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(a) Sparse Observation (b) Disentangled Body (c) Upper-Body Recon. (d) Lower-Body Recon. (e) Full-Body Recon.

Figure 1. Stratified avatar generation from sparse observations. Given the sensory sparse observation of the body motion: 6-DoF
poses of the head and hand marked by RGB axes in (a), our method leverages a disentangled body representation in (b) to reconstruct the
upper-body conditioned on the sparse observation in (c), and lower-body conditioned on the upper-body reconstruction in (d) to accomplish
the full-body reconstruction in (e).

Abstract
Estimating 3D full-body avatars from AR/VR devices is

essential for creating immersive experiences in AR/VR ap-
plications. This task is challenging due to the limited in-
put from Head Mounted Devices, which capture only sparse
observations from the head and hands. Predicting the full-
body avatars, particularly the lower body, from these sparse
observations presents significant difficulties. In this paper,
we are inspired by the inherent property of the kinematic
tree defined in the Skinned Multi-Person Linear (SMPL)
model, where the upper body and lower body share only
one common ancestor node, bringing the potential of de-
coupled reconstruction. We propose a stratified approach to
decouple the conventional full-body avatar reconstruction
pipeline into two stages, with the reconstruction of the up-
per body first and a subsequent reconstruction of the lower
body conditioned on the previous stage. To implement this
straightforward idea, we leverage the latent diffusion model
as a powerful probabilistic generator, and train it to fol-
low the latent distribution of decoupled motions explored by
a VQ-VAE encoder-decoder model. Extensive experiments
on AMASS mocap dataset demonstrate our state-of-the-art
performance in the reconstruction of full-body motions.
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1. Introduction

Generating 3D full-body avatars from observations of Head
Mounted Devices (HMDs) is crucial for enhancing immer-
sive AR/VR experiences. HMDs primarily track the head
and hands, while leaving the rest of the body unmonitored.
This limited motion tracking poses a challenging scenario
for accurately reconstructing full-body 3D avatars, partic-
ularly in representing the lower body. The high degree
of freedom in body movements compounds this difficulty,
making the task of reasoning human motion from such
sparse observations significantly complex.

Tremendous efforts have been made to obtain more
tracking signals by adding sensors at Pelvis [5, 10, 33] or
both Pelvis and Legs [16, 19, 45, 49, 50]. While these ap-
proaches provide more data points for avatar construction,
they can diminish the user’s experience. Wearing extra de-
vices can be cumbersome, potentially interfering with the
user’s comfort and immersion in the virtual environment.
This trade-off highlights the need for innovative solutions
that can deliver detailed body tracking without compromis-
ing the user’s comfort and immersion in AR/VR settings.
Accordingly, we are interested in the problem of generat-
ing 3D full-body avatars from sparse observations of HMDs
that track the motion of the head and two hands, by develop-
ing a neural solution that learns the distribution of full-body
poses given the sparse observations as the input condition.
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Recent studies have attempted to address the challenge
of sparse observations in HMD-based full-body avatar gen-
eration by employing regression-based techniques, as seen
in [18, 53], or by adopting generation-based approaches
like [7, 11]. These methods typically use deep neural net-
works to predict human motion within a single, expansive
motion space. However, due to the limited data provided by
sparse observations, these networks often struggle to fully
capture the complexities of human kinematics across such a
broad and unified motion space. This limitation frequently
results in reconstructions that are unrealistic and lack phys-
ical plausibility.

We introduce a new method for reconstructing full-body
human motions from sparse observations, called Stratified
Avatar Generation (SAGE). Instead of the upper-body mo-
tion prediction that has tracking signals of certain upper
joints from sparse observations, predicting lower-body mo-
tion is not straightforward as no direct tracking signals
about any lower-body joint is given. It is noteworthy that
SMPL model [22] connects the upper and lower half-body
by a single root joint, as shown in Fig. 1 (b), which moti-
vates us to split the full-body motions into upper and lower
half-body parts. The benefits are two-fold: 1) the smaller
search space achieved by disentanglement facilitates learn-
ing and prediction; 2) our stratified design makes the mod-
eling and inferring for lower-body motions more accurate
and visually appealing by explicitly modeling the correla-
tion and constraint between two half-body motions. To this
end, we use VQ-VAE [43] to encode and reconstruct upper
and lower body motions separately.

With the disentangled latent representation of the upper
and lower body motions, we aim to recover the accurate
full-body motions from sparse observations with a body-
customized latent diffusion model (LDM) [35] in a strati-
fied manner. Specifically, as shown in Fig. 1 (c), Fig. 1(d),
and Fig. 1(e), we first find the latent of upper-body motion
condition on the sparse observations (i.e., tracking signals
of the head and hands in Fig. 1(a)). Then, the latent of
lower-body motion is inferred condition on both the pre-
dicted upper-body latent and sparse observations. Finally,
a full-body decoder takes the two half-body latents as input
and outputs the full-body motion.

In the experiments, we comprehensively justified our in-
tuitive design of disentangling the upper and lower body
motion in a stratified manner. On the large-scale motion
capture benchmark AMASS [25], our proposed SAGE is
exhibiting superior performance in different evaluation set-
tings and particularly performs well in terms of the evalua-
tion metrics for lower-body motion estimation compared to
previous state-of-the-art methods.

2. Related Work

2.1. Motion Reconstruction from Sparse Input

The task of reconstructing full human body motion from
sparse observations has gained significant attention in re-
cent decades within the research community [1, 3, 5, 7,
10, 11, 16, 18, 19, 45, 46, 48–50, 53]. For instance, re-
cent works [16, 19, 45, 49, 50] focus on reconstructing full
body motion from six inertial measurement units (IMUs).
SIP [45] employs heuristic methods, while DIP [16] pio-
neers the use of deep neural networks for this task. PIP [50]
and TIP [19] further enhance performance by incorporating
physics constraints. With the rise of VR/AR applications,
researchers turn their attention toward reconstructing full
body motion from VR/AR devices, such as head-mounted
devices (HMDs), which only provide information about the
user’s head and hands, posing additional challenges. LoB-
STr [48], AvatarPoser [18], and AvatarJLM [53] approach
this task as a regression problem, utilizing GRU [48] and
Transformer Network [18, 53] to predict the full body pose
from sparse observations of HMDs. Another line of meth-
ods employs generative models [5, 7, 10, 11]. For ex-
ample, VAEHMD [10] and FLAG [5] utilize Variational
AutoEncoder (VAE) [20] and Normalizing flow [34], re-
spectively. Recent works [7, 11] leverage more powerful
diffusion models [15, 37] for motion generation, yielding
promising results due to the powerful ability of diffusion
models in modeling the conditional probabilistic distribu-
tion of full-body motion.

Contrasting with previous methods that model full-body
motion in a comprehensive, unified framework, our ap-
proach acknowledges the complexities such methods im-
pose on deep learning models, particularly in capturing the
intricate kinematics of human motion. Hence, we propose
a stratified approach that decouples the conventional full-
body avatar reconstruction pipeline, first for the upper body
and then for the lower body under the condition of the
upper-body.

2.2. Human Motion Generation

Human motion generation is explored under various input
conditions, including text [17, 30, 38, 39, 51], action la-
bels [13, 29], 3D scenes and objects [14, 31, 47], and mo-
tion itself [8, 24, 27]. Our work shares similarities with two
primary research streams. The first involves diffusion-based
motion generation. For instance, [39] is the first to utilize a
diffusion model [15, 37] for text-to-motion generation with
a transformer network. [31] develops a hierarchical genera-
tion pipeline for human-object interaction by generating ini-
tial keyframes in the motion sequence and then interpolat-
ing between them. Secondly, our approach parallels works
like PoseGPT [24], MotionGPT [17], and T2M-GPT [51]
in terms of representing human motions with discrete la-
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tent. These studies also utilize a VQ-VAE [43] to encode
human motion into a discrete latent space, facilitating the
subsequent generation process.

The task we aim to address significantly deviates from
traditional motion generation tasks like text-to-motion gen-
eration, which typically aims to create motions that align
with textual descriptions. Our goal is distinctly different:
we focus on accurately reconstructing human motion using
solely sparse observations.

3. SAGE: Stratified Avatar Generation
This section introduces the proposed SAGE Network, fol-
lowing our observation about the connection relationship
between upper-body and lower-body motions. The overall
architecture of our SAGE Net is shown in Fig. 2. Disentan-
gled latent representations for upper-body and lower-body
motions are learned in Fig. 2 (a). Subsequently, as illus-
trated in Fig. 2 (b), we employ a stratified latent diffusion
process for full body motion reconstruction.

3.1. Problem Statement and Notation

Input Signals. Our paper follows the common setting of
Head Mounted Devices (HMDs) inputs for motion gener-
ation, in which three sensors mounted on the head and,
left and right hands are employed to perceive the corre-
sponding joint motions. Formally, the raw input signals
are denoted by a time-dependent vector function X(t) =
(xh(t),xl(t),xr(t)), where the subscripts h, l and r indi-
cate the head, left hand, and right hand, and all these func-
tions are with six degree of freedom for 3D rotation and
translation under the global coordinate system. Joint rota-
tions are represented by a six-axis representation, which has
been demonstrated to be more suitable for network learning
in previous works [54]. Given a time interval with T sam-
pling points, the raw input signals can be denoted in a ma-
trix Xraw ∈ RT×(3×(3+6)). To enhance the input signals,
we follow [18] to compute the positional velocities and an-
gular velocities. This augmentation process adds a 9D input
signal for each observed joint, resulting in an 18D input sig-
nal per joint at every timestamp. By combining these sig-
nals for all joints over all timestamps, we form the complete
sparse input signal, represented as X ∈ RT×54.

Kinematic Tree and SMPL Representation. As shown
in Fig. 1 (b), SMPL [22] represents a human pose by a stan-
dard skeletal rig, which is widely adopted by current motion
generation works. A pose θj(t) represents the relative rota-
tion of joint j at tth frame with respect to its parent in the
kinematic tree. The global rotations G(θj(t)) can be calcu-
lated by:

G(θj(t)) =
∏

k∈A(j)

θk(t) (1)

where A(j) denotes the ordered set of joint ancestors of
joint j.

Articulated motion representation based on the human
kinematic tree, is key for realistically simulating human
motions and enables efficient control over joint parameters.
However, such an intricate articulated motion representa-
tion poses a significant challenge for models to learn effec-
tively. In this work, we seek to disentangle this complex
representation to enable the model to focus on a limited set
of motions and interactions, thereby simplifying the learn-
ing process.

Nevertheless, separating full-body human motions into
distinct parts is nontrivial due to the complex correlations
among joints. We revisit the human kinematic tree defined
in SMPL model, where the upper and lower half-body is
connected solely via a root joint. This insight from SMPL
model provides a natural solution to separate the articulated
full-body motion into two distinct parts: upper-body motion
and lower-body motion. Notably, the root joint is included
in both two parts as a central element since the parameters
of all other joints in each half-body are defined in the local
coordinate system of the root joint.

The Outputs. As discussed in the last paragraph for
SMPL representation [22], the problem of 3D body avatar
generation comes down to the full-body motion estima-
tion of 22 joints (including the root joint), denoted in the
set function Θ(t) =

{
θi(t) ∈ SE(3)|t ∈ {t1, . . . , tT }

}
as

the expected output of our problem. Based on the discus-
sion of SMPL model with the disentangling nature of up-
per and lower body, we redefine the set function Θ(t) in
the disentangled way by Θ(t) = Θupper(t) ∪ Θlower(t),
where Θupper(t) = {θ0(t), . . . , θbuu (t)}, Θlower =

{θ0(t), . . . , θbll (t)}. These two subsets have only one in-
tersected joint: root joint θ0, and bu = 13 and bl = 8 de-
note the number of rest joints in the upper and lower body,
respectively. For the final output of our method, the dimen-
sion of the underlying motion variables is 22 × 6 = 132 at
every timestamp.

3.2. Disentangled Motion Representation

In this section, our objective is to disentangle full-body hu-
man motions into upper-body and lower-body parts and en-
code them to discrete latent spaces. This can effectively
reduce the complexity and burden of encoding since each
encoding takes care of only half-body motions.

We employ two autoencoders, i.e., VQ-VAE [43, 52],
with identical architecture to learn the discrete latent spaces
for upper-body and lower-body motions, respectively. As
shown in Fig. 2 (a), our VQ-VAE model consists of an en-
coder and a decoder. The encoder E takes the motion se-
quence Θ = {θi}Ti=1 as input and encodes it into a series of
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Figure 2. The overall architecture of our SAGE Net. It mainly contains two components: (a) Disentangled VQ-VAE for discrete human
motion latent learning. To facilitate visualization, we incorporate zero rotations as padding for the lower body in the Upper VQ-VAE, and
vice versa for the Lower VQ-VAE. Consequently, in the visualizations of the Upper VQ-VAE, the lower body remains in a stationary pose,
whereas in the visualizations of the Lower VQ-VAE, the upper body is maintained in a T-pose. (b) The stratified diffusion model, which
models the conditional distribution of the latent space for upper and lower motion. This model sequentially infers the upper and lower
body latents, capturing the correlation between upper and lower motions. By employing a dedicated full-body decoder on the concatenated
upper and lower latents, we can obtain full-body motion.

continuous latent E(Θ) = H , where H = {hi}T/l
i=1, and l is

the temporal down-sampling rate of input motion sequence.
To quantize the continuous latent, we define the discrete

motion latent space by a codebook C = {cj}Nj=1 ∈ RN×D,
where N = 512 is the number of entries in the codebook
and D = 384 is the dimension of each element cj . The
operation Q quantizes the continuous latent hi into discrete
latent zi by finding its most similar element in C:

zi = Q(hi) = argmin
cj∈C

∥hi − cj∥2 (2)

Since continuous latent from all data samples share the
same codebook C, all the real motions in the training set
could be expressed by a finite number of bases in latent
space.

Subsequently, the quantified latents Z are fed into the
decoder to reconstruct the original motions, given by Θ̂ =
D(Z). The training process involves the joint optimization
of the encoder and decoder by minimizing the following
loss over the training dataset:

Lossvq = SmoothL1
(Θ̂,Θ) + ∥sg[Z]−H∥2

+ β ∥Z − sg[H]∥2
(3)

Here, sg denotes the stop gradient operator, and β is a
hyperparameter. We have two independent VQ-VAEs for

upper-body and lower-body motion encoding, which we re-
fer to as VQ-VAEup and VQ-VAElow.

3.3. Stratified Motion Diffusion

After encoding and expressing different human motions as
latents, we aim to properly sample from the latent space
for full-body motion reconstructions and match the sparse
observations.

Although disentangling the full-body motions into upper
and lower parts enhances effectiveness and efficiency for
motion representation learning, it’s crucial to include the
correlation between two body parts during generation. Oth-
erwise, severe inconsistency would be witnessed in recon-
structed full-body motions. To this end, we propose Strat-
ified Motion Diffusion to sample upper-body and lower-
body latent in a cascaded manner with explicit considera-
tions of the correlations mentioned above.

Since the sparse observations are all from the upper body
(e.g., head and hand sensors), we first generate upper-body
latent ˆzup by upper diffusion model conditioning on the
sparse observations X .Thus the training objective of the up-
per diffusion model is:

Lup := Ezup,ϵ∼N (0,1),k

[
∥ϵ− ϵα (zupk , X, k)∥2

2

]
(4)
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where ϵ is the random noise from the normal distribution, ϵα
is the noise predictor of the diffusion model with network
parameters α, and k is the diffusion time step.

Compared with upper-body latent prediction, directly
predicting the lower-body latent ˆzlow from the same sparse
observations is more challenging due to the absence of
direct tracking or supervision for any of the lower-body
joints. To make the prediction more physically meaning-
ful, as shown in Fig. 2 (b), we take both the sparse obser-
vations X and the generated upper-body latent ˆzup as con-
ditions for lower-body latent prediction by lower diffusion
model. This design considers the correlation between two
half-body parts and allows more information to be involved
for the lower-body inference. The objective for lower diffu-
sion model training is as follows:

Llow := Ezlow,ϵ∼N (0,1),k

[∥∥∥ϵ− ϵα
(
zlowk , (X, ˆzup), k

)∥∥∥2
2

]
(5)

Once two half-body latent ˆzup and ˆzlow are obtained,
the full-body motions can be recovered with a decoder
Θ̂ = Dfull( ˆzup, ˆzlow). Instead of directly using pre-trained
upper and lower decoders in Fig. 2 (a) to recover the corre-
sponding half-body motions, we train this full-body decoder
Efull from scratch together with our stratified motion diffu-
sion, which is further optimized to capture the correlations
between half-body motions.

3.4. Implementation Details

Since both sparse observations and human motion occur
sequentially, we utilize the widely adopted sequential net-
work, i.e., transformer [44], as the backbone network for the
encoder and decoder in the disentangled VQ-VAE [43], and
the denoise network in the stratified diffusion model. We
set temporal down-sampling rate l = 2 to balance the com-
putational cost and the performance. During the training of
the latent diffusion model, instead of predicting noise ϵk as
formulated by the standard latent diffusion model [35], we
follow [32, 39] and directly predict the latent z itself, as we
find that this operation can significantly reduce the sampled
time steps during inference stage. For training decoders,
i.e., Eup, Elow and Efull, in addition to the rotation-level
reconstruction loss, we incorporate the forward kinematic
loss proposed in [18] and the hand loss described in [53].

For the inference stage, we evaluate our model in an on-
line manner. Specifically, we fix the sequence length at 20
for both the input and the output of our model, and only the
last pose in the output motion sequence is retained. Given
a sparse observation sequence, we apply our model using a
sliding window approach. For the first 20 poses in the mo-
tion sequence, we predict by padding the sparse observation
sequence x at the beginning with the first available observa-
tion. We make this choice considering the practicality and
relevance of online inference in real-world application sce-

narios. This allows the motion sequences to be predicted in
a frame-by-frame manner.

In addition, we employ a simple two-layer GRU [9] on
the top of the full body decoder as a temporal memory to
smooth the prediction of the output sequence with minimal
computational expense, and we term it as a Refiner. To train
this Refiner, we use the same velocity loss as [53]. Our
model takes 0.74ms to infer 1 frame on a single NVIDIA
RTX3090 GPU.

4. Experiments and Evaluation Metrics
4.1. Dataset and Evaluation Metrics

We train and evaluate our method on AMASS [25], which
unifies multiple motion capture datasets [2, 4, 6, 12, 23, 26,
28, 36, 40–42] as SMPL [22] representations.

We report several metrics for evaluations and compar-
isons: mean per joint rotation error (MPJRE) and mean per
joint position error (MPJPE) for measuring the average rela-
tive rotation and position error across all joints respectively,
as well as the average position error of the root joints (Root
PE), hand joints (Hand PE), upper-body joints (Upper PE),
and lower-body joints (Lower PE).

Besides the above reconstruction accuracy, we also eval-
uate the spatial and temporal consistency of the generated
sequences, as it significantly contributes to the visual qual-
ity. Specifically, we calculate the mean per joint velocity
error (MPJVE) and Jitter, where MPJVE measures the av-
erage velocity error of all body joints, and Jitter quantifies
the average jerk (time derivative of acceleration) of all body
joints. In both cases, lower values indicate better results.

4.2. Quantitative and Qualitative Results

For fair comparison, we follow two settings used in previ-
ous works [5, 10, 11, 18, 33, 53] for quantitative and qual-
itative assessment. Moreover, we propose a new setting in
this paper for a more comprehensive evaluation on current
methods.

In the first setting, as previous works [7, 11, 18, 53], sub-
sets CMU [6], BMLrub [40], and HDM05 [28] datasets are
randomly divided into 90% for training and 10% for testing.
Besides sparse observations of three joints, we also evalu-
ate the performance of all compared methods by using four
joints as input, including the root joint as an additional in-
put, the same as in [18]. We term this setting as S1 in the
following.

Tabs. 1 and 2 show that our method outperforms ex-
isting methods on most evaluation metrics, confirming its
effectiveness. For the MPJVE metric, only AGRoL [11]
surpasses our method when employing an offline strategy.
In this scenario, specifically, AGRoL processes the entire
sparse observation sequence in one pass and outputs the
predicted full-body motions simultaneously. This enables
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Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

Final IK [1] 16.77 18.09 59.24 - - - - -
LoBSTr [48] 10.69 9.02 44.97 - - - - -
VAR-HMD [10] 4.11 6.83 37.99 - - - - -
Avatarposer [18] 3.08 4.18 27.70 2.12 1.81 7.59 3.34 14.49
AvatarJLM [53] 2.90 3.35 20.79 1.24 1.42 6.14 2.94 8.39
AGRoL (Online) [11] 2.96 4.26 79.12 1.51 1.73 7.91 3.78 84.79
AGRoL (Offline) [11] 2.66 3.71 18.59 1.31 1.55 6.84 3.36 7.26
Ours 2.53 3.28 20.62 1.18 1.39 6.01 2.95 6.55

Table 1. Evaluation results under setting S1.

AvatarPoser [18] AGRoL [11] AvatarJLM [53] Ours GT

Figure 3. Visualization results compared with other methods. All models are trained under setting S1.

each position in the sequence to utilize the information from
both preceding and subsequent time steps, offering an ad-
vantage in this particular metric. However, it’s important
to note that, despite being competitive in metric numbers,
offline inference has limited practical applicability in real-
world scenarios where online processing capability is most
important.

The second setting follows [5, 10, 11, 33, 53], where
we evaluate the methods on a larger benchmark from
AMASS [25]. The subsets [2, 4, 6, 12, 21, 23, 26, 26, 28,

40–42, 42] are for training, and Transition [25] and Hu-
manEva [36] subsets are for testing. We term this setting
as S2 in the following.

As shown in Tab. 3, our method achieves comparable
performance with previous works on S2. However, we ob-
serve that the testing set of S2 is disproportionately small
(i.e., only 1% of the training set). Such a small fraction
cannot represent the overall data distribution of the large
dataset and may not include sufficiently diverse motions to
evaluate the models’ scalability, causing unconvincing eval-
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Method MPJRE MPJPE MPJVE

Final IK [1] 12.39 9.54 36.73
CoolMoves [3] 4.58 5.55 65.28
LoBSTr [48] 8.09 5.56 30.12
VAE-HMD [10] 3.12 3.51 28.23
AvatarPoser [18] 2.59 2.61 22.16
AvatarJLM [53] 2.40 2.09 17.82
AGRoL [11] 2.25 2.17 16.26
Ours 2.10 1.88 14.79

Table 2. Evaluation results under setting S1 with the root joint as
an additional input.

Method MPJRE MPJPE MPJVE Jitter

VAEHMD† [10] - 7.45 - -
Humor† [33] - 5.50 - -
FLAG† [5] - 4.96 - -

AvatarPoser [18] 4.70 6.38 34.05 10.21
AGRoL [11] 4.30 6.17 24.40 8.32
AvatarJLM [53] 4.30 4.93 26.17 7.19
Ours 4.62 5.86 33.54 7.13

Table 3. Evaluation result under setting S2. † indicates that these
methods use additional inputs of pelvis location and rotation for
training and inference, which are not directly comparable meth-
ods. The results of AvatarPoser [18] is provided by [11].

AvatarJLM [53] Ours GT

Figure 4. Visualization results on real data.

uation results. We introduce a new setting, S3, which adopts
the same training and testing splitting ratio used in S1. In
this setting, we randomly select 90% of the samples from
the 15 subsets of S2 for training, while the remaining 10%
are for testing. We train and evaluate the compared methods
with this new setting. Table 4 reveals that under S3, the per-
formance differences between the compared methods are
more significant than S1 and S2. Since the test set has more

W/O Disentangle With Disentangle

Figure 5. The visualization comparison for disentanglement. The
darker the red color, the greater the deviation is between the pre-
dicted result and the ground truth.

diverse motions in S3, this benchmark evaluates the mod-
els’ scalability in a more objective way. In this context, our
method outperforms existing methods in most metrics, es-
pecially in the critical metric of Lower PE, highlighting the
superiority of our stratified design for lower-body modeling
and inference.

Fig. 3 presents a visual comparison between our SAGE
Net and baseline methods, all trained under the S1 pro-
tocol, which is commonly used by baselines for releasing
their trained checkpoints. These visualizations demonstrate
the significant improvements that our model offers in re-
constructing the lower body. For example, in the first row
of samples, baseline methods typically reconstruct the feet
too close to the ground, restricting the avatar’s leg move-
ments. Our model, however, overcomes this limitation, en-
abling more flexible leg movements. In the third row, for a
subject climbing a ladder, the baseline methods often result
in avatars with floating feet, failing to capture the detailed
motion of climbing. In contrast, our SAGE Net accurately
replicates complex foot movements, resulting in more re-
alistic and precise climbing animations. We also evaluate
our model on the real data, and for fair comparison, we di-
rectly use the real data release by [53]. As shown in Fig. 4,
our method also achieves better reconstruction results on
the real data.

4.3. Ablation Study

We perform ablation study under S1 to justify the design
choice of each component in our SAGE Net.
Disentangled Codebook: We establish a baseline using
a unified motion representation to evaluate the disentangle
strategy. Specifically, we developed a full-body VQ-VAE
model that encodes full-body motion into a single, unified
discrete codebook. Other components are the same as the
original model. Results shown in the first and the last rows
in Table 5, demonstrate that our approach employing dis-
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Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

AGRoL(Online) [11] 3.09 4.31 109.29 1.79 1.80 7.95 3.86 121.78
AGRoL(Offline) [11] 2.83 3.80 17.76 1.62 1.66 6.90 3.53 10.08
AvatarJLM [53] 3.14 3.39 15.75 0.69 1.48 6.13 3.04 5.33
Avatarposer [18] 2.72 3.37 21.00 2.12 1.63 5.87 2.90 10.24
Ours 2.41 2.95 16.94 1.15 1.28 5.37 2.74 5.27

Table 4. Evaluation results under setting S3.

Method MPJRE MPJPE MPJVE Jitter

w/o Disentangle 2.64 3.62 33.18 25.07
w/o Full-Body Decoder 2.71 3.69 26.07 10.80
w/o Refiner 2.54 3.26 21.99 9.29
5 Part Disentanglement 2.63 3.48 20.32 7.16
Ours 2.53 3.28 20.62 6.55

Table 5. Ablation results of different components in SAGE Net
under setting S1.

Method Lowe PE Jitter

Parallel Diffusion 6.73 14.71
Stratified Diffusion 6.46 10.83

Table 6. Evaluation results on the conditional strategy of the dif-
fusion model under setting S1.

entangled latents significantly outperforms the baseline on
all evaluation metrics. This demonstrates that the disentan-
glement can simplify the learning process by allowing the
model to focus on a more limited set of movements and
interactions. Additionally, Fig. 5 shows the visualization
comparison between our model and baseline model, verify-
ing that the disentangle can significantly improve the recon-
struction results for the most challenging lower motions.
Full-Body Decoder and Refiner: The second and third
rows of Tab. 5 demonstrate the impact of the full-body de-
coder and the refiner, respectively. Compared with utiliz-
ing the upper and lower decoder from VQ-VAEup and VQ-
VAElow, the full-body decoder facilitates the integration of
features from both the upper and lower body, improving the
overall accuracy of full-body motion reconstruction. On the
other hand, the refiner acts as a temporal memory, smooth-
ing out the motion sequence to yield better visualization re-
sults.
Disentanglement Strategy: To investigate the optimal
disentanglement strategy, we explore an extreme disentan-
glement configuration by following the path from the root
(Pelvis) node to each leaf node along the kinematic tree.
Specifically, we break down the body into five segments:
the paths from the root to the left hand (a), right hand (b),
head (c), left foot (d), and right foot (e). As reported in
the last two rows of Tab. 5, the natural joint interconnec-
tions within the upper (or lower) body were disrupted when
further disentangling the human body, resulting in perfor-

AvatarJLM [53] Ours GT

Figure 6. Failure cases. All models are trained under setting S1.

mance drops and complicating the model design.
Stratified Inference: Tab. 6 highlights the influence of
our stratified design on the accuracy of lower body pre-
dictions. For comparison, we design a baseline that only
uses the sparse observation for lower body latent generation
without predicted upper body latent (term as Parallel Dif-
fusion in the table). As we focus solely on the reconstruc-
tion quality of the lower body here, we use the decoding
results on the generated lower latents from VQ-VAElow to
isolate the impact of other modules such as the full-body
decoder and refiner. We report Lower PE and Jitter of the
lower body for comparison. Results show that our strati-
fied design markedly improves the accuracy of lower body
predictions.
Limitation: In Fig. 6, both the previous state-of-the-art
method and our model encounter difficulties in two main
situations: (1) External Force-Induced Movements (the top
row). (2) Unconventional Poses (the bottom row). The ad-
dition of more varied samples to the training dataset can
potentially enhance the model’s performance in these areas.

5. Conclusion
We study the problem of human avatar generation from
sparse observations. Our key finding is that the upper and
lower body motions should be disentangled with respect to
the input signals from the upper-body joints. Based on this,
we propose a novel stratified solution where the upper-body
motion is reconstructed first, and the lower-body motion is
reconstructed next and conditioned on the upper-body mo-
tion. Our proposed stratified solution achieves superior per-
formance on public available benchmarks.
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