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looks like Joe Biden 10-years-old female wearing lipstick with curly hair with goatee
Figure 1. Zero-Shot Manipulation with StyleEntity. Top row: Input images. Bottom row: Manipulation results. All prompts are unseen in
the training set.

Abstract

We introduced StyleEntity, a zero-shot image manipu-
lation model that utilizes named entities as proxies dur-
ing its training phase. This strategy enables our model
to manipulate images using unseen textual descriptions
during inference, all within a single training phase. Ad-
ditionally, we proposed an inference technique termed
Prompt Ensemble Latent Averaging (PELA). PELA av-
erages the manipulation directions derived from various
named entities during inference, effectively eliminating
the noise directions, thus achieving stable manipulation.
In our experiments, StyleEntity exhibited superior perfor-
mance in a zero-shot setting compared to other methods.
The code, model weights, and datasets are available at
https://github.com/feng-zhida/StyleEntity.

*Corresponding Author

1. Introduction

Generative Adversarial Networks (GANs) [17] have signif-
icantly advanced synthetic image generation, with Style-
GAN [21–24] architectures leading in producing high-
resolution, lifelike images. Numerous studies [3, 4, 18, 20,
37–39, 41, 43] have demonstrated the ability to manipulate
these images subtly through precise control of style codes
within StyleGAN frameworks. Moreover, recent advance-
ments have enabled the modulation of style codes using tex-
tual prompts, enhancing GANs’ applicability. When com-
bined with GAN Inversion techniques [1, 2, 5, 7, 11, 34, 40,
44], this capability extends GANs’ utility, allowing for the
detailed refinement and editing of real-world photographs.

Current text-guided image manipulation methods [29,
32, 48] typically utilize the CLIP model [33], which learns
to map prompts to the StyleGAN latent space, facilitat-
ing image manipulation via textual descriptions. However,
these methods have notable limitations. Optimization-based
methods require per-image, per-prompt optimization, incur-
ring high inference costs. Conversely, neural network-based
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mappers need a dedicated mapper trained for each specific
prompt, leading to practical inconveniences. FFCLIP [48],
despite training with prompts similar to those during infer-
ence and thus allowing for adaptability to diverse prompts
without retraining, performs poorly with prompts outside
the training set’s distribution. Amassing a large, varied
prompt dataset to cover the entire representational space
seems a straightforward solution, but is impractical due to
the difficulty in data collection. Our method ingeniously
overcomes this challenge by using named entities as prox-
ies during training. These proxies allow our model to transi-
tion from named entity prompts to user-provided prompts in
a zero-shot fashion during inference, effectively addressing
the challenge of collecting diverse prompts.

In this work, we introduce StyleEntity, a novel approach
to image manipulation that capitalizes on the inherent com-
positional properties of named entities within the CLIP text
space. Our findings suggest that named entities can serve ef-
fectively as conglomerates of descriptive text components.
With one training session utilizing this named entity dataset,
our model gains zero-shot manipulation capabilities, profi-
ciently employing a variety of descriptive prompts at the
inference stage. Figure 1 demonstrates the zero-shot ma-
nipulation capability of StyleEntity. Moreover, we propose
the Prompt Ensemble Latent Averaging (PELA) technique.
PELA significantly improves the generative quality of our
model based on named entity data, thus facilitating the cre-
ation of manipulated images with exceptional stability and
fidelity in a zero-shot scenario.

Text-guided image manipulation methods [14, 25, 28–
30, 32, 46–48] aim to edit the content of images based on
user-provided prompts, while preserving prompt-irrelevant
content. To evaluate the effectiveness of these manipu-
lations, we introduce a trade-off plot that illustrates the
model’s effectiveness across a spectrum of hyperparame-
ters, providing a comprehensive evaluation of text-guided
image manipulation techniques.

2. Related Work
Latent Space Manipulation. Recent years have seen no-
table progress in latent space manipulation, aimed at con-
trolling the attributes of generated images by adjusting la-
tent variables. One straightforward strategy has been to de-
termine the path in latent space that corresponds to a desired
attribute modification, such as changing hair color [13, 16,
38]. GANSpace [18] utilizes principal component analysis
in the activation space to discover controllable dimensions
within generative adversarial networks (GANs), influencing
aspects like perspective, aging, and lighting, including time
of day alterations. Collins et al.[12] improved the modifi-
cation of style vectors for localized, semantically meaning-
ful changes in an image, seamlessly integrating elements
from another image. These methods typically adopt an “in-

vert first, edit later” approach[34], which requires revert-
ing images to the latent space using GAN Inversion before
editing. Most recent techniques manipulate the W or W+
spaces [34, 40], while Wu et al.[45] extend their work into
the S space. In StyleGAN, the W space, an intermediate la-
tent space, is derived from the initial random noise vector (z
space), facilitating more interpretable and controllable fea-
ture manipulation than z space. The W+ space allows even
finer control over the image generation by using different
W vectors for each layer (18 layers for 1024 × 1024 im-
ages), thus enabling more precise manipulation of specific
image features. We use e4e[40] for GAN inversion, allow-
ing manipulation within the W+ space.

Text-Guided Image Manipulation. Initial methods [14,
26, 30] were often trained on manually annotated datasets
like MSCOCO [27] and CUB [42]. The StyleGAN-based
TediGAN [46] generated texts by annotating attributes
based on predefined rules, resulting in a lack of diversity
in the descriptions. The advent of the CLIP model [33],
trained on a vast dataset, has produced semantically rich
text embeddings. Many studies have since utilized CLIP to
bridge between the text and StyleGAN spaces, with impres-
sive outcomes. Optimization-based methods such as Style-
CLIP Optimization [32] optimize the latent code for each
image and prompt, which can be cumbersome; StyleCLIP’s
Global method [32] identifies a direction in the StyleGAN
latent space using CLIP embeddings, yet this approach does
not tailor the manipulation direction for individual images;
StyleCLIP’s Mapper [32] trains a mapper for each textual
prompt, which then modifies the latent code accordingly.
FFCLIP [48] enhances this by manually creating prompts
and training a universal mapper, but struggles with prompts
outside the training distribution. Our paper introduces train-
ing with named entities seen in the CLIP space as combi-
nations of various descriptive texts, enabling the zero-shot
application of general unseen descriptive texts during infer-
ence. In recent years, there have been image editing meth-
ods based on diffusion that typically manipulate either the
pixel space [31] or the compressed space [35] of a VAE.
Our approach, however, differs in that we directly manip-
ulate within the attribute-decoupled StyleGAN latent space
to edit images.

3. Method
3.1. Utilizing Named Entities as Proxies

In the field of Natural Language Processing (NLP), named
entities refer to phrases that include proper nouns such as in-
dividuals’ names, organizations, and locations, among oth-
ers. A unique aspect of human cognition is the ability to
associate a variety of visual attributes with these named
entities. For example, when one thinks of the celebrity
Dwayne “The Rock” Johnson, several visual attributes such

9111



CLIP 
Text Encoder

StyleGAN 
GeneratorMapper

“Taylor Swift”

“Taylor Swift”

“Megan Fox”

“Anne Hathaway”
…

CLIP 
Image Encoder

sample

Text-Only 
Named Entity Dataset

CLIP 
Text Encoder

Figure 2. The training pipeline of our proposed StyleEntity. All model parameters are frozen except for the mapper.

as “bald”, “dark eyes”, and “beardless” come to mind. Sim-
ilarly, the CLIP model’s visual space associates visual at-
tributes with named entities.

With its ability to align visual and textual spaces, a
named entity text in the CLIP model can encapsulate var-
ious visual attributes. This unique characteristic enables us
to utilize named entities to efficiently cover a substantial
portion of the representational space, circumventing the ne-
cessity to gather numerous individual descriptive phrases.
Such broad coverage is vital in a zero-shot setting, where
the model needs to accommodate a set of new prompts.
By utilizing named entities as proxies during training, we
ensure extensive representational coverage. This method
helps our model seamlessly transition from named entity
prompts to descriptive prompts in zero-shot inference, lead-
ing to efficient and high-quality image manipulation.

Moreover, employing named entities significantly
streamlines the data collection process. Traditional meth-
ods typically necessitate the labor-intensive and time-
consuming manual gathering of descriptive phrases. By
contrast, named entities, particularly those related to facial
descriptors, are easily compiled by aggregating lists of pub-
lic figures. This approach not only eases data collection but
also broadens the model’s learning of associations between
text and style codes. Crucially, this method requires only
the collection of named entity textual data, foregoing the
need for corresponding images.

3.2. Training

Figure 2 illustrates the training pipeline of StyleEntity. The
mapper takes the style code of the original image and the
CLIP text embeddings of a named entity. It outputs a ma-
nipulation direction ∆W , which, when added to W , results
in a manipulated style code. The StyleGAN generator uses
this to produce an image. The image is then employed
to calculate a contrastive loss with text embeddings of all
named entities for optimizing the mapper.
Network Design. Our network architecture is founded
on a straightforward multi-layer perceptron (MLP) design.

This design accepts a style code and a CLIP text embedding
as inputs and provides the corresponding manipulation di-
rection as an output. The inputs to our model are created
by simply concatenating the style code and the CLIP text
embedding. The inclusion of the style code as an input is
driven by our intention to enable the model to adaptively
generate manipulation directions for various style codes.

Given this configuration, we can express the operation
as:

∆W = MLP ([W; t]) (1)

where W denotes the style code, and t represents the text
embeddings.

Moreover, considering that each style code in the W+
space corresponds to different attributes, we assign a unique
MLP to each style code. This implies that for an image
of resolution 1024 × 1024, which has 18 style codes, our
network will have 18 corresponding MLPs. This design is
predicated on the understanding that different style codes in
the W+ space regulate different aspects of the image. By
assigning a unique MLP for each style code, we ensure that
our model can adaptively manipulate each aspect of the im-
age in response to the given prompt. This strategy enables
us to conduct fine-grained, attribute-specific image manip-
ulation, contributing to the overall effectiveness and adapt-
ability of our method.
Contrastive Training. The Mapper’s output is fed into a
pre-trained StyleGAN generator to produce an image. This
operation can be mathematically expressed as:

G(W + α∆W) (2)

where the G denotes a pre-trained StyleGAN Generator, α
symbolizes the manipulation strength, and is consistently
set at 0.20 during both training and inference phases. The
generated image is then processed via the CLIP image en-
coder to produce image embeddings.

These embeddings are optimized using a contrastive loss
function. The objective of this function is to minimize
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the distance between the image embeddings and the input
named entity embeddings, while simultaneously maximiz-
ing the distance to other entities. This approach ensures that
the manipulated image aligns more closely with the desired
named entity, thereby enhancing the accuracy and precision
of our image manipulation.

The contrastive loss can be expressed as:

Lcontrastive =
1

M

M∑
i=1

− log
exp(sim(ui, vi)/τ)∑M
j=1 exp(sim(ui, vj)/τ)

(3)
where ui and vi are the image and text embeddings respec-
tively, M is the number of samples, and τ is a temperature
parameter.

To ensure that the manipulation direction does not devi-
ate too far from the original style code, we also introduce a
regularization term, defined as:

Lregularization = ||∆W||2 (4)

The overall loss is then a weighted sum of these two
terms:

Ltotal = Lcontrastive + λLregularization (5)

where λ is a weighting factor.
Many studies [8–10, 19] have highlighted the importance

of large negative sampling for contrastive learning. Given
that the CLIP model is frozen during our training process,
we can precompute the text embeddings for all named en-
tities. This precomputation allows us to perform negative
sampling across the entire dataset when calculating the con-
trastive loss. By doing so, we can ensure a more robust
and comprehensive optimization process. This methodol-
ogy not only accelerates the training process but also im-
proves the generalization ability of our model by exposing
it to a broader range of named entities during training. It
enables our model to learn more discriminative features by
comparing each named entity with all others in the dataset.

3.3. Prompt Ensemble Latent Averaging

During the training phase, only named entity data were
utilized, which encapsulate various visual attributes; how-
ever, during inference, the user-provided prompts typically
exhibit fewer attributes. This disparity between the train-
ing and inference data distributions introduces considerable
noise during inference. To mitigate this problem, we have
introduced the Prompt Ensemble Latent Averaging (PELA)
technique.

PELA begins by constructing a target and source prompt
using named entities and user input, respectively. For ex-
ample, considering the prompt “with beard”, we sample a
named entity ei from dataset, and generate the source as

Input ∆W(e1) ∆W(e2) . . . ∆W(eN ) ∆WPELA

Figure 3. Comparative visualization of manipulation vectors for
individual named entities (columns 2 to the second-to-last) ver-
sus the Prompt Ensemble Latent Averaging (PELA) approach (fi-
nal column). PELA demonstrates enhanced stability in manipula-
tion by averaging out the incidental directional noise. The applied
prompt is “curly hair”

Celebrity-Names-90k Cat-Breeds-101 Dog-Breeds-354

Examples
George Bush
Taylor Swift
. . .

Aegean Cat
Kinkalo Cat
. . .

English Pointer
Spanish Water Dog
. . .

Size 90084 101 354

Table 1. Text-Only Named Entity datasets utilized for training.

“ei” and the target as “ei with beard”. Each prompt is then
fed into the mapper, yielding manipulation directions for
both target and source. The distance between these direc-
tions provides a manipulation vector unique to the named
entity ei. The manipulation direction for a prompt is math-
ematically defined as:

∆W(ei) = MLP ([W; ttarget(ei)])−MLP ([W; tsource(ei)])
(6)

where MLP refers to our mapper model and target(·) and
source(·) represent the construction methods of target and
source prompts respectively.

Assuming that the noise in manipulation directions de-
rived from different named entities is random, as illustrated
in Figure 3, we mitigate this by averaging the manipulation
directions from N different named entities:

∆WPELA =
1

N

N∑
i=1

∆W(ei) (7)

Through this process, PELA leverages the diversity of
named entities to effectively neutralize the noise arising
from discrepancies in distributions between training and in-
ference phases. This approach significantly enhances our
model’s image manipulation capabilities in a zero-shot set-
ting.

4. Experiments
4.1. Implementation Details
To illustrate the wide-ranging applicability of our StyleEn-
tity approach, we trained our model across multiple do-
mains, such as faces and animals. In the area of face
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pale face happy angry wearing
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white clothes
with long

blonde hair with bangs

Figure 4. Diverse facial manipulations by StyleEntity. The input images are shown in the first column with subsequent columns displaying
manipulated RESULTS. Prompts are indicated below each column.

manipulation, we utilized the Celebrity-Names-90k dataset
in conjunction with the StyleGAN2 architecture, which
was pretrained on the FFHQ dataset. For non-face do-
mains, we leveraged the Cat-Breeds-101 and Dog-Breeds-
354 datasets, using the StyleGAN-ada model pretrained on
the AFHQ dataset. The specific Named Entity datasets em-
ployed during our training are detailed in Table 1. Our
mapper training was not reliant on real images. We gener-
ated style codes from a Gaussian distribution using Style-
GAN, thereby ensuring a bias-free learning process. The
entire training was conducted on a single NVIDIA Tesla
A100 40GB GPU, utilizing an Adam optimizer with a batch
size of 8, a learning rate of 0.2, and β1 = 0.9, β2 = 0.999.

4.2. Various Text-guided Manipulation Results
In a comprehensive evaluation of StyleEntity’s manipula-
tion capabilities, we present a broad range of text-driven
image editing results within the facial domain, as shown
in Figure 4. This collection demonstrates StyleEntity’s
proficiency in executing accurate edits according to the
given prompts while preserving the features not specified
by the prompts. The presented edits cover a varied set of
prompts, from simple attributes like “beard” to more intri-
cate constructs such as “mustache”, illustrating the model’s
detailed comprehension and implementation of text-guided
manipulations. StyleEntity’s robustness is further empha-
sized by its capability to manage a multitude of facial at-
tributes—whether skin tone, facial expressions, accessories,
or hairstyles—producing results that are not only realistic

and stable but also adaptable to the text prompts.
Corresponding to the facial manipulations, Figure 6

shows the model’s expertise in the domain of cats and dogs.
Reflecting the high fidelity and relevance observed in facial
image manipulation, StyleEntity effectively modifies sin-
gle attributes such as fur color and hair length while also
skillfully handling complex attribute prompts like “Golden
Retriever”. The model’s success in non-facial domains re-
inforces its versatility and the broad applicability of the
StyleEntity framework across various Style-Based genera-
tors.

The experimental evidence consolidates StyleEntity’s
capability in generating lifelike and textually coherent ma-
nipulations, thereby establishing its superiority in the realm
of zero-shot image manipulation across varied domains.

4.3. Evaluation
Metrics. To evaluate text-guided image manipulation
methods, we concentrate on two factors: the precision of
the content modifications in response to user prompts and
the preservation of image aspects that are unrelated to the
prompts. The former is quantifiable via the CLIP-score, de-
signed to gauge the semantic correlation between the gen-
erated image and the textual prompt. For the latter, we uti-
lize metrics such as the Fréchet Inception Distance (FID).
FID is used to evaluate the similarity in the feature space
between the original and manipulated images, thereby re-
flecting changes to prompt-irrelevant features.

We have noted a trade-off between these metrics: ma-
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Gray Hair Laughing Bald
Abraham
Lincoln

Full
Beard Mustache Gotee Chubby

StyleEntity (Ours)

DeltaEdit [29]

Input Input

FFCLIP [48]

StyleCLIP-GD [32]
α = 0.5

StyleCLIP-GD [32]
α = 1.0

StyleCLIP-GD [32]
α = 2.0

Figure 5. Qualitative comparison of StyleEntity with DeltaEdit, FFCLIP, and StyleCLIP-GD across diverse prompts. Prompts used for
each column are displayed above the images.

Input white hair fat Golden
Retriever

Siberian
Husky

Input big eyes longhair orange cat Oriental
Shorthair

Figure 6. Manipulation results on cat and dog domain by StyleEn-
tity. The input images are in the first column, with the remaining
columns showing the manipulated results. Prompts used are indi-
cated below each column.

nipulations that enhance relevance to the prompt often re-
sult in differences from the original image, negatively im-
pacting other metrics. To navigate this trade-off, draw-
ing inspiration from recent large-scale text-to-image mod-
els [6, 15, 36], we plot FID-CLIP curves. These curves
evaluate models based on the resemblance of the edited im-
age to the original at a specific level of prompt similarity
(CLIP-score). By adjusting inference hyperparameters, we

plot different points to shape these curves. Models with
curves leaning towards the bottom right are considered su-
perior as they suggest a smaller deviation from the original
image at higher CLIP-scores, indicating better preservation
of prompt-irrelevant details while aligning with the prompt.
Qualitative Evaluation. This study compared StyleEn-
tity with state-of-the-art text-guided image manipulation
methods, namely StyleCLIP-GD [32], FFCLIP [48], and
DeltaEdit [29]. In all results presented, StyleEntity em-
ployed a static hyperparameter α = 0.20. For DeltaEdit
and FFCLIP, we used the pre-trained models provided by
them with default parameters. For StyleCLIP-GD, we fol-
lowed the approach of DeltaEdit by setting the β to 0.03.
Owing to its sensitivity to parameters, we presented its re-
sults at manipulation intensities of α = 0.5, 1.0, 2.0. Each
model will edit 10 same images for each prompt.

As depicted in Figure 5, the performance of StyleCLIP-
GD heavily relies on the selection of hyperparameters. This
necessitates prompt-specific fine-tuning for optimal results,
which could be impractical in real-world applications. FF-
CLIP responds to all test cases but has a tendency to mis-
interpret the target prompt. For instance, the prompt “gray
hair” might inadvertently lead to images with lighter skin
tones alongside the gray hair. DeltaEdit struggles to ma-
nipulate certain prompts accurately; it has difficulty with
prompts such as “gray hair” and “Abraham Lincoln”.

In contrast, StyleEntity consistently executed precise
manipulations across a wide range of prompts. Remarkably,
in cases involving similar beard styles like “Full Beard”,
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Methods Human Preference

StyleCLIP GD [32] α = 0.5 15.0%
StyleCLIP GD [32] α = 1.0 12.0%
StyleCLIP GD [32] α = 2.0 8.2%
FFCLIP [48] 11.0%
DeltaEdit [29] 14.2%
StyleEntity (Ours) 39.6%

Table 2. Results of Human Evaluation.

0.22 0.23 0.24 0.25 0.26 0.27
CLIP Score

10

20

30

40

50

60

FI
D

StyleCLIP GD
FFCLIP
DeltaEdit
StyleEntity (Ours)

Figure 7. Quantitative comparison of StyleEntity, DeltaEdit, FF-
CLIP, and StyleCLIP-GD using FID-CLIP trade-off curves.

“Mustache”, and “Gotee”, StyleEntity accurately distin-
guished and manipulated each style. Furthermore, StyleEn-
tity skillfully responded to a diverse set of prompts while
preserving attributes unrelated to the prompt, demonstrating
its robustness and versatility in text-guided image manipu-
lation.

Quantitative Evaluation. A vital part of our evaluation
involves the use of trade-off curves. These curves pro-
vide a visual representation of the relationship between the
FID and CLIP scores. For models such as FFCLIP and
DeltaEdit, we included a manipulation strength parameter,
which allowed us to scale this parameters uniformly across
models. This scaling leads to corresponding FID and CLIP
scores, which are then plotted to form the FID-CLIP trade-
off curves. We utilized a test set of 100 facial description
prompts, encompassing aspects like hair color, hairstyle,
beard style, mood, and more. Details of the test set prompts
and additional SSIM-CLIP and LPIPS-CLIP curves are pro-
vided in the Supplementary Materials.

As illustrated in Figure 7, our analysis indicates that
the StyleEntity model significantly outperforms competing
models in terms of trade-off curve profiles. This implies that
for a specific level of textual-visual correlation, StyleEntity
introduces fewer modifications to the original image. This
superior performance confirms the efficacy of our approach
in maintaining a balance between manipulation and preser-
vation of original image attributes.

We also conducted a human evaluation on the 100
prompts we had collected, the results of which are pre-
sented in Table 2. This study involved five participants,

Methods Inference Time (ms)

StyleCLIP GD [32] 43
FFCLIP [48] 34
DeltaEdit [29] 61

StyleEntity (w/o PELA) 34
StyleEntity (w/ PELA, N = 256) 44

Table 3. The inference time consumption for each method.

0.22 0.23 0.24 0.25 0.26 0.27
CLIP Score

10

20

30

40

50

FI
D

StyleCLIP Loss
Contrastive Loss

Figure 8. Quantitative comparison using FID-CLIP curves be-
tween Contrastive Loss and StyleCLIP Loss.

each tasked with assessing the quality of images generated
from 100 prompts. Each prompt resulted in the generation
of nine images. Participants evaluated the images based on
their textual relevance and visual similarity to the original
image, choosing the model they deemed superior subjec-
tively. The findings corroborate the conclusions drawn from
the previously presented FID-CLIP curve, with our model
consistently preferred in subjective evaluations. This fur-
ther substantiates the performance of our model and empha-
sizes its superiority in generating high-fidelity images that
align contextually and visually with the provided prompts.
Details of the human evaluation can be found in the Supple-
mentary Materials.

Table 3 shows the inference speeds of different models.
Note that variations in the underlying frameworks of each
method could cause deviations in these results. Nonethe-
less, a general observation reveals that all models demon-
strate similar inference speed. This parity in speed, along
with the superior performance of our model, highlights the
efficiency of StyleEntity in producing high-quality manip-
ulated images without compromising computational effi-
ciency.

4.4. Ablation Study
Constrastive Training In this section, we evaluated the
effectiveness of our contrastive training approach. For a
comparative analysis, we replaced the loss function used in
our model from the contrastive loss (Eq. (3)) to the loss de-
fined in StyleCLIP:

LStyleCLIP = 1− sim(ui, vi)

100
(8)
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Bangs

Beard

Crying

Big Eyes

Input w/o PELA N = 1 N = 4 N = 16 N = 64 N = 256

Figure 9. Qualitative ablation study of PELA. It illustrates the ma-
nipulation results without PELA and with varying ensemble sizes
N.

The StyleCLIP loss diverges from our contrastive formu-
lation by directly aiming to maximize the similarity score
without a contrastive denominator, which influences the
model’s ability to distinguish among the nuanced variations
of text-guided manipulations.

Our quantitative analysis is supported by the FID-CLIP
curves illustrated in Figure 8. These curves clarify the per-
formance difference between models using contrastive loss
and those using StyleCLIP loss. The superior performance
of the contrastive loss is apparent, with a notable improve-
ment across the trade-off metrics. This outlines the con-
trastive loss’s superior capability to balance image fidelity
and adherence to textual descriptions, thereby validating the
usefulness of our chosen loss function.

PELA. Our ablation study offers a thorough evaluation of
the PELA technique’s effectiveness. The qualitative results,
as illustrated in Figure 9, show that, without PELA, the
manipulation direction is burdened with significant noise.
For example, in the absence of PELA, the prompt “Bangs”
unintentionally removed glasses from the image, suggest-
ing an unwanted modification of unrelated attributes. This
noise is reduced with a small ensemble size (N = 1 and
N = 4), yet it continues to affect the manipulation result,
as observed with the prompts “Beard” and “Big eyes”. As
we increase the ensemble size, a clear trend becomes evi-
dent: the manipulation results gradually stabilize. Consid-
ering both effectiveness and efficiency, we use N = 64 as
our default setting.

The quantitative results, illustrated in Figure 10, corrob-
orate these findings. The trade-off curve reveals that at
N = 1 and N = 4, without PELA, the performance is
suboptimal. As N increases, the curve advances towards
the preferred bottom-right quadrant, indicating enhanced fi-
delity and stability in the manipulated images, which corre-
spond to higher CLIP scores and lower FID values.

Table 3 shows the time consumption related to PELA.
Utilizing an ensemble of 256 named entities leads to a slight

0.22 0.23 0.24 0.25 0.26 0.27
CLIP Score

10

20

30

40

50

60

70

FI
D

w/o PELA
N=1
N=4
N=16
N=64
N=256

Figure 10. Quantitative ablation study of PELA on FID-CLIP
curves.

Input without beard
α = 0.2

with beard
α = −0.2

Input without beard
α = 0.2

with beard
α = −0.2

Figure 11. Results of negative manipulation for the ”beard”
prompt, illustrating the precision of attribute removal.

increase of 10 ms/image during inference. This minor in-
crease in inference time is an acceptable trade-off for the
substantial improvements in manipulation quality provided
by PELA.

Negative Manipulation. The existing text-guided image
manipulation methods and StyleEntity do not perform well
when tasked with removing certain attributes, such as the
prompt “without beard”. In such cases, our experiments
have shown that employing a positive prompt “with beard”
alongside a negative manipulation strength has proven to be
more efficacious than the original method. Figure 11 shows
the results of the negative manipulation, demonstrating that
the attributes have been correctly removed.

5. Conclusion
We introduced StyleEntity, a framework for zero-shot im-
age manipulation that utilizes named entities as proxies dur-
ing training. This framework was augmented by our pro-
posed PELA technique, which significantly enhanced the
stability of the results. Following a single training phase,
our model demonstrated remarkable adaptability to a broad
range of textual prompts not encountered during training.
Subsequent qualitative and quantitative experiments vali-
dated the superior performance of our model.
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