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Abstract

We present NARUTO, a neural active reconstruction
system that combines a hybrid neural representation with
uncertainty learning, enabling high-fidelity surface recon-
struction. Our approach leverages a multi-resolution hash-
grid as the mapping backbone, chosen for its exceptional
convergence speed and capacity to capture high-frequency
local features. The centerpiece of our work is the incorpo-
ration of an uncertainty learning module that dynamically
quantifies reconstruction uncertainty while actively recon-
structing the environment. By harnessing learned uncer-
tainty, we propose a novel uncertainty aggregation strategy
for goal searching and efficient path planning. Our sys-
tem autonomously explores by targeting uncertain observa-
tions and reconstructs environments with remarkable com-
pleteness and fidelity. We also demonstrate the utility of
this uncertainty-aware approach by enhancing SOTA neu-
ral SLAM systems through an active ray sampling strategy.
Extensive evaluations of NARUTO in various environments,
using an indoor scene simulator, confirm its superior per-
formance and state-of-the-art status in active reconstruc-
tion, as evidenced by its impressive results on benchmark
datasets like Replica and MP3D. Project page: oppo-us-
research.github.io/NARUTO-website/

1. Introduction
In the realm of computer vision research, one of the most
notable advancements is the ability to generate detailed 3D
reconstructions from an array of 2D images or scene videos.
This intricate process, executed in real-time, involves pro-
gressive 3D modeling as additional visual data is assimi-
lated, predominantly through the use of Simultaneous Lo-
calization and Mapping (SLAM). In many robotic appli-
cations, SLAM systems are instrumental for tasks such as
planning and navigation. This integration of localization,
mapping, planning, and navigation tasks forms the essence
of what is known as Active SLAM. Our paper specifically

*Equal contribution
†Work done as an intern at OPPO US Research Center
‡Corresponding author (zhanhuangying.work@gmail.com)

6.3m 10
.0m

10.5m

Figure 1. We introduce a neural active reconstruction sys-
tem, named NARUTO, which is guided by learned uncertainty.
NARUTO enables an agent to identify areas of uncertainty and
proactively investigate these regions to minimize reconstruction
ambiguity. Consequently, this approach facilitates the incremental
completion of the entire scene’s reconstruction. NARUTO repre-
sents the first neural active Reconstruction system capable of func-
tioning in large-scale environments with unrestricted movement.

addresses a subset of Active SLAM, termed Active Re-
construction, under the assumption that localization is al-
ready established. We venture into an innovative explo-
ration of Active Reconstruction by adopting a sophisticated,
learned hybrid neural representation . In this work, we de-
vise methodologies capable of meticulously planning and
maneuvering camera trajectories to enhance the complete-
ness and quality of the scene’s reconstruction.

Neural representations, particularly implicit Neural Ra-
diance Fields (NeRFs), have recently been applied in di-
verse geometric applications, such as 3D object reconstruc-
tion [50], novel view rendering [44, 54, 81, 85], surface re-
construction [2, 37], and generative models [48, 62]. While
many of these methods focus on posed cameras, recent ef-
forts have expanded to broader tasks like structure from mo-
tion [13, 38, 76] and SLAM [68, 73, 86, 87]. Despite the
impressive capabilities of NeRFs, their processing speed re-
mains a challenge. To address this, more efficient hybrid
neural representations have been developed [46, 69].

Integrating these representations into active vision ap-
plications continues to pose significant challenges. Exist-
ing research utilizing neural representations for path plan-
ning is limited [1], and only a handful of recent studies
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have explored active reconstruction with neural represen-
tations [36, 49, 56, 79, 84]. These approaches, while inno-
vative, often suffer from the inherent slow speeds of NeRFs
[36, 49, 56]. Moreover, they typically constrain the move-
ment of agents to a lower degree-of-freedom (DoF) within
restricted areas, such as specific locations [36, 49], within a
hemisphere [56, 84], or on a 2D plane [79].

To overcome the aforementioned limitations, we intro-
duce NARUTO, a groundbreaking neural active reconstruc-
tion system. NARUTO unites a hybrid neural representation
with a novel uncertainty-aware planning module, excelling
in high-fidelity surface reconstruction and proactive plan-
ning, shown in Fig. 1. Our key contributions are as follows:
• The first neural active reconstruction system operating

with 6DoF movement in unrestricted spaces.
• An uncertainty learning module quantifies reconstruction

uncertainty in real-time.
• A novel uncertainty-aware planning features a meticu-

lously designed uncertainty aggregation for goal search-
ing, and efficient path planning.

• Active ray sampling strategy enhances the performance
and stability of mapping modules across various tasks.

• Achieving exceptional active reconstruction perfor-
mance, advancing state-of-the-art in reconstruction com-
pleteness from 73% to 90%.

2. Related Work
Active Reconstruction In autonomous robotics, essential
capabilities include localization, mapping, planning, and
motion control [64]. These elements have led to research
areas like visual odometry [60, 83], monocular depth esti-
mation [3, 20, 23, 24, 82], multi-view stereo [6, 11, 28, 40,
63, 70, 80], structure-from-motion (SfM) [61], path plan-
ning [22, 27, 34, 35], and SLAM [5, 16, 19, 71, 75]. Active
SLAM, which combines these approaches for autonomous
localization, mapping, and planning, minimizes uncertain-
ties in environmental modeling [15]. We refer readers to
the survey papers [5, 41, 53] for a comprehensive discus-
sion regarding the development of active SLAM. Our focus
is on active reconstruction, often investigated as exploration
problems [4, 21, 42, 47, 65, 66, 72]. a problem that seeks
optimal movements for accurate environmental represen-
tations [14], primarily for scene and object reconstruction
from multiple viewpoints [17, 29, 33, 43, 51, 52].

Neural Representaitons NeRFs [44] use multi-layer per-
ceptrons (MLPs) to represent scenes as continuous neu-
ral radiance fields. NeRF’s potential has been demon-
strated in a range of applications, from novel view rendering
[44, 54, 81, 85] to object [44, 50] and surface reconstruction
[2, 37], as well as in generative models [48, 62], Structure-
from-Motion [13, 38, 76]. NeRFs are trained by compar-
ing rendered images with accurately posed ones. However,

the volume rendering process [30], which involves querying
numerous sample points for image rendering, makes train-
ing NeRFs time-intensive, often requiring about a day for
simple scenes. While efforts have been made to accelerate
NeRFs [12, 18, 39, 57], these methods still fall short of real-
time application speeds. Recent work [10, 46, 58, 69] have
achieved fast speed through hybrid representations, com-
bining implicit and explicit elements for light and density
fields, respectively. The advancement in hybrid represen-
tations has been instrumental in meeting the real-time re-
quirements of SLAM challenges [73, 86, 87]. Despite these
advancements, applying neural representations in active vi-
sion problems is still an underexplored area.
Neural Active Vision Our research builds upon prior
works that have explored the use of NeRFs for path plan-
ning [1] and active reconstruction [36, 49, 56]. [1] de-
rives optimal paths for navigation from the NeRF-based
scene representation. Recent studies [36, 49, 56] have fo-
cused on active mapping, optimizing NeRFs with next-best-
view selection strategies. However, these approaches are
constrained by the inherent slow speed of NeRFs, limiting
their real-time application in robotics. [84] proposes an ef-
ficient framework using hybrid representations to address
these speed concerns. Meanwhile, works like [9, 25, 79]
have expanded the scope from object-centric reconstruction
[36, 49, 56, 84] to larger indoor environments. However,
these methods still restrict camera motion to a hemisphere
or a 2D plane. In contrast, NARUTO enables 6DoF explo-
ration in unrestricted spaces.

3. NARUTO: Neural Active Reconstruction
In this section, we introduce NARUTO (Fig. 2), a pioneering
neural framework in active reconstruction with uncertainty-
aware planning. Our approach begins with the neural 3D
mapping module, utilizing a hybrid representation for real-
time, high-fidelity surface reconstruction. We incorporate
Co-SLAM [73] as the mapping backbone, as discussed in
Sec. 3.1, laying the groundwork for 3D reconstruction using
hybrid neural representation. Building upon this, Sec. 3.2
delves into the framework’s core, illustrating the joint op-
timization method that fuses bundle adjustment with un-
certainty learning. In Sec. 3.3, we present the uncertainty-
aware planning module for goal searching and path plan-
ning. Sec. 3.4 introduces a versatile active ray sampling
module. This module, leveraging the learned uncertainty, is
designed for seamless integration into existing neural map-
ping methodologies. Concluding this section, we summa-
rize the procedure of active reconstruction in Sec. 3.5.

3.1. Neural 3D Mapping
Implicit Neural Mapping Recent advancements have es-
tablished neural implicit representations as notably expres-
sive and compact, effectively encoding scenes’ appearance
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Figure 2. NARUTO framework Upon reaching a keyframe step, HabitatSim [59] generates posed RGB-D images. A select number of
pixels from these images are sampled and stored in the observation database. Utilizing a mixed ray sampling strategy (combining Random
and Active methods), a subset of rays is selected from the current keyframe and the database. These rays are then processed through
the Hybrid Scene Representation (Map) to deduce the corresponding color, Signed Distance Function (SDF), depth, and uncertainty
values. The predictions derived from this process facilitate uncertainty-aware bundle adjustment, updating both the scene’s geometry
and reconstruction uncertainty. Subsequently, the Map is refreshed, and our novel uncertainty-aware planning algorithm is employed to
determine a goal and trajectory based on the SDFs and uncertainties. The agent then executes the planned action.

and 3D geometry. A series of prior works, including
[37, 68, 73, 86, 87], have demonstrated the applicability of
neural representation in 3D reconstruction. Given a stream
of RGB-D images, dense mapping with representations,
such as radiance fields and truncated signed distance fields
(TSDF), can be achieved by optimizing a neural represen-
tation via rendering supervision. TSDF, in particular, is
widely used for neural surface reconstruction. Coordinate-
based neural representations are often employed to map
world coordinates x to color c and TSDF value s.

Hybrid Representation MLPs are widely utilized as
coordinate-based implicit representations for high-fidelity
scene reconstruction, owing to their coherence and smooth-
ness. However, they are not without drawbacks, such as
slow convergence and catastrophic forgetting in continual
learning scenarios, as identified in [7, 78]. To address these
challenges, we apply several innovative solutions intro-
duced by Co-SLAM [73]. Among these is a joint coordinate
and parametric encoding, designed to enhance fidelity while
expediting training processes. The incorporation of one-
blob coordinate encoding �(x) [45] with a multi-resolution
hash-based feature grid achieves rapid querying speeds, ef-
ficient memory usage, and a notable hole-filling capability.
In this setup, the feature vector V↵(x) at each sampled point
x is obtained through trilinear interpolation on the feature
grid. The geometry decoder f⌧ predicts an SDF value s and
a feature vector h. Additionally, the color MLP, denoted as
f�, calculates the color value.

f⌧ (�(x), V↵(x)) 7! (h, s) ; f�(�(x), h) 7! c, (1)

where {↵,�, ⌧} represents the learnable parameters that can
be optimized in the bundle adjustment.

Bundle Adjustment Bundle Adjustment (BA) in neural
SLAM typically employs volumetric rendering optimiza-

tion [68, 73, 86]. Instead of storing full images, we execute
BA on sparse samples from the keyframes, enabling more
frequent keyframe insertions and a larger keyframe collec-
tion. For this process, given a camera origin o and a ray
direction r, 3D points are sampled along the ray, based on
predefined depths di: xi = o + dir. The color ĉ and depth
d̂ can be rendered:

ĉ =
1

P
M

i=1 wi

MX

i=1

wici , d̂ =
1

P
M

i=1 wi

MX

i=1

widi, (2)

where wi = '( si
tr
)'(� si

tr
) represents the weights computed

along the ray, obtained by applying Sigmoid functions '(.)
to the predicted SDF si within a truncated range tr = 10cm.

Post rendering, a multi-objective function is minimized
to execute bundle adjustment, incorporating color and depth
rendering losses. These losses are calculated between the
rendered results (ĉ, d̂) and the observed values (co,D):

Lc =
1

N

NX

i=1

(ĉi � co
i
)2 , Ld =

1

|Rd|
X

r2Rd

(d̂r �Dr)
2 (3)

where N = 2148, Rd denotes the set of rays with valid
depths, and Dr corresponds to the pixel on the image plane.

Following [73], we apply additional regularizations to
enhance reconstruction quality. For samples within the trun-
cation region S

tr

r
, SDF loss is approximated by the distance

between the sampled point and its observed depth value.
Conversely, for points outside the truncation region S

fs

r
, a

free-space loss ensures SDF predictions equal to tr:
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1
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To ensure smooth reconstructions in unobserved free-space
regions, we apply a feature smoothness regularization on
the interpolated features V↵(x):

Lsmooth =
1

|G|
X

x2G
�2

x
+�2

y
+�2

z
, (6)

where �x,y,z = V↵(x+ ✏x,yz)�V↵(x) is the feature differ-
ence of some sampled vertices.

3.2. Reconstruction Uncertainty Learning
Recent studies [26, 49, 56, 79, 84] have investigated various
approaches for quantifying uncertainty in implicit represen-
tations. [49, 56] propose implicitly learning uncertainty
through an MLP network. This uncertainty MLP predicts
point uncertainties for each sampled point along selected
rays. These point uncertainties are then integrated to cal-
culate the photometric uncertainty of each pixel, employ-
ing the volume rendering technique described in Sec. 3.1.
However, this form of uncertainty, as noted in [32], does not
strongly correlate with geometric uncertainty. Alternatively,
[84] opts for explicit and efficient computation of geomet-
ric uncertainty, represented as a 3D volume, from predicted
densities. Notably, the methods mentioned above are either
RGB-based, lacking depth sensing, or do not incorporate
depth measurements in uncertainty learning. This omission
is significant, as depth information is essential for accurate
uncertainty quantification. In our work, we integrate the un-
certainty learning process with depth rendering, as outlined
in Eq. (3), within the bundle adjustment framework. This
integration follows the strategy proposed in [31], effectively
combining depth data with uncertainty.

Ld =
1

|Rd|
X

r2Rd

✓
1

2�̂2
r

(d̂r �Dr)
2 +

1

2
log�̂2

r

◆
, (7)

where �̂
2
r
=

1
P

M

i=1 wi

MX

i=1

wi�
2
i

(8)

This study delves into two distinct methodologies for
representing reconstruction uncertainty: implicit and ex-
plicit representations. For the implicit approach, we em-
ploy an MLP to estimate point uncertainty, f�(�(x), h) 7!
V�(x). However, our observations highlight a notable draw-
back of this implicit uncertainty representation. Due to the
reliance on the UncertaintyNet for predictions, any param-
eter update within the MLP results in alterations to uncer-
tainty values across all regions, including those yet to be
observed, i.e. regions that lack observations are expected to
exhibit high uncertainty; however, these areas often show
random uncertainty levels instead. In response to this chal-
lenge, we develop a learnable uncertainty volume, V� , de-
signed to represent surface reconstruction uncertainty effi-
ciently. This volume enables rapid querying of uncertain-
ties via trilinear interpolation, �2

i
= f⇢(V�(xi)), followed

O B S T A C L E
G O A L S P A C E
G O A L S
S E N S I N G R A N G E
U N C E R T A I N P O I N T
N O N - V I S I B L E
A G E N T
R R T

Figure 3. Uncertainty-aware Planning Illustration. The top-k
uncertain points are accumulated within the sensing range at each
potential goal location. The goal with the greatest level of uncer-
tainty is subsequently selected as the provisional target location.
Efficient RRT planning effectively identifies a viable trajectory
from the agent’s current position to the designated goal.

by a non-linear softplus activation function f⇢(.). We ini-
tially set the volume with high uncertainty. Significantly,
as this volume is updated during bundle adjustment through
uncertainty-aware depth rendering, only the uncertainties in
regions that have been observed are modified. This feature
is vital for the effectiveness of active vision tasks. The com-
parative advantages of our explicit representation over im-
plicit methods are further detailed in Sec. 4.3.

3.3. Uncertainty-aware Planning
In this section, we elaborate on the application of learned
uncertainty and geometry in active planning, aiming to
achieve comprehensive and high-quality reconstruction.
The planning module comprises two primary components:
Goal Searching and Path Planning. Utilizing the up-to-date
SDF map that incorporates the learned geometric uncer-
tainty, our primary goal is to pinpoint the most effective goal
location for reducing overall map uncertainty. To this end,
we introduce an innovative uncertainty aggregation strategy,
which facilitates the creation of an uncertainty-aware goal
space. Following the identification of the optimal observa-
tion location, we proceed with executing efficient path plan-
ning to establish a trajectory toward the chosen goal. A 2D
illustration of this approach is depicted in Fig. 3.

Uncertainty Aggregation for Goal Search Utilizing the
most recent mapping model, denoted as M, we undertake
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Algorithm 1 NARUTO: Neural Active Reconstruction

1: Initialization Mapping Model M with [Vs;V�]; Agent
State st = s0; Goal Space Sg; Observations {O}0

i=0;
PLAN REQUIRED = True

2: for t 0 to T do
3: if PLAN REQUIRED then
4: # Search a new goal from Goal Space if needed
5: GoalSearch(Mt, st)! sg 2 Sg

6: # Plan a feasible path based on Mt towards sg
7: PathPlanning(Mt, st, sg)! {sj}gj=t

8: # Set PLAN REQUIRED to False
9: PLAN REQUIRED False

10: end if
11: # Execute to follow planned path
12: Action st  {sj}gj=t

13: # Update Database in keyframe steps
14: Observation: acquire a new observation Ot

15: Update database: {O}t
i=0  {O}t�1

i=0
16: # Update Mapping Model
17: Mapping Optimization: Update Mt  Mt

18: # Replanning if detected collision or reached goal
19: CheckPlanRequired: update PLAN REQUIRED
20: end for

two key constructions. First, we generate an SDF vol-
ume, Vs 2 RH⇥W⇥D, through uniform querying M across
the space. Second, we establish an uncertainty volume,
V� 2 RH⇥W⇥D, which encapsulates the geometric uncer-
tainty of the reconstruction space. The foremost goal of
this process is to determine the optimal observation loca-
tion. This location is characterized as the point from which
the most substantial regions of high uncertainty can be ob-
served. To effectively identify such a location, we have de-
veloped a novel uncertainty aggregation strategy.

Initially, we set up a multi-level Goal Space, denoted
as Sg 2 RH⇥W⇥N , comprising layers that are distributed
at different heights within the space. The arrangement is
such that each layer is approximately 1 meter apart from its
adjacent layers, providing a structured vertical distribution
throughout the space. Rather than aggregating uncertainties
at every vertex within V� onto the Goal Space, our method
focuses on a set of vertices with the top-k uncertainty, de-
noted as {x�}k, where k = 300. For each point xg sampled
within the Goal Space, we accumulate the uncertainty of all
visible {x�}k points, provided they fall within the optimal
observation range of [0.5, 2]m. Visibility is ascertained by
examining the SDF values between xg and x� . Upon com-
pleting this aggregation process, the goal with the highest
aggregated value is subsequently selected as the provisional
target location. The goal state sg is defined as the goal loca-
tion looking at its most uncertain region.

Efficient RRT Path Planning Upon pinpointing the goal
location, our path planning module is activated to devise a
viable path linking the current state, st, with the goal state,
sg . For this purpose, we adopt a sampling-based path plan-
ning methodology akin to the Rapid-exploration Random
Tree (RRT) [35], utilizing the SDF map Vs as a basis. No-
tably, executing the conventional RRT within a large-scale
3D environment proves to be considerably time-consuming.
To mitigate this challenge, we implement an efficient plan-
ning approach inspired by [34]. Our strategy enhances the
traditional RRT by not only iterating through random point
sampling but also consistently seeking direct, feasible lines
connecting these sampled points with the goal state. Such
augmentation significantly expedites the planning process,
thereby making RRT practical and efficient even in expan-
sive scenes. Note that occasionally, the identified goal state
sg may be situated in a location that, while lying within the
predefined 3D bounding box, is actually outside the navi-
gable space. In such instances, RRT typically fails to find
a valid or feasible path, as shown by reaching the maxi-
mum sampling number. To address this issue, we assess the
reachability of all V� vertices by querying RRT. If a vertex
is determined to be unreachable — specifically, if it lies at a
minimum distance beyond the agent’s step size — it is then
excluded from the uncertainty aggregation process.

Action Execution In our system, the agent is capable of
performing several actions under various events:
• Move: The agent moves towards the target, looking at the

3D point with the highest uncertainty.
• Observe: Upon reaching sg , the agent sequentially ob-

serves the top-10 uncertain points within the sensing
range via rotational motion.

• Stay: The agent remains stationary either upon reaching
the goal location or when collisions are detected.

Note that Goal Space and the RRT space can be tailored to
suit the specific dimensions of the scene as well as the type
of agent involved, whether it be a ground robot or an aerial
robot. To demonstrate the generalization of our system, we
model the agent as a free-moving entity with a spherical
body, which has a radius of 5cm. The agent’s motion is
constrained to translations  10cm and rotations  10�.

3.4. Active Ray Sampling
In the process of mapping optimization, Co-SLAM [73]
employs a strategy of sampling N rays from both the
database and the most recent keyframe. While this random
sampling technique facilitates optimization across various
regions, it occasionally leads to inconsistent results. More-
over, this approach does not ensure that regions character-
ized by subpar reconstruction quality are adequately sam-
pled. By incorporating the learned uncertainty, we intro-
duce a more targeted ray sampling method. This approach
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Figure 4. Matterport3D Results Two scenes (Left: pLe4; Right: HxpK) are presented here. The results are distinguished by border
colors: [Ground Truth , ANM[79], Ours]. In our results, notably in the second and fifth columns, black regions signify incomplete GT
mesh, illustrating the extrapolation capacity of our neural mapping module. Results in columns 3 and 6 are trimmed for better comparison.

retains the diversity of the original sampling strategy but en-
hances it by substituting N

0 rays from the random sample
with the top-N 0 rays, selected based on their uncertainty.
This active ray sampling technique improves the consis-
tency and quality of the system’s output across different it-
erations, as presented in Sec. 4.3.

3.5. Active Reconstruction
Integrating the mapping module outlined in Sec. 3.1 and
Sec. 3.2, with the planning module from Sec. 3.3, we estab-
lish a comprehensive neural active reconstruction system,
as detailed in Algorithm 1 and illustrated in Fig. 2. Lever-
aging an up-to-date neural mapping model, this system em-
ploys the planning module to perform goal searching and
path planning. Subsequent to each action executed for ac-
quiring a new RGB-D frame, a selection of rays from the
keyframes is stored in a database to facilitate mapping op-
timization. This storage occurs at a fixed interval of every
5 steps. Replanning is triggered under two conditions: ei-
ther after the completion of the Observe action at the goal
location or upon detection of a collision.

4. Experiments and Results
4.1. Experimental Setup
Simulator and Dataset Our experiments utilize the Habi-
tat simulator [59] and are evaluated on two photorealis-
tic datasets: Replica [67] and Matterport3D (MP3D) [8].
Specifically, we select 8 scenes from Replica [68] and 5
scenes from MP3D [79] for our analysis. The experiments
are designed to run for 2000 steps in Replica and 5000 steps
in MP3D, reflecting the larger scene sizes in MP3D that ne-
cessitate more steps for thorough exploration. In these ex-
periments, our system processes posed RGB-D images at

a resolution of 680 ⇥ 1200, with the field of view settings
at 60� vertically and 90� horizontally. We use 10cm as the
voxel size for all experiments when generating 3D volume.

This work represents a departure from previous neural
active reconstruction efforts, which typically involve action
spaces constrained to teleporting between discrete locations
[49, 56], moving within limited areas such as a hemisphere
[84], or navigating the local vicinity on a 2D plane [9, 79].
In contrast, we introduce the first neural active reconstruc-
tion system operating with 6DoF movement in unrestricted
3D spaces. Given the inherent randomness in the methods,
we conduct each experiment five times to ensure reliability
and present the average outcomes. For experiments with ac-
tive planning, the agent’s starting position is randomly ini-
tialized within the traversable space for each trial.

Metrics We evaluate the reconstruction using Accuracy
(cm), Completion (cm), Completion ratio (%) with a thresh-
old of 5cm. We also compute the mean absolute distance,
MAD (cm), between the estimated SDF distance on all ver-
tices from the ground truth mesh. In line with methodolo-
gies employed in previous studies [73, 74], we refine the
predicted mesh by removing unobserved regions and noisy
points that are within the camera frustum but external to the
target scene, utilizing a mesh culling technique. Refer to
[73] for a detailed explanation of the mesh culling process.

4.2. Evaluation
To our knowledge, this is the first study to address the
challenge of active surface reconstruction in large-scale in-
door scenes with the provision for 6DoF movements in
3D space. Previous studies that allow for 6DoF motions,
such as [29, 33, 36, 56, 84], have primarily focused on
object-centric scenarios. In contrast, earlier works targeting
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MAD (cm) # Acc. (cm) # Comp. (cm) # Comp. Ratio (%) "
FBE [77] / / 9.78 71.18
UPEN [25] / / 10.60 69.06
OccAnt [55] / / 9.40 71.72
ANM [79] 4.29 7.80 9.11 73.15
Ours 1.44 6.31 3.00 90.18

Table 1. MP3D Results Our method shows superior performance
with better reconstruction quality and completeness.

large-scale indoor scenes have generally been categorized
under the active exploration task. These studies, includ-
ing [9, 25, 79], often employ reinforcement learning-based
planners and restrict agent movement to a 2D plane. No-
tably, ANM [79] is among the closest to our work; it also
utilizes neural implicit representation for mapping in large-
scale indoor environments. Averaged results are presented
in this section, while a comprehensive evaluation of indi-
vidual scenes is included in the supplementary material.

MP3D In Tab. 1, we provide a quantitative comparison
of our system against previous studies on MP3D. Our ap-
proach significantly surpasses prior work across all evalu-
ation metrics. The MAD metric reflects the precision of
the learned 3D neural distance field in our model. Further-
more, both the Completion and Completion Ratio metrics,
which assess the extent of active exploration coverage in 3D
space, indicate that our method achieves remarkably high
completeness. This success is attributable to our effective
method of goal identification combined with the agent’s un-
restricted movement capabilities, as shown in Fig. 1.

It is important to note that the Accuracy metric is calcu-
lated by computing the mean nearest distance (with respect
to the prediction) between the predicted vertices and the
ground-truth vertices. However, a challenge arises with the
MP3D scenes due to their real-world capture; the ground-
truth mesh often exhibits incompleteness resulting from
incomplete scanning. In scenarios where neural implicit
reconstruction is applied, the neural networks’ extrapola-
tion capacity can fill in these missing regions. While this
might be beneficial in some contexts, it poses a disadvan-
tage for the Accuracy evaluation. This effect is exemplified
in Fig. 4, where the discrepancy due to neural network ex-
trapolation is evident. In Fig. 4, it is evident that our method
yields a more comprehensive and high-fidelity reconstruc-
tion, underscoring the effectiveness of our approach.

4.3. Ablation Studies
Replica features photorealistic 3D indoor scenes, spanning
both room and building scales. Each scene in this dataset
is represented by a dense mesh, which typically exhibits
greater completeness compared to the MP3D scenes. Given
this higher level of completeness, we primarily conduct our
ablation studies on the Replica dataset to ensure more rep-
resentative and robust results.

Method Acc. (cm) Comp. (cm) Comp. Ratio (%)
µ �

2(10�3) µ �
2(10�3) µ �

2(10�2)
Neural SLAM

iMAP [68] 3.62 / 4.93 / 80.50 /
NICE-SLAM [86] 2.37 / 2.63 / 91.13 /
Co-SLAM [73] 2.30 34.56 2.35 29.51 92.74 72.90
[73] w/ ActRay 2.30 26.10 2.35 15.06 92.70 11.77

Neural Mapping: Tracking is disabled
Co-SLAM [73] 1.96 3.02 2.00 0.86 93.79 2.16
[73] w/ ActRay 1.96 2.88 1.98 0.50 93.90 1.88

Neural Active Mapping
w/o ActiveRay 1.67 1.76 96.89
Uncertainty Net 1.69 2.05 94.62
Full 1.61 1.66 97.20

Table 2. Evaluation and Ablation Studies on Replica.

Figure 5. Evolution of Uncertainty and Completion Using Ex-
plicit Grid and Implicit Net. The abrupt decrease in Grid Un-
cert(office3) correlates with the implementation of the reachability
filtering strategy, as outlined in Sec. 3.3.

Active Ray Sampling In this section, we assess the effi-
cacy of the Active Ray Sampling strategy (ActiveRay), as
detailed in Sec. 3.4. We tested the strategy across three dis-
tinct tasks, presenting the results in Tab. 2. Leveraging our
learned uncertainty, the Active Ray Sampling module acts
as a versatile plug-and-play enhancement for existing neu-
ral mapping methods, leading to improved reconstruction
outcomes. Focusing on the Neural SLAM task, we inte-
grate our learned uncertainty and the Active Ray Sampling
strategy into Co-SLAM [73]. Our results demonstrate re-
construction quality comparable to the original Co-SLAM.
More importantly, multiple trials reveal that the inclusion
of Active Ray Sampling yields more consistent results with
reduced variance. The Neural SLAM task, which involves
estimating camera poses, introduces an additional complex-
ity to the optimization process. In the second task, we con-
centrate on mapping capabilities, deactivating the tracking
function in Co-SLAM [73]. Without the instability intro-
duced by the tracking thread, our method exhibits improved
reconstruction quality compared to Co-SLAM. A key ad-
vantage of this approach in both tasks is the enhancement
of result stability, evidenced by reduced variance. In the
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Figure 6. Replica Results Two scenes (office0, office3) are shown in the first and second rows, respectively. The results represent [ Ground
Truth, Uncertainty Net, w/o ActiveRay, Full ]. Our Full method shows a better completeness and quality on the highlighted regions. Note
that the GT visualization uses view-dependent rendering, unlike our mapping backbone, resulting in color differences in the visualizations.

third task, focusing on Active Neural Mapping, we demon-
strate that ActiveRay is a crucial element of our system. We
surmise that this effectiveness stems from our system’s de-
liberate focus on accruing more observations from regions
of uncertainty. Consequently, this leads to an increase in
the number of valid rays, especially those marked by uncer-
tainty, making them prime candidates for selection by Ac-
tiveRay. We provide a qualitative comparison in Fig. 6, con-
trasting results obtained using our complete method with
those achieved without ActiveRay. The full implementa-
tion of our method, employing ActiveRay, demonstrates en-
hanced completeness and finer detail in thin structures.

Explicit Grid v.s. Implicit Net We discuss the use of ex-
plicit and implicit representation in Sec. 3.2. It was noted
that utilizing an implicit representation (Uncertainty Net)
for learning uncertainty presents stability challenges. The
optimization process employing Uncertainty Net is depicted
in Fig. 5, where it is juxtaposed with our proposed Uncer-
tainty Grid for comparative analysis. Two principal obser-
vations emerge from this comparison: Firstly, both Uncer-
tainty Net and Uncertainty Grid demonstrate rapid conver-
gence, underscoring the efficacy of our uncertainty-aware
planning approach. Secondly, as previously discussed in
Sec. 3.2, Uncertainty Net tends to produce fluctuating un-
certainty values during the optimization phase due to con-
tinuous updates in network parameters. This instability is
also illustrated in Fig. 5, where we include log(

P
xi V�(xi))

and the completion ratios, highlighting the comparative sta-
bility offered by Uncertainty Grid. In Uncertainty Grid, a
clear correlation is observed: the completion ratio increases
as uncertainty decreases. Conversely, in Uncertainty Net,
these two metrics do not exhibit a strong correlation. In
Fig. 6, we present a qualitative comparison demonstrating

that using Uncertainty Grid results in higher reconstruction
completeness than Uncertainty Net.

5. Discussion
In summary, NARUTO represents a significant advance-
ment in the field of neural active reconstruction. By in-
tegrating a hybrid neural representation with uncertainty
learning, and a novel uncertainty-aware planning module,
we present the first neural active reconstruction system
that enables agents to execute 6DoF movement in unre-
stricted space. Furthermore, the enhancement of state-of-
the-art neural mapping methods through our active ray sam-
pling strategy underscores the versatility and practicality of
NARUTO. Rigorous evaluation in diverse environments us-
ing an indoor scene simulator demonstrates our system’s
superior performance, outperforming existing methods on
benchmark datasets such as Replica and MP3D, setting a
new standard in active reconstruction.

While NARUTO exhibits outstanding performance, fu-
ture research directions are identified to advance the field.
Firstly, the current assumption of known localization and
perfect action execution, which might not hold in real-
world scenarios, suggests the need for a robust planning
and localization module to enhance real-world applicabil-
ity. Secondly, the agent’s motion constraints, vital in practi-
cal applications, should be considered to refine the system’s
general movement solution. Lastly, the use of a single-
resolution uncertainty grid, primarily focusing on scene
completeness, could be evolved into a multi-resolution
uncertainty representation to meet diverse requirements.
These future explorations aim to augment NARUTO’s prac-
ticality and adaptability in real-world settings, pushing the
boundaries of autonomous robotic systems.
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[2] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,
Matthias Nießner, and Justus Thies. Neural rgb-d surface
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6290–
6301, 2022. 1, 2, 3

[3] Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan,
Chunhua Shen, Ming-Ming Cheng, and Ian Reid. Unsuper-
vised scale-consistent depth and ego-motion learning from
monocular video. Advances in neural information process-
ing systems, 32, 2019. 2

[4] Frederic Bourgault, Alexei A Makarenko, Stefan B
Williams, Ben Grocholsky, and Hugh F Durrant-Whyte. In-
formation based adaptive robotic exploration. In IEEE/RSJ
international conference on intelligent robots and systems,
pages 540–545. IEEE, 2002. 2

[5] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
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