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Figure 1. Swaying plant. PIE-NeRF� is an efficient and versatile pipeline that synthesizes physics-based novel motions of complex

NeRF models interactively. In this example, the user interactively manipulates the plant by applying external forces with the mouse. The

geometry of the plant is sampled in a meshless way, and a spatial model reduction is followed. We use 78 Q-GMLS kernels to capture the

nonlinear dynamics of the plant in real-time. PIE-NeRF generates novel poses of the model from novel views in a physics-grounded way.

Abstract

We show that physics-based simulations can be seamlessly

integrated with NeRF to generate high-quality elastody-

namics of real-world objects. Unlike existing methods, we

discretize nonlinear hyperelasticity in a meshless way, obvi-

ating the necessity for intermediate auxiliary shape proxies

like a tetrahedral mesh or voxel grid. A quadratic gener-

alized moving least square is employed to capture nonlin-

ear dynamics and large deformation on the implicit model.

Such meshless integration enables versatile simulations of

complex and codimensional shapes. We adaptively place

the least-square kernels according to the NeRF density field

to significantly reduce the complexity of the nonlinear sim-

ulation. As a result, physically realistic animations can be

conveniently synthesized using our method for a wide range

of hyperelastic materials at an interactive rate. For more

information, please visit our project page.

*Both authors contributed equally to this work
†Corresponding author

1. Introduction

Neural radiance field or NeRF [46] offers a new perspec-

tive to 3D reconstruction and representation. NeRF en-

codes the color, texture, and geometry information of a 3D

scene with an MLP net implicitly from multi-view input

photos. Its superior convenience and efficacy inspired nu-

merous follow-up research for improved visual quality [41],

faster performance [19, 85], and sparser inputs [29, 86].

The target application has also been generalized from novel

view synthesis to moving scene reconstruction or shape

editing [22, 59, 81, 87]. Nevertheless, complex, nonlinear,

and time-coherent elastodynamic motion synthesis that is

grounded on real-world physics remains less explored with

the current NeRF ecosystem.

This is probably because a physical procedure is innately

incompatible with implicit representations. For dynamic

models (i.e., with accelerated trajectories), spatial partial

differential equations (PDEs) of stress equilibriums are cou-

pled with an ordinary differential equation (ODE) to enforce

Newtonian laws of motion. One needs a good discretiza-

tion for existing simulation methods e.g., the finite element
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method (FEM) [92], and polygonal meshes remain the most

popular choice in this regard. As a result, a dedicated mesh-

ing step is often needed [42, 87]. The computation cost

is another concern. Dynamic simulation normally leads to

a large sparse nonlinear system at each time step, and the

simulation becomes expensive and has to be offline [42].

We propose PIE-NeRF�, a NeRF-based framework that

allows users to interact with the scene in a physically mean-

ingful way, and thus generate novel deformed poses dynam-

ically. PIE-NeRF uses a meshless discretization scheme by

adaptively sampling the density field encoded with NeRF

based on the magnitude of the density gradient. The effi-

ciency of our computation comes from the meshless spa-

tial reduction that makes the simulation independent of the

sampling resolution. Specifically, PIE-NeRF employs a

generalized quadratic moving least square (Q-GMLS) [44]

to drive dynamics robustly even for codimensional shapes.

The prior of the quadratic displacement also allows us to de-

sign a better ray-warping algorithm so that the color/texture

information of the deformed model can be accurately re-

trieved. PIE-NeRF uses instant neural graphics primitives

(NGP) [52] for faster rendering. Some noteworthy features

of PIE-NeRF include:

Meshless Lagrangian dynamics in NeRF. We show the

feasibility of integrating classic Lagrangian dynamics with

NeRF in a meshless way. Honestly, we do not completely

avoid the conversion from the implicit deep representation

to an explicit form but a meshless shape proxy enhances the

flexibility and simplifies the pipeline of simulation in NeRF.

Robust Q-GMLS for meshless model reduction. We care-

fully design PIE-NeRF by accommodating the robustness,

expressivity and computation cost simultaneously. With

spatial reduction based on the Voronoi partition, we en-

hance the expressivity of our reduced model using quadratic

displacement interpolation, which captures the nonlinear

deformation of the model without locking artifacts. The

quadratic field also contributes an improved ray-warping al-

gorithm during the view synthesis.

Versatile simulation at an interactive rate. Being a full

physics-based pipeline, PIE-NeRF can faithfully designate

material parameters such as Young’s modulus and Poisson’s

ratio to NeRF models. It is also efficient, allowing an in-

teractive interaction between the virtual NeRF scene and

end users. Thanks to our high-order interpolation, codimen-

sional models can also be well handled with PIE-NeRF.

2. Related work

NeRF editing. Since the advent of NeRF, many tech-

niques tailored for implicit representation have emerged i.e.,

discretely estimating the deformation/displacement field

for each frame [55, 56, 72, 77] or estimating the time-

continuous 3D motion field [15, 17, 23, 38, 40, 61, 79].

Recently, Cao and colleagues have matched space-time fea-

tures to hexplanes for improved NeRF training [11].

There also exists a wide range of NeRF editing methods

for various purposes. These include semantic-driven edit-

ing [3, 13, 24, 45, 66, 73], shading-driven adjustments (like

relighting and texturing) [21, 43, 64, 68, 78, 84], scene mod-

ifications (such as object addition or removal) [35, 36, 76,

83, 90], face editing [27, 31, 70, 89], physics based editing

from video[25, 62], and multi-purpose editing [30, 75, 82].

Geometry editing with NeRF has also been widely in-

vestigated [32, 86, 88, 91]. They normally concern static

shapes only, where the as-rigid-as-possible (ARAP) energy

suffices [67] in most situations. The ARAP energy is of-

ten computed by converting neural implicit representation

to some explicit forms like grid or mesh [18]. To reduce

the computational overhead, some opt for coarser meshes,

utilizing cage-based deformation techniques [30, 59, 81].

Point-based shape editing is a viable alternative. Chen

and colleagues [12] proposed a more general editing frame-

work with the optimized points inherent in a point-based

variant of NeRF [80]. More recently, Prokudin and col-

leagues exploited a point-based surface derived from an im-

plicit volumetric representation [60].

Physics-based deformable model. The concept of de-

formable model dates back to 1980s [71], primarily as-

sociated with physics-based models [54]. Typically, an

explicit discretization is needed such as mass-spring sys-

tems [4] that were widely used in early graphics applica-

tions. FEM has become the standard for physics-based sim-

ulation [10, 34, 48, 65], wherein the deformation is usually

measured by integrating over each tetrahedral or hexahedral

unit, that is, the element [92]. Physics-based modeling is

known to be expensive, which inspires a series of research

for accelerated simulation such as model reduction [5] or

GPU parallelization [74].

Meshless simulation. Meshless methods use unstructured

vertices in lieu of a predefined mesh [7, 16, 39]. This

modality is quite effective when the simulation domain has

varying topology, such as fluids, gases, fracturing or melt-

ing. Meshless deformation has evolved to handle contin-

uum mechanics [51]. A notable example is the shape match-

ing [50]. With the core idea of constraining vertices’ posi-

tions, shape matching paves the way to the position-based

methods [47, 49, 69]. Similar to shape functions in FEM,

meshless methods also need well-designed interpolation

schemes [16], such as moving least squares (MLS) [51, 58]

or smoothed-particle hydrodynamics SPH [1].

Due to the large volume of relevant work, we can only

discuss a small fraction of excellent prior arts in this sec-

tion. Nevertheless, we note that synthesizing novel dynamic

motions of a NeRF scene in a physically grounded way re-

mains less explored. This gap inspires us to develop PIE-

NeRF�. PIE-NeRF is a physics-based, meshless, and effi-
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cient framework allowing users to interactively manipulate

the NeRF scene.

3. Preliminary

To make the paper self-contained, we start with a brief re-

view of some core techniques on which our pipeline is built.

More details of our system are elaborated in § 4.

3.1. Neural radiance field

NeRF implicitly represents the geometry and appearance

information of a 3D scene via a multi-layer perceptron

(MLP) net. Given the camera parameters, a pixel’s color

on the image plane is obtained via integrating the density

and color along the ray. A spatial coordinate p and a ray

direction d are often encoded as a feature vector ψp, ψd

before being fed to the MLP for the prediction of density

(σ) and color (c). For instance, the vanilla NeRF [46] uses

positional encoding to better tackle high-frequency infor-

mation with MLPs. Our pipeline uses the instant neural

graphics primitives (NGP) [52]. NGP adopts a multi-level

hash-based encoding scheme and has demonstrated a strong

performance in terms of both efficiency and quality.

3.2. Nonlinear elastodynamic

Following the classic Lagrangian mechanics [53], the dy-

namic equilibrium of a 3D model is characterized as:

d

dt

(

∂L

∂q̇

)

− ∂L

∂q
= fq, (1)

where L = T−U is Lagrangian i.e., the difference between

the kinematic energy (T ) and the potential energy (U ) of the

system. q and q̇ are generalized coordinate and velocity.

fq is the generalized external force. Given a time integra-

tion scheme such as implicit Euler: qn+1 = qn + hq̇n+1,

q̇n+1 = q̇n + hq̈n+1, Eq. (1) can be reformulated a set of

nonlinear equations to be solved at each time step:

M(qn+1 − qn − hq̇) = h2
(

−∂U
∂q

+ fq

)

. (2)

Here, the subscript indicates the time step index, and h is the

time step size. qn+1 is the unknown system coordinate to

be solved, while all the kinematic variables of the previous

time step such as qn or q̇n are considered known. −∂U/∂q
is the negative gradient of the potential, which embodies the

internal force.

4. Our method

As shown in Fig. 2, the input of our system is a collection

of images of a given 3D scene. We use NGP to encode

positional and texture information and train the correspond-

ing NeRF. Afterwards, we disperse particles into the scene.

Those particles form an unstructured point-cloud-like proxy

of the 3D model of interest. They are then grouped under a

Voronoi partition, and the centers of Voronoi cells house

the generalized coordinate of the system (q in Eq. (2)).

We further assign multiple integrator points (IPs) to facil-

itate energy integration. A quadratic generalized moving

least square (Q-GMLS) strategy is used to discretize the La-

grangian equation of Eq. (1). With the help of GPU, the

simulation can be done at an interactive rate or even in real-

time. We leverage the deformation information at IPs to

infer the rest-pose position during NGP-based NeRF ren-

dering. Thanks to NGP, this procedure is also in real-time.

Our pipeline allows users to interact with a NeRF scene by

applying external forces, position constraints etc., leading

to novel and physics-grounded dynamic effects. Next, we

give detailed expositions of each major step of the pipeline.

4.1. Augmented Poisson disk sampling

After the NGP-NeRF is trained, we choose a meshless way

to model the geometry of the 3D shape. While the underly-

ing goal of this step is similar to other static NeRF editing

systems [59, 81, 88], being mesh-free makes our pipeline

more flexible and versatile. In theory, any sampling method

should work as long as the sampling particles sufficiently

capture the boundary of the model. For instance, one can

distribute particles by simply following the evenly-spaced

grid (Fig. 3, right). Doing so is similar to using a grid-based

cage to approximate the shape of the model [22].

Alternatively, we design an augmented Poisson disk

sampling (PDS) strategy. The original PDS requires that the

distance between any two particles be larger than a thresh-

old r̄. Starting from an initial point, PDS then tries to fill

a banded ring between r̄ and 2r̄ with new samples i.e.,

see [9]. Our observation is that more particles are needed

at the boundary of the shape, which coincides with a sharp

density variation. To this end, we adaptively adjust the sam-

ple radius r based on the norm of the density gradient of

NGP-NeRF ∥∇σ∥ such that:

r = min

{

r̄, κ
r̄

√

∥∇σ∥+ α

}

, (3)

where α = 10−3 is a small number avoiding the division-

by-zero error. Eq. (3) suggests that the actual sample radius

r decreases when ∥∇σ∥ is a large quantity. The density

gradient ∥∇σ∥ can be conveniently computed by differen-

tiating the NPG-NeRF using AutoDiff [57]. We discard

PDS particles whose density values are less than ϵ = 10−2,

which are visualized as pink dots in Fig. 3.

Our sampling ensures that the distance between a PDS

particle at x and its nearest neighbor is at least r(x), and we

assign a volume of the PDS particle as:

V (x) =
4

3
πr3(x). (4)
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Figure 2. Pipeline overview. The input of PIE-NeRF is the same as other NeRF-based frameworks, which consists of a collection of

images of a static scene. An adaptive Poisson disk sampling is followed to query the 3D geometry of the model, which are sparsified into

n Q-GMLS kernels. Integrator points are placed over the model, including centers of Q-GMLS kernels (i.e., kernel IPs). Discretization

at kernels and numerical integration at IPs enable efficient synthesis of novel and physics-based elastodynamic motions. The quadratic

warping scheme helps to better retrieve the color/texture of a deformed spatial position to render the final result.

Figure 3. Particle sampling. Our method is compatible with most

sampling algorithms – as long as particles cover the shape of the

3D model sufficiently well. In our implementation, we design a

novel augmented Poisson disk sampling scheme that is fast and

well captures the boundary of the model by default.

4.2. Q­GMLS kernels and integrator points

PDS particle

Q-GMLS kernel
& kernel IP

Integrator point

We perform a Voronoi par-

tition [2] over PDS particles

(see the inset) and use each

Voronoi cell as a GMLS ker-

nel for the body-wise dis-

placement interpolation to re-

duce the computation overhead. Let Ω be the body of a 3D

model in NeRF sampled by PDS particles with n GMLS

kernels. The classic MLS assumes a kernel possesses an

affine displacement filed: Aip(xi), where xi is the center

of the i-th kernel at the rest pose (green dots in the inset);

p(x) = [1,x⊤]⊤. By minimizing a displacement-based tar-

get of:
∑n

i=1
w(x− xi) ∥Ap(xi)− ui∥2 one can obtain:

u(x) =
n
∑

i=1

uiNi(x). (5)

Here ui = u(xi) is the displacement of i-the kernel cen-

ter; Ni(x) = p(x)⊤G−1(x)p(xi)w(x − xi), for G(x) =
∑n

i=1
w(x−xi)p(xi)p(xi)

⊤, is a shape-function-like trial

function; and w(d) = (1 − ∥d∥2)3 is a MLS weighting

function based on the distance between x and xi.

As the complexity of the simulation is up to n, we are in

favor of using fewer kernels for faster computation. Doing

so is likely to have xi be colinear/coplanar, and G becomes

singular. To improve the robustness of the kinematic in-

terpolation of Eq. (5), GMLS takes the local deformation

gradient information into account, which seeks the opti-

mal Ai to minimize
∑n

i=1
w(x − xi) ∥Aip(xi)− ui∥2 +

∑n

i=1

∑3

j=1
w(x0−xi) ∥Aip,j(xi)− ui,j∥2. The comma

here denotes the partial differentiation such that ui,1 =
∂ui/∂x, ui,2 = ∂ui/∂y, and ui,3 = ∂ui/∂z.

For thin and codimensional shapes, affine GMLS suffers

from locking issues, wherein linearized shearing energy be-

comes orders stronger than nonlinear bending/twisting due

to the interpolation error. This problem gets more serious

with fewer kernels. To this end, we elevate the interpola-

tion order, leading to quadratic GMLS or Q-GMLS, which

assumes the per-kernel displacement field is quadratic.

Namely, each x, y, or z component of the displacement

(i.e., for j = 1, 2, 3 respectively) is fit by: uij = x⊤
i Q

j
ixi+

a
j⊤
i p(xi). Here Q

j
i is a symmetric tensor, and a

j
i ∈ R

4 is
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j-th row of Ai. The Q-GMLS displacement interpolation

can then be derived as:

u(x) =

n
∑

i=1

[

uiNi +
∑

j

ui,jN
j
i +

∑

j,k

ui,jkN
jk
i

]

, (6)

for j, k = 1, 2, 3. Here

Ni(x) = p⊤(x)G−1(x)p(xi)w(x− xi),

N j
i (x) = p⊤(x)G−1(x)p,j(xi)w(x− xi),

N jk
i (x) = p⊤(x)G−1(x)p,jk(xi)w(x− xi)

(7)

only depend on the rest-shape position x, and

G(x) =

n
∑

i=1

w(x− xi)
[

p(xi)p
⊤(xi)

+
∑

j

p,j(xi)p
⊤
,j(xi) +

∑

j,k

p,jk(xi)p
⊤
,jk(xi)

]

. (8)

It is convenient to re-organize Eq. (6) as:

u(x) = J(x)q, (9)

such that J = [N1I, N
1
1 I, N

2
1 I, ..., N

11
1 I, ...] ∈ R

3×30n and

q = [u⊤
1 ,u

⊤
1,1,u

⊤
1,2, ...,u

⊤
1,11, ...]

⊤ ∈ R
30n are the Jacobi

matrix and generalized coordinate (i.e., in Eq. (1)). Thus the

generalized external force is computed via: fq = J⊤fext.

4.3. Energy integration

The total kinematic and potential energies of the model are:

T =
1

2

∫

Ω

ρ(x)ẋ⊤ẋdΩ, and U =

∫

Ω

Ψ(x)dΩ. (10)

We want to avoid integrating over all the PDS particles.

Therefore, our system includes another set of integrator

points or IPs. Conceptually, IPs are similar to the quadra-

ture points used in numerical integration [20], which allows

us to substantially reduce the computational cost of full in-

tegrals in Eq. (10). In addition to the centers of Q-GMLS

kernels i.e., kernel IPs, we add more IPs aiming to approxi-

mate Eq. (10) with high accuracy. Specifically, we initialize

new IPs at the PDS particle which is the most distant from

existing IPs to sample remote T and V values. This strategy

however tends to favor PDS particles at the model’s bound-

ary. As a result, we apply a few Lloyd relaxations [14] to

new IPs while keeping kernel IPs fixed. The total number of

IPs is bigger than the number of Q-GMLS kernels but they

are of the same order, and we use I to denote the set of all

the IPs.

4.4. Per­IP integration

Integrator point

IP cuboid

We envision each IP as a small elastic

cuboid Ωk (see the inset) with three

edges being c1, c2, c3 whose lengths

are h1, h2, h3 respectively. Its co-

variance matrix can be computed as:

C =
∑

j V (xj)xjx
⊤
j , where the summation carries over

K-nearest PDS particles whose rest positions are xj . Being

a symmetric matrix, C always has three real non-negative

eigen values namely, λ1, λ2, and λ3. Note that coplanar

geometry around an IP can make C singular. It is fine for

numerical integration, suggesting the strains along certain

directions are zero. We then set the ratio among hi to be the

same as
√
λi (i.e., h1 : h2 : h3 equals

√
λ1 :

√
λ2 :

√
λ3)

while requiring Πihi =
∑

j V (xj). Those two constraints

allow us to compute h1, h2, and h3 while ci are the corre-

sponding eigen vectors.

The total kinematic energy can now be approximated as:

T =
1

2

∫

Ω

ρ(x)ẋ⊤ẋdΩ =
1

2
q̇⊤

(
∫

Ω

ρJ⊤JdΩ

)

q̇

≈ 1

2
q̇⊤

[

∑

xk∈I

ρVkJ
⊤(xk)J(xk)

]

q̇, (11)

and M =
∑

xk∈I
ρVkJ

⊤(xk)J(xk) is the mass matrix.

Note that Vk = h1h2h3 is the estimated volume of the IP

cuboid, not the volume of the PDS particle. ρ is the density

of the 3D model, which should not be confused with σ.

Integrating the potential energy U is handled in a sim-

ilar way. Under the assumption of hyperelasticity, the en-

ergy density Ψ(x) depends on the deformation gradient at

x: F = ∇u(x) + I ∈ R
3×3. According to Eq. (9), the

deformation gradient at the k-th IP is:

F(xk) = Fk = q · ∇J⊤(xk) + I = q · ∇J⊤
k + I. (12)

Jk ∈ R
3×30n is the Jacobi corresponding to the IP, and

∇J⊤
k ∈ R

30n×3×3 is a third tensor. The potential accumu-

lated at the IP is estimated by integrating over its cuboid

(Ωk) assuming the IP lies at the center:

Uk =

∫

Ωk

Ψ(F(h)) =

∫

h1

2

−
h1

2

∫

h2

2

−
h2

2

∫

h3

2

−
h3

2

Ψ(F(h)). (13)

Here, h is the local coordinate spanning Ωk, and xk aligns

with h = 0. When h ̸= 0, we first-order approximate F as:

F(h) ≈ F(0) +∇F(0) · h = F(xk) +∇F(xk) · h. (14)

This makes sense because Q-GMLS assumes u is quadratic,

which has a linearly-vary deformation gradient. Therefore,

the approximate in Eq. (14) should be exact. ∇F can be

computed by differentiating Eq. (12):

∇F(xk) = q · ∇2J⊤
k = Hk · q. (15)
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Figure 4. Elastically deforming excavator. The excavator is a standard benchmark for NeRF-based frameworks. We use this classic model

to showcase the capability of PIE-NeRF, which generates interesting and novel dynamic effects in real time.

Here H = ∂∇J⊤/∂x is a fourth tensor. This computation

boils down to evaluating first- and second-derivatives ofNi,

N j
i , and N jk

i , and can be pre-computed per Eq. (7).

Given an elastic material model Ψ(F), the total potential

can then be computed via:

U ≈
∑

xk∈I

∫

Ωk

Ψ
(

F(0) +Hk : (qh⊤)
)

dΩk. (16)

The actual integration computation relies on the specific for-

mulation of Ψ(F). Please refer to the supplementary docu-

ment for detailed derivations of some commonly-used ma-

terial models such as ARAP and Neo-Hookean.

4.5. System assembly and solve

With energy integrals, we can assemble Eq. (2). The gen-

eralized internal force is fint = −∂U/∂q, and it can be

conveniently computed by the chain rule:

fint = −∂Ψ
∂F

:
∂F

∂q
= −P : ∇J, (17)

where P is the first Piola-Kirchhoff stress. This is a 30n-

dimension dense system as all Q-GMLS kernels have global

influences. We use Newton’s method to solve this system

iteratively. Each Newton iteration solves a linearized prob-

lem for an incremental improvement ∆q:

(

M+ h2
∂fint
∂q

)

∆q = M(qn+hq̇n)+h
2J⊤fext, (18)

where ∂fint/∂q is the second differentiation of the total po-

tential U known as the tangent stiffness matrix. fext is the

external forces applied to the model. It is projected to the

Q-GMLS kinematic space by left multiplying J⊤.

4.6. NeRF rendering using quadratic warping

After the deformed model geometry is computed, we lever-

age the NGP-NeRF that is built for its rest shape to synthe-

size both novel views and novel deformations. Whenever

we query the NGP-NeRF for a deformed location x̃ along

a ray, we warp this position to its rest configuration x, ide-

ally through x = x̃−u(x). Unfortunately as x is unknown

here, we cannot obtain u(x) directly with Eq. (9). Instead,

we approximate u(x) based on the displacements at nearby

(deformed) IPs. The general rationale is that if x̃ is suffi-

ciently close to an IP, we can Taylor expand the IP’s dis-

placement to estimate u(x). As IPs are sparse, it is possible

that x̃ is not particularly close to one IP. In this case, we find

three nearest IPs and average Taylor expansions at those IPs

based on the inverse distance weight.

For the IP at xk, we have:

x̃− x̃k = u(x)− u(xk) ≈ ∇u(xk)(x− xk)

+
1

2
(∇F(xk) · (x− xk)) · (x− xk). (19)

We can then compute x via solving a nonlinear system of:

A(x)(x− xk) = b, (20)

where

A(x) = ∇u(xk) +
1

2
∇F(xk) · (x− xk),

b = x̃− x̃k.
(21)

While the analytic solution of Eq. (20) can be derived, we

find Newton’s method starting from the guess of x = xk

is effective. The system converges within tens of iterations,

and each iteration only solves a 3 by 3 linear system.

This strategy of quadratic warping fully exploits the prior

of u being the quadratic displacement field. If we only use

the first-order Taylor expansion to estimate the undeformed

position of x̃, as chosen in most existing NeRF editing sys-

tems [59, 81], visual artifacts can be observed under large

deformations. Examples of such failure cases are provided

in the supplementary materials.

5. Experiments

We implemented PIE-NeRF pipeline using Python and

C++. The simulation module was based on CUDA. In ad-

dition, we used PyTorch [28] and Taichi [26] to imple-

ment a modified instant-NGP [52] for ray warping (§ 4.6).

Our hardware platform is a desktop computer equipped with

an Intel i7-12700F CPU and an NVIDIA 3090 GPU.

4455



Figure 5. Interactive NeRF deformation. We developed an intu-

itive UI for users to interact with NeRF scenes like applying exter-

nal forces and position constraints. Q-GMLS kernels can also be

set adaptively to capture local dynamics as highlighted.

Datasets We evaluate PIE-NeRF with several NeRF scenes.

In addition to original NeRF datasets, we utilize BlenderN-

eRF [63] to synthesize additional scenes including codi-

mensional objects. We used 100 multi-view images for each

scene as inputs for our NGP-NeRF training.

5.1. Interactive and dynamic NeRF simulation

PIE-NeRF formulates nonlinear dynamics of NeRF mod-

els with the generalized coordinate and Lagrangian equa-

tions (i.e., Eq. (1)), which makes the computation inde-

pendent of the PDS sampling resolution. We find that a

few dozen Q-GMLS kernels are often sufficient to model

complex models. The corresponding computation is light-

weight and can be processed in real-time on the GPU (see

Fig. 4). Therefore, interactive physics-based manipulation

of the NeRF scene becomes possible. To this end, we also

implemented a user-friendly interface as shown in Fig. 5,

left. With the interface, users can intuitively apply external

forces to the model, and observe the resulting novel motions

interactively. The users have full control over the trade-off

between visual richness and the efficiency of the simulation.

For instance, one can create a dedicated kernel to capture lo-

cal dynamics at specific foliage of the plant (Fig. 5, right).

5.2. Physics­grounded pose synthesis

Being a physics-based framework, PIE-NeRF is able to

model any nonlinear hyperelastic materials to match real-

world observations. This enhances existing NeRF editing

systems, which are mostly based on geometry-based heuris-

tic energy models like ARAP. Fig. 6 reports a comparison

using the Neo-Hookean material [8] and ARAP to com-

press chocolate jelly with NeRF. The energy density of Neo-

Hookean material is:

Ψ =
µ

2
(IC − 3)− µ log J +

λ

2
log2 J, (22)

where µ, λ are material parameters (a.k.a Lamé coeffi-

cients); IC = tr(F⊤F); and J = det(F). The log barrier

ARAP
Neo-Hookean

M
aterial

Volume percentage

ARAP

Neo-Hookean

Figure 6. Volume preservation test. PIE-NeRF is capable of in-

corporating any real-world material models. In this example, we

apply a position constraint to compress a chocolate jelly. ARAP

energy, widely used in exiting NeRF editing systems [87], col-

lapses unnaturally. With Neo-Hookean energy, PIE-NeRF can bet-

ter synthesize this procedure.

Cut h
ere

Figure 7. Topology change and shadows. We edit kernel weights

to cut the sculpture, which then falls on the floor. We then compute

the depth map from NGP-NeRF and generate the moving shadow

using shadow maps.

log J in Neo-Hookean energy strongly preserves the vol-

ume of the object. This feature is clearly demonstrated in

Fig. 6. As the compression rate increases, ARAP jelly (on

the top) loses nearly 40% of the original volume (visualized

as bar graphs at the bottom in Fig. 6).

Handle topology change. Being meshless makes PIE-

NeRF less sensitive to topology changes. As shown in

Fig. 7, we cut the NeRF sculpture by modifying Q-GMLS

weight functions. Besides that, there is no need for extra

safeguards for dealing with the change of the mesh connec-

tivity and resolution at the cutting area. In this example,

we extract the depth image with NGP-NeRF, from which a

shadow map can be generated for shadow synthesis.

Comparison with ground truth. We employ FEM as the

ground truth for comparison with our method. We gener-

ate multi-view images from the mesh rendered with same

rendering settings to ground truth as the dataset for PIE-

NeRF. Subsequently, dynamic results are produced using

the same boundary conditions, physical parameters, and ex-

ternal forces. Our implementation of FEM involves tetrahe-

dralizing the mesh and applying Newton’s method to solve

the dynamic system on tetrahedral mesh. The comparison

results, as illustrated in Fig. 8, demonstrate that our method

is nearly same to the ground truth. Thanks to the Q-GMLS,

the number of kernels in our approach is significantly lower

than the number of vertices in FEM, and the number of IPs
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Figure 8. Comparison with ground truth. We generate ground-

truth results by simulating the tetrahedral mesh with FEM. We can

see that our results are quite similar to the ground truth, despite

minor differences highlighted.
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Figure 9. Time breakdown. There are three major steps for PIE-

NeRF, namely matrix assembly, solve, and warping. Thanks to Q-

GMLS-based reduction, they are all manageable making the sim-

ulation interactive. The percentage of each step is visualized as a

pie diagram on the right.

is also less than the number of tetrahedra in FEM.

Comparison with PAC-NeRF. PAC-NeRF [37] is a re-

cent contribution also aiming to combine physical models

with NeRF-based representations. The underlying numeri-

cal solver, on the other hand, is based on the material point

method (MPM) [6], a hybrid method that uses both par-

ticles and grids. While MPM excels in handling compli-

cated, multi-phase physics, it does not synergize well with

NeRF-based rendering. Specifically, under large deforma-

tion, PAC-NeRF fails to map material points back to their

rest-pose positions accurately due to excessive interpolation

smoothing between particles and grid cells, which leads to

over-blurred results at local fine shapes. We show a side-

by-side comparison in Fig. 10.

5.3. Time performance

Fig. 9 reports a breakdown of the run time performance of

our PIE-NeRF pipeline for Fig. 5. Three major tasks for

the simulation at the runtime are matrix assembly, nonlin-

ear solve, and quadratic warping. The matrix assembly re-

P
IE
-N
e
R
F

P
A
C
-N
e
R
F

Figure 10. PIE-NeRF vs PAC-NeRF. PAC-NeRF [37] is a closely

relevant competitor. A major limitation of PAC-NeRF is the ren-

dering. It is less intuitive to infer the right color/texture informa-

tion under large deformation using MPM. PIE-NeRF overcomes

this limitation with ease. Using implicit time integration, PIE-

NeRF runs much faster than PAC-NeRF (two orders in these ex-

amples).

quires an integral over all the IPs, leading to a dense 30n
by 30n system. We use Cholesky factorization to solve the

resulting Newton system (Eq. (18)). In general, a couple

of iterations will converge the system so that we forward to

the next time step. As shown in the figure, quadratic warp-

ing used in PIE-NeRF is slightly more expensive than linear

warping. However, these additional expenses yield signifi-

cantly improved visual results in general, as detailed in the

supplementary material.

6. Conclusion

PIE-NeRF� is a physics-NeRF simulation pipeline. It is

directly based on PDS particles sampled over the NeRF

scene and applies a Q-GMLS model reduction to lower the

computational overhead of the simulation. As a result, PIE-

NeRF faithfully characterizes various real-world material

models. Its meshless representation makes the simulation

flexible, and topology changes can be well accommodated.

The quadratic interpolation scheme is not only helpful in

tackling thin-geometry models but also leads to better im-

age synthesis with NGP-NeRF. We hope PIE-NeRF could

contribute new ingredients to the existing NeRF ecosystem.

Based on PIE-NerF, it is possible to integrate more (bet-

ter and faster) simulation and graphics techniques to deep

3D vision applications to imbue vivid, realistic, real-time

physics into static or dynamic environments. Along this ex-

citing endeavor, we will also explore other opportunities,

such as Gaussian splatting-based techniques [33], and ulti-

mately reach what you see is what you simulate, WS2.
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