regrow pro-
cess within each spatial group and preserves the sparsity in
each group during dynamic training. This stands in stark con-
trast to the 2D approach [21], as it achieves dynamic sparsity
in depth-wise groups. SDS allows to scale up the receptive
fields with large kernel sizes, easily reaching or surpassing
9×9×9, thereby achieving higher performance. In addition,
CWS selectively identifies salient channels during training.
It speeds up inference on the 3D vision tasks by pruning
non-salient channel parameters. In this way, LSK3DNet
can benefit from expanded width to achieve enhanced perfor-
mance, but maintain the original model size during inference.
Reducing the models’ complexity (e.g., model size) is a big
benefit and a straightforward way to make them deployable
on resource-constrained devices [27]. We conduct exper-
iments on three benchmark datasets and five tracks. Our
method achieves better performance compared to state-of-
the-art methods [15, 23, 24] on SemanticKITTI [25] but
with faster inference speed (Fig.2). Moreover, LSK3DNet
outperforms the prior 3D large kernel method of LargeKer-
nel3D [18] on ScanNet v2 [28] and KITTI [29].

In a nutshell, our contributions are as follows:

• We propose LSK3DNet to enhance performance in per-
ception tasks and mitigate high computational costs, sur-
passing state-of-the-art models while reducing model size
by 40% and computing operations by 60%.

• We propose SDS to scale up 3D kernels. It learns large
sparse kernels by dynamically pruning and regrowing
weights from scratch, thereby reducing model size and
computational operations.

• We develop CWS to improve performance by expanding
the width. CWS assesses the importance of channels dur-
ing training and speeds up inference by pruning redundant
channel-wise parameters.

2. Related Work
Large-Kernel 3D Models. In 3D vision, research on 3D
large kernel is very limited. LargeKernel3D [18] has demon-
strated that sizeable kernels can be successfully employed
and bring positive results for 3D networks. Spatial-wise
Group Convolution [18] enables to achieve a kernel size of
7×7×7. However, it shares the weights within each spatial
group during training, leading to redundant model weights
(See Fig.1). Moreover, the performance of LargeKernel3D
drops when scaling up the kernel size over 7×7×7.
Large-Kernel 2D CNN Models. In the 2010s, various
large-kernel settings were investigated. LR-Net [30], Incep-
tions [31], and GCNs [32] explored 2D large kernels of 7×7,
11 × 11, and 15 × 15 respectively. Due to the widespread
adoption [33, 34] of VGG [35], research into large kernels
was largely overlooked in favour of multiple smaller kernels
(1×1 or 3×3) to obtain a larger receptive field [36–38] during
the past decade. Recently, certain studies have reintroduced
large kernels in CNNs. RepLKNet [20] examines the effects
of large kernels in CNNs, and for the first time it is able
to increase kernel size to 31×31. It achieves comparable
results to those of Swin Transformer [39]. Following “use
sparse groups, expand more”, SLaK [21] has achieved an
impressive kernel size of 51×51. SLaK has to strike a trade-
off between sparsity and model width since increased model
width leads to an increase in model size, a phenomenon
that becomes even more pronounced in 3D vision. However,
CWS effectively decouples the two objectives of improved
performance and reduced model size, enabling expanded
width without increasing the model size.
3D Backbones. Generally speaking, there are three main-
streams of 3D backbones: i) Point-based methods [1, 8,
9, 40–55] approximate a permutation-invariant set func-
tion, and directly learn features from raw point clouds. Re-
searchers have observed an unsatisfactory outcome for large-
scale environments [56]. ii) Projection-based methods trans-
form unstructured points into regular 2D images and thus
employ CNNs [57–62]. However, the projection could leave
out critical geometric details and cause unavoidable informa-
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tion loss. iii) Voxel-based methods have used sparse convolu-
tion [11, 12] to design more powerful networks for various
3D tasks [15, 63]. Sparse convolution facilitates convolution
operations only on non-void voxels. Recently, fusion-based
methods [3, 16, 23] have become upsurge. The point-based
high-resolution branch mitigates the performance degrada-
tion, which is caused by aggressive downsampling [16, 64]
(i.e., regular sparse convolution) of the voxel branch.
Dynamic Sparse Training (DST). DST can train sparse
neural networks from scratch, resulting in both a speedy
training and prediction procedure. During training, DST [65–
73] alters the location of non-zero weights with per pre-
defined rules, thereby creating a sparse representation and
cutting down the number of calculations. This paradigm
commences without prior knowledge and simultaneously
refines the non-zero locations and weights. The attractive
aspect of DST is that it is sparse from the beginning, resulting
in lower FLOPs and memory consumption for training and
inference compared to a dense model. Generally, the pruning
process [74] can be completed either by threshold-based prun-
ing [65, 66, 70, 75] or by magnitude-based pruning [67, 76].
In addition, new weights are regrown with randomness grow-
ing [66, 70, 75], momentum growing [67], and gradient-based
growing [68, 69, 76, 77]. Here, we efficiently integrate dy-
namic sparsity with 3D kernels in large kernel 3D networks.
This design satisfies the anticipation for a larger parameter
space, as a wide-ranging exploration of the parameter space
is of significance to DST [71, 73, 78].

3. Methodology
In this section, we first formulate the problem in Sec. 3.1,
then move on to a concise overview of submanifold sparse
convolution in Sec.3.2. Afterwards, the details of Spatial-
wise Dynamic Sparsity (SDS) and Channel-wise Weight Se-
lection (CWS) are described in Sec. 3.3 and 3.4. Lastly,
network architecture is outlined in Sec.3.5.

3.1. Problem Formulation
For 3D perception tasks, suppose that the input is a set of un-
ordered point X =

{
xi ∈ RDin : i = 1, 2, . . . , N

}
, and Din

is the dimensionality of the input features.L is a set of objec-
t/point labels, which varies according to different datasets.
For segmentation task, LSK3DNet assigns each point xi with
a predicted label yi, resulting in a point-wise prediction set
Y= {yi : i = 1, 2, . . . , N}. In voxel-based methods, point
clouds are converted to voxel representations. We denote the
input sparse tensor with Xin

s = [C,F ]. Coordinate matrix
C∈NN×3

+ includes 3-dimensional discrete coordinates, and
feature matrix F ∈RN×Din has Din-dimensional features.

3.2. Review of Submanifold Sparse Convolution
Regular sparse convolution has widespread use in U-Net
type 3D networks [11, 12]. However, it significantly reduces

the sparsity level of point data [64], obfuscates feature dis-
tinctions [64], and leads to low-resolution and indistinguish-
able small objects [16]. In our LSK3DNet, we discard regu-
lar sparse convolution and exclusively employ submanifold
sparse convolution for feature extraction.

In a 3-dimensional space C∈NN×3
+ , the Din-dimensional

input feature at c∈C can be denoted as xin
c ∈RDin , and the

3D kernel is represented by W ∈RK3×Dout×Din . We divide the
kernel into K3 spatial weights, each with a size of Dout×Din,
and denote the divided weights as Wi. The submanifold
sparse convolution is formulated as follows:

xout
c =

∑
i∈VD(c,C)

Wi x
in
c+i, c ∈ C, (1)

where xout
c represents the current voxel on which the sub-

manifold sparse convolution is applied; Wi corresponds
to xin

c+i, which represents the i-th adjacent input voxel
([Cc+i, Fc+i]); VD is a set of offsets that define the shape
of a kernel, and VD(c, C)={i|c+ i∈C, i∈VD} is a set of
offsets from the current center c that exist in C [12]. It should
be noted that the input coordinates and output coordinates
are equivalent; in other words, they share the same C. Due
to this restriction, insufficient information flow exists while
differentiating the distinct spatial characteristics [64]. Large
receptive fields could be a potential solution to this problem.

3.3. Spatial-wise Dynamic Sparsity (SDS)
SDS incorporates two essential components: Sparse Ker-
nel Initialization and Sparse Weight Pruning and Growth.
SDS is applied to the 3D large kernel layers, while other
layers are kept dense. When initialized with Sparse Ker-
nel Initialization, all spatial groups of sparse tensors have
the same level of sparsity s, where sparsity refers to the
fraction of zeros in sparse kernels. We adjust the sparse posi-
tion within spatial groups of 3D large kernel layers with an
adaptation frequency fa. During training, at regular intervals
determined by fa, the adjustable weights in the kernels are
modified through a two-phase procedure, which includes
sparse weight pruning and sparse weight growth. We main-
tain a constant number of non-zero parameters (i.e., sparsity
s) throughout the training process.
Sparse Kernel Initialization. Prior research [79] has ex-
plored the distribution of sparsity parameters across multiple
layers. The proportion and adjustment of sparse weights are
regulated by the layer-wise sparsity ratio, which determines
how the weights are modified to seek more efficient sparse
structures during training. However, this method is not suit-
able for Spatial-wise Group Convolution, since 3D large ker-
nels are divided into multiple spatial groups. To ensure that
each group has non-zero weights, we execute Erdős-Rényi
(ER) based sparsity ratios [66, 69, 80] in each spatial group.
Dense weights WD are firstly initialized in a standard way
(i.e., kaiming uniform initialization [81]). The binary Mask
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Figure 3. Spatial-wise Dynamic Sparsity. The utilization of SDS enables us to create and train sparse kernel 3D neural networks from the
beginning. The sparse weights in each spatial group are firstly initialized by Sparse Kernel Initialization (Eq. (2)), and then regularly altered
by discarding the least significant connections and introducing new ones (Eq. (3)). The sparse kernels are steadily improved by this dynamic
process, which leads to a more thorough collection of local features. Note that different spatial sparse group has different sparse distribution.
Here we take a sparsity of 22% for example (Sec.3.3 and Alg.1).

M is then applied to these dense weights; M is generated
using an ER-based method with a sparsity of s. The zero-
weight number in M is scaled by 1− Din+Dout+K

g
1+K

g
2+K

g
3

Din×Dout×Kg
1×K

g
2×K

g
3

,
where Kg

1 , Kg
2 , and Kg

3 denote the spatial group sizes. There-
fore, the sparse weights WS are initialized as follows:

WS ←WD �M , (2)

where � represents the Hadamard product.
To design 3D networks with sparse groups, following the

recipe of “using spatial sparse groups, expanding width with-
out more parameters”, we have chosen Spatial-wise Group
Convolution rather than Depth-wise Group Convolution. Our
experiments have also shown that Depth-wise Group Convo-
lution is unsuitable for large 3D kernels. This aligns with the
findings in LargeKernel3D [18]. This experiment is provided
in the supplementary materials.
SparseWeightPruningandGrowth. Previous research [21]
in 2D convolution has illustrated that dynamic sparsity can
effectively enlarge kernel sizes and enhance scalability. But
Depth-wise Group Convolution is unsuitable for large 3D
kernels [18]. Therefore, we adapt sparse weights in each
spatial group dynamically to accommodate the data. Specifi-
cally, a certain rate of connections (i.e., prune rate p) with
the lowest magnitude are eliminated, and then we generate
an equal number of new random connections. The regrow
weights are randomly placed at zero positions within each
spatial group. This is achieved by modifying the mask M
(See Alg. 1). The positions of the eliminated connections
and the newly generated connections are denoted as E and
G, respectively. The formula for pruning and regrowth can
be expressed as follows:

WS ←WS � (M −E), WS ←WS � (M +G). (3)

By doing so, the sparsity of each spatial group is kept steady.
Moreover, the weights can be adjusted dynamically, allow-
ing for improved local characteristics. Please refer to Fig.3
for details. Once training is complete, mask M in spatial
groups is also recorded. Unlike previous methods [21], we
employ the Spatial-wise Group Convolution and partition dy-
namic sparse processes into separate spatial groups. Pruning

and growth are conducted independently within each group
without interfering with each other.

We can assume that weights are changing factors over
time. Then, removing the least important weights is akin to
the selection phase in natural evolution. Alternatively, the
random addition of new weights is analogous to the alter-
ation stage of evolutionary selection [66]. This phenomenon
is also analogous to a biological process in the brain during
sleep, known as synaptic shrinking. Researchers found that
the weakest neural link in the brain weakens during slumber,
while the vital neural connections remain how they are be-
fore. This shows that one of the main roles of sleeping is to
reset the overall synaptic strength [82, 83].

3.4. Channel-wise Weight Selection (CWS)
Despite SLaK [21] employs DST to enlarge the 2D kernel
size, it mitigates the performance degradation caused by spar-
sity in the way of expanding model width. It strives to strike
a balance between sparsity and width. However, expanding
width leads to the issue of increased computational burden.
Therefore, SLaK [21] faces the dilemma that larger sparsity
and smaller model size cannot be achieved simultaneously.
Instead of naively increasing network width, we propose
CWS to decouple sparsity and width. It selectively chooses
the most salient channels and obtains improved performance
while keeping the original model size during inference [26].

CWS operates in an online mode with a sorting frequency
of fs. A single weight sorting cycle involves multiple itera-
tions of Sparse Weight Pruning and Growth, i.e., each cycle
of weight sorting is a multiple of the adaptation rate fa. The
width factor w determines the extent to which the number
of channels is augmented, i.e., extending D-dimension to
w×D-dimension.Once the expanded model has been created,
we consider the D-dimensional small model to be embedded
within the w×D-dimensional augmented model [26]. When
the number of training iterations reaches the sorting condi-
tion, the channels are sorted based on their L1 value (i.e.,
SortChannels), prompting the model to focus on the most
relevant channels. During validation, we select the most
important D-dimensional channels from w×D-dimensional
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channels [26] (i.e., SelectChannels). The pseudo-code for
the entire algorithm is provided in Alg. 1. This operation
effectively achieves higher performance while maintaining
the parameters within the expected size. This is especially
important in deployments where memory usage and compu-
tational efficiency are critical factors.

3.5. Network Architecture
Segmentation Baseline. U-Net type 3D networks (such as
SparseConvNet [11] and MinkUNet [12]) employ aggressive
downsampling (i.e., regular sparse convolution) to increase
the receptive field but at the cost of reduced resolution. How-
ever, with a low resolution, several points or tiny objects
could be combined into one single grid and become indistin-
guishable [16]. So SPVCNN [16] is equipped with a high-
resolution point-based branch. Subsequently, 2DPASS [3]
further modifies multi-representation branches by omitting
the regular sparse convolution. This is because it dilates
all sparse features and blurs valuable information, increas-
ing the burden for following layers [64]. Only submanifold
sparse convolution is employed for feature extraction in Mod-
ified SPVCNN [3]. By limiting the output feature positions
to the input positions, submanifold sparse convolution is
able to circumvent the computation burden. We use Modi-
fied SPVCNN as a baseline for our segmentation network.
This 3D network is compact yet powerful and can generate
high-resolution representations from sparse point clouds in
large-scale scenes. However, one challenge we face is that
the restricted area of submanifold sparse convolution limits
the information flow and makes it difficult to distinguish
different spatial characteristics of the scene. To address this
challenge, we introduce LSK Block, which stands for Large
Sparse Kernel Block. This block increases the kernel sizes
of submanifold sparse convolution and expands the receptive
field to facilitate information flow. LSK Block has a standard
residual structure that adds the output of identity mapping to
that of two stacked large kernel convolutions (Fig.4(2)). Our
network does not need the parallel convolutional branch with
dilatation convolution [18]. The details of our segmentation
network architecture are listed below:
• Segmentation Network on SemanticKITTI [25]. LSK-

3DNet (See Fig.4(1)) divides the entire scene into voxels,
each with a size of 5 cm. It has four scales of {2, 4, 8, 16}.

Algorithm 1 Pseudo-code of SDS and CWS

1: set adaptation frequency fa, sparsity s;
2: set sorting frequency fs and width factor w;
3: expand model width form D dimension to w×D dimension;
4: initialize dense model Ww×D

D ;
5: initialize sparse layers Ww×D

S ;
6: for each training iteration i do
7: Ww×D

S ←NormalTraining(Ww×D
S );

8: if (i%fa) equals to 0 then
9: Ww×D

S ←Ww×D
S � (M −E);

10: Ww×D
S ←Ww×D

S � (M +G);
11: end if
12: if (i%fs) equals to 0 then
13: Ww×D

S ←SortChannels(Ww×D
S );

14: end if
15: if validation then
16: Ww×D

S ←SortChannels(Ww×D
S );

17: WD
S ←SelectChannels(Ww×D

S );
18: NormalValidation(WD

S );
19: end if
20: end for

The hiden size D of the entire network is 64. We deploy
LSK Blocks in SparseBasicBlock1. Following [3, 15, 85],
we employ the weighted cross-entropy loss to optimize
point accuracy and utilize the lovasz-softmax [86] loss to
maximize the intersection-over-union.

• Segmentation Network on ScanNet v2 [28]. This seg-
mentation network has the same architecture as that on
SemanticKITTI [25]. The entire scene is split with a voxel
size of 2 cm, with scales of {2, 4, 8, 16, 16}. The hid-
den size D is 128. Following [87], we take the weighted
cross-entropy loss as the objective function.

Detection Network on KITTI. We take Voxel R-CNN [5]
as a baseline. Specifically, we retain the backbone of Voxel
R-CNN and substitute plain sparse convolutional block with
LSK Block in the first three stages. Other settings remain the
same as [18]. The input spatial shape is {1600, 1408, 41},
and the channels of stages are {16, 16, 32, 64, 64}.

4. Experiment
4.1. Setups and Implementations
Dataset. To evaluate our method, we perform experiments

1https://github.com/yanx27/2DPASS
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Table 1. Results of LSK3DNet on SemanticKITTI [25] single-scan test (Sec. 4.2). Regarding input data format, P denotes points, V
represents voxelizations, R signifies range images, and 2DPASS incorporates additional 2D data. “ms/s” means “milliseconds per scene”.
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PointNet++ [41] P 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9 5900
TangentConv [57] R 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5 3000

PolarNet [62] R 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5 62
RandLA-Net [10] P 55.9 90.5 74.0 61.8 24.5 89.7 94.2 43.9 29.8 32.2 39.1 83.8 63.6 68.6 48.4 47.4 9.4 60.4 51.0 50.7 880

SqueezeSegV3 [61] R 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9 238
KPConv [42] P 58.8 90.3 72.7 61.3 31.5 90.5 95.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4 -

JS3C-Net [22] V 66.0 88.9 72.1 61.9 31.9 92.5 95.8 54.3 59.3 52.9 46.0 84.5 69.8 67.9 69.5 65.4 39.9 70.8 60.7 68.7 471
SPVNAS [16] PV 67.0 90.2 75.4 67.6 21.8 91.6 97.2 56.6 50.6 50.4 58.0 86.1 73.4 71.0 67.4 67.1 50.3 66.9 64.3 67.3 259

Cylinder3D [15] V 68.9 92.2 77.0 65.0 32.3 90.7 97.1 50.8 67.6 63.8 58.5 85.6 72.5 69.8 73.7 69.2 48.0 66.5 62.4 66.2 131
RPVNet [23] RPV 70.3 93.4 80.7 70.3 33.3 93.5 97.6 44.2 68.4 68.7 61.1 86.5 75.1 71.7 75.9 74.4 43.4 72.1 64.8 61.4 168

(AF)2-S3Net [84] V 70.8 92.0 76.2 66.8 45.8 92.5 94.3 40.2 63.0 81.4 40.0 78.6 68.0 63.1 76.4 81.7 77.7 69.6 64.0 73.3 -
PV-KD [19] V 71.2 91.8 77.5 70.9 41.0 92.4 97.0 53.5 67.9 69.3 60.2 86.5 73.8 71.9 75.1 73.5 50.5 69.4 64.9 65.8 76
2DPASS [3] PV 72.9 89.7 74.7 67.4 40.0 93.5 97.0 61.1 63.6 63.4 61.5 86.2 73.9 71.0 77.9 81.3 74.1 72.9 65.0 70.4 62

SphereFormer [24] V 74.8 91.8 78.2 69.7 41.3 93.8 97.5 59.6 70.1 70.5 67.7 86.7 75.1 72.4 79.0 80.4 75.3 72.8 66.8 72.9 123

LSK3DNet PV 75.6 92.2 78.9 70.2 41.8 92.7 97.3 61.0 71.4 75.6 64.2 86.4 72.7 71.9 81.2 80.6 85.2 72.0 67.0 74.6 89

Table 2. Results of LSK3DNet on SemanticKITTI [25] multi-scan
test set. The arrow below classes indicate moving classes (Sec.4.2).
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LatticeNet [89] P 45.2 89.3 54.8 3.5 0.6 49.9 44.6 64.3
TLSeg [90] R 47.0 89.6 68.2 2.1 12.4 40.4 42.8 12.9

KPConv [42] P 51.2 89.3 69.4 5.8 4.7 67.5 67.4 47.2
Cylinder3D [15] V 52.5 91.0 74.9 0.0 0.1 65.7 68.3 11.9

(AF)2-S3Net [84] V 56.9 88.1 65.3 5.6 3.9 67.6 66.4 59.6
2DPASS [3] PV 62.4 91.4 82.1 16.1 3.8 80.3 71.2 73.1

LSK3DNet PV 63.4 92.2 84.4 7.2 40.9 77.4 69.9 72.1

on three benchmark datasets and five tracks:
• SemanticKITTI [25] has 43,551 traffic point cloud scenes

with fine annotations, split into 19,130/4,071/20,350
scenes for train/val/test. The dataset has 28 seman-
tic classes, but only 19 classes are used for single-scan
track and 25 classes for multi-scan track.

• ScanNet v2 [28] contains 1,201/312/100 indoor scenes
for train, val, and test splits, respectively. There
are 20 semantic categories for ScanNet20 track and 200
categories for ScanNet200 track.

• KITTI [29] has 7,481/7,518 samples for train and
test. We follow the frequently used train/val
split [88] to divide the training samples into train split
(3,712 samples) and val split (3,769 samples).

Training and Testing Details. We utilize AdamW optimizer
with OneCycleLR scheduler starting with a learning rate of
5e-3. Data augmentation is also employed, such as random
flipping, scaling, rotation around the gravity axis, spatial
translation. We apply instance CutMix [23] and Test Time
Augmentation (TTA) [3] to the SemanticKITTI test bench-
mark, and enhance the model with extra training epochs.
Metrics. We employ mean class intersection over union
(mIoU) and overall accuracy (Acc) metrics as the evaluation

Table 3. Results of LSK3DNet and other tate-of-the-art methods
on ScanNet v2 [28] (Sec.4.2). S-Net stands for ScanNet.

Method

In
pu

t S-Net20 S-Net20 S-Net200
Val Test Val

PointNet++ [41] P 53.5 55.7 -
3DMV [91] P - 48.4 -

PanopticFusion [92] P - 52.9 -
PointCNN [93] P - 45.8 -
PointConv [94] P 61.0 66.6 -

JointPointBased [95] P 69.2 63.4 -
PointASNL [96] P 63.5 66.6 -

SegGCN [97] P - 58.9 -
RandLA-Net [85] P - 64.5 -

KPConv [42] P 69.2 68.6 -
JSENet [98] P - 69.9 -

FusionNet [99] P - 68.8 -
Point Transformer [8] P 70.6 - -

Fast Point Transformer [100] P 72.1 - -
Stratified Transformer [9] P 74.3 73.7 -
Point Transformer v2 [87] P 75.4 75.2 31.9

SparseConvNet [11, 87] V 69.3 72.5 28.8
MinkUNet [12] V 72.2 73.6 -

LargeKernel3D [18] V 73.5 73.9 -
LSK3DNet PV 75.7 75.5 33.1

criterion for 3D semantic segmentation tasks, as outlined
in [25]. What is more, we calculate Average Precision (AP)
by recalling 11 positions for 3D object detection.

4.2. 3D Semantic Segmentation
Results on SemanticKITTI. We test LSK3DNet on both
single-scan and multi-scan tracks [25]. Tab. 1 presents the
quantitative results of SemanticKITTI single-scan track.
LSK3DNet outperforms 2DPASS [3] in terms of both mIoU
and IoU scores for most categories. Moreover, SDS reduces
the model size of naive 3D kernels and CWS keeps the model
size within the desired size. So, LSK3DNet has a faster run-
ning speed than most prior methods, but it’s performance
significantly benefits from the large kernels. Tab. 2 shows
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Table 4. Results of 3D object detection methods on the car class of
KITTI val set [29] (Sec.4.3).

Method

In
pu

t 3D AP (IoU=0.7)
Easy Moderate Hard

VoxelNet [101] V 81.97 65.46 62.85
PointPillars [102] R 86.62 76.06 68.91

SECOND [63] V 88.61 78.62 77.22
Point R-CNN [103] P 88.88 78.63 77.38

Part-A2 [104] V 89.47 79.47 78.54
PV-RCNN [4] PV 89.35 83.69 78.70

Focals Conv [64] V 89.52 84.93 79.18
Voxel R-CNN [5] V 89.41 84.52 78.93

LargeKernel3D [18] V 89.52 85.07 79.32
LSK3DNet V 90.16 85.61 79.53

the results of SemanticKITTI multi-scan track. The mIoU
and Acc are computed over all 25 classes. Due to page limi-
tations, we only report the per-class IoUs for moving cate-
gories. Under this challenging setting, LSK3DNet surpasses
2DPASS [3] in both mIoU and Acc. Notably, LSK3DNet
achieves state-of-the-art performance on both single-scan
and multi-scan tracks in SemanticKITTI. Surpassing over
the SOTA 2D-3D method 2DPASS is more valuable, which
utilizes both 2D and 3D data while our LSK3DNet takes
as input only the 3D data. Visualization results are in the
supplementary materials.
Results on ScanNet V2. We compare LSK3DNet with pre-
vious state-of-the-art methods on ScanNet v2 [28], a large-
scale dataset for 3D indoor scene segmentation. ScanNet v2
has two tracks: ScanNet20 and ScanNet200, which use 20
and 200 semantic classes respectively. Tab. 3 presents the
quantitative results of our model and other methods on both
tracks. LSK3DNet achieves higher performance than previ-
ous methods in both tracks. Our performance is superior to
transformer-based methods [8, 9, 87, 100], including Point
Transformer v2. Moreover, LSK3DNet has a clear advantage
over LargeKernel3D [18], improving the mIoU by 2.2% and
1.6% on the ScanNet v2 val and test set, respectively.

4.3. 3D Object Detection

We have also evaluated the detection performance of LSK-
3DNet on the val split for car category, as shown in Tab.4.
We report the average precision metric for a 3D bounding
box with 11 recall positions (Recall 11). Based on Voxel
R-CNN [5], we showcase the effectiveness of the LSK Block
by comparing it with LargeKernel3D [18], a previous 3D
large-kernel method. LSK3DNet achieves better results in
three difficulty levels, compared with [5, 18]. Visualization
comparison can be found in the supplementary material.

4.4. Ablation Studies

We first explore the effect of kernel size on performance,
and then the overall architecture design. Next, we explain
the hyperparameter choices of SDS and CWS. All ablation
experiments are performed on the val set of SemancKITTI.

Baseline LSK3DNet Kernel visualization
Figure 5. Effective Receptive Fields (ERFs) of Baseline and LSK-
3DNet. LSK3DNet has a larger ERF size. Additionally, we provide
visualization of learned sparse kernels, where all weight values
have taken the absolute value and normalization operations. The
black areas indicate positions with weight values of zero.

Kernel Size. We use Modified SPVCNN as the baseline and
then explore 3D kernel sizes under two settings: naive dense
large kernel and our LSK3DNet. In the former setting, the
dense 3D kernel is straightforwardly expanded. In the latter
one, LSK3DNet is trained simultaneously with SDS and
CWS, meaning that our LSK3DNet can learn a large sparse
kernel model from the beginning.

The baseline does not use aggressive downsampling
which is common in most U-type 3D networks [11, 12].
However, submanifold sparse convolution with small ker-
nels may lose important information flow, especially for the
spatially disconnected features. We solve this problem by
enlarging the size of the 3D convolution kernel to obtain
a large receptive field. This agrees with the performance
improvement in Tab.5, when the kernel size increases. In
contrast to this observation, LargeKernel3D [18] shows the
opposite trends; we empirically attribute this to the fact that
LargeKernel3D is based on U-type 3D networks (Sec.3.5).
For a better understanding of Effective Receptive Fields
(ERFs) size, Fig. 5 illustrates the comparison between the
Baseline and LSK3DNet. Compared to the baseline, the
high-contribution points of LSK3DNet are distributed over a
larger input range, indicating a larger ERF. Additionally, to
enhance comprehension of learned kernels, we offer kernel
visualization in Fig.5, providing insights into sparse training.

Compared to the “naive dense large kernel” of each kernel
size, LSK3DNet exhibits superior performance in its corre-
sponding size. LSK3DNet not only leverages SDS to expand
its receptive field but also starts from scratch to learn 3D
sparse kernels. Concurrently, CWS widens the network dur-
ing training while pruning redundant channels to accelerate
inference. Furthermore, SDS and CWS address the issues
of overparameterization and overfitting that arise from sim-
ply increasing the kernel’s size and expanding the model’s
width. The best performance of LSK3DNet is achieved at
the 9×9×9 size, and the following experiments are conducted
with 9×9×9 size. Moreover, due to the extra dimension in
3D kernels compared to 2D kernels, naively enlarging the 3D
kernel size will lead to a cubically-increasing overhead. Our
LSK3DNet can effectively reduce 19.1M parameters and ap-
proximately 60% of computing operations when compared
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Table 5. Segmentation performance of Modified SPVCNN with
various large kernel settings. “Dense” refers to directly enlarging
the kernel size. “Ours” refers to training with SDS and CWS
(Sec.4.4). The unit for “Param” is in million (M), “FLOPs” is in
billion (G), and “Speed” is measured in milliseconds per scene.

Kernel Size mIoU Param FLOPs Speed ↓

Dense
(D = 64)

3, 3, 3 65.2 1.9 78.4 36
5, 5, 5 65.6 8.4 127.8 57
7, 7, 7 66.2 22.6 381.2 65
9, 9, 9 67.5 47.9 1916.3 93

11, 11, 11 66.6 87.4 3192.0 134

Dense
(1.8×D)

5, 5, 5 66.2 27.0 444.0 84
7, 7, 7 66.5 73.1 1551.2 123
9, 9, 9 67.2 154.7 3030.0 177

11, 11, 11 66.3 282.1 7139.2 250

Ours
(1.8×D)

5, 5, 5 66.8 5.1 203.8 46
7, 7, 7 68.1 13.6 249.4 63
9,9,9 70.2 28.8 763.6 89

11, 11, 11 70.1 52.5 1847.4 116

Table 6. Overall architecture design with 9×9×9 size. Here, we
report Param, FLOPs, and Speed for the inference model (Sec.4.4).

Method mIoU Param FLOPs Speed ↓
Dense (1.0×D) 67.5 47.9 1916.3 93
Dense (1.8×D) 67.2 154.7 3030.0 177

SDS (1.8×D) 69.3 93.0 2201.4 173
CWS (1.8×D) 69.1 47.9 1916.3 93

LSK3DNet (1.8×D) 70.2 28.8 763.6 89

to the naive large kernel network. This aspect significantly
enhances the value of SDS and CWS for 3D kernels.
Overall Architecture Design. In Tab. 6, Dense (1.8×D)
does not yield improvement due to overparameterization
and overfitting. Although SDS maintains a model width of
1.8×D during inference, it achieves improved performance
due to sparse training and the large receptive field. CWS
effectively addresses overfitting by selecting salient channels,
thereby enhancing performance. By combining SDS and
CWS, LSK3DNet can achieve the best performance while
significantly reducing the model size and computational cost.
Spatial-wise Dynamic Sparsity. To control the degree of
sparse weight adaptation in LSK3DNet, we have adjusted
three hyperparameters: the adaptation frequency fa, sparsity
rate s, and prune rate p (Sec. 3.3). Adaptation frequency
fa indicates how often we update the sparse weights dur-
ing training. Sparsity rate s specifies how sparse the 3D
large kernels are. Prune rate p shows the fraction of updated
weights in one adaptation. We have conducted experiments
with different values of these hyperparameters and report
the results in Tab.7 and Tab.8. Based on our empirical find-
ings, we have chosen fa=2000, s=0.4, and p=0.3 as the
optimal settings for LSK3DNet.
Channel-wise Weight Selection. Another aspect of our
method that we investigated is the CWS. This technique
involves two hyperparameters: the sorting frequency fs and
the width factor w (Sec.3.4). The former determines how fre-
quently we sort and select channels for large kernels during

Table 7. Training and inference speed analysis, speed is measured
in milliseconds per scene. The kernels have 9×9×9 size, “T” and
“I” represent training and inference speed, respectively (Sec.4.4).

Sparsity Dense (1.0×D) SDS (1.8×D) LSK3DNet (1.8×D)
s mIoU T ↓ I ↓ mIoU T ↓ I ↓ mIoU T ↓ I ↓
0 67.5 451 93 - - - - - -

0.1 - - - 68.5 489 176 69.1 491 92
0.2 - - - 68.9 478 176 69.7 482 91
0.4 - - - 69.3 463 173 70.2 467 89
0.6 - - - 69.0 450 171 68.8 454 87
0.8 - - - 68.7 439 171 67.2 443 87

Table 8. Ablation studies of Spatial-wise Dynamic Sparsity on
adaptation frequency fa and prune rate p (Sec.4.4).

Adaptation fa mIoU
100 68.8

1000 69.6
2000 70.2
3000 70.0
4000 69.8

Pruning p mIoU
0.10 69.9
0.20 70.1
0.30 70.2
0.50 70.0
0.70 69.7

Table 9. Ablation studies of Channel-wise Weight Selection on
sorting frequency fs and width factor w (Sec.4.4).

Sorting fs mIoU
1× fa 68.2
2× fa 69.1
4× fa 69.8
6× fa 70.2

10× fa 69.9

Width w mIoU
1.1× 68.4
1.5× 69.6
1.8× 70.2
2.1× 69.9
2.5× 70.1

training. It is expressed as a multiple of fa, the adaptation
frequency, meaning that we perform channel sorting after a
certain number of weight adaptation cycles. When fs=6×fa,
the optimal performance is achieved. The latter controls the
times of network width compared to the target model. We
find that increasing the width factor up to 1.8× improves
the model’s performance, but beyond that point, there is
no significant gain. Therefore, we opt for a width of 1.8×
to avoid more extra compute resources that a wider width
would require during training.

5. Conclusion

We propose Spatial-wise Dynamic Sparsity to scale up 3D
kernels beyond 9×9×9, which prunes the volumetric weight
and reduces the parameter size of large kernel layers. Our
LSK3DNet can benefit from a large receptive field with-
out increasing the computational cost compared to a naive
3D large kernel. Channel-wise Weight Selection expands
the model width during training, and then sorts and selects
important channels during validation to get a model of the
expected size. In this way, we achieve “using spatial sparse
groups, expanding width without more parameters”. We
evaluate our method on the SemanticKITTI and achieve
state-of-the-art performance. Our LSK3DNet also surpasses
previous 3D large kernel methods on ScanNet v2 and KITTI.
Acknowledgments: This work was supported by a China
Scholarship Council (CSC) scholarship.
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