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Figure 1. Overview. We represent sequences captured from moving vehicles in a shared geographic area with a multi-level scene graph.

Each dynamic object vo is associated with a sequence node vts and time t. The sequence nodes are registered in a common world frame at

the root node vr through the vehicle poses Pt

s, while the dynamic objects are localized w.r.t. the sequence node with pose ξto. Each camera

c is associated with an ego-vehicle position, i.e. node vts, through the extrinsic calibration Tc. The sequence and object nodes hold latent

codes ω that condition the radiance field, synthesizing novel views in various conditions with distinct dynamic objects.

Abstract

We estimate the radiance field of large-scale dynamic ar-

eas from multiple vehicle captures under varying environ-

mental conditions. Previous works in this domain are ei-

ther restricted to static environments, do not scale to more

than a single short video, or struggle to separately repre-

sent dynamic object instances. To this end, we present a

novel, decomposable radiance field approach for dynamic

urban environments. We propose a multi-level neural scene

graph representation that scales to thousands of images

from dozens of sequences with hundreds of fast-moving ob-

jects. To enable efficient training and rendering of our rep-

resentation, we develop a fast composite ray sampling and

rendering scheme. To test our approach in urban driving

scenarios, we introduce a new, novel view synthesis bench-

mark. We show that our approach outperforms prior art by

a significant margin on both established and our proposed

benchmark while being faster in training and rendering.

1. Introduction

Estimating the radiance field of a dynamic urban environ-

ment from data collected by sensor-equipped vehicles is a

core challenge in closed-loop simulation for robotics and

in mixed reality. It is particularly relevant for applications

like autonomous driving and city-scale mapping, where

capture vehicles can be frequently deployed. The grow-

ing amount of available data provides great opportunities

for creating up-to-date digital twins of entire cities but also

poses unique challenges as increasingly heterogeneous data

sources must be processed. In particular, limited scene cov-

erage, different lighting, weather, seasonal conditions, and

varying geometry due to distinct dynamic and transient ob-

jects make radiance field reconstruction of dynamic urban

environments extremely challenging.

Recently, Neural Radiance Fields (NeRFs) have enabled

significant progress in achieving realistic novel view syn-

thesis from a set of input views [2, 31–33, 49]. These meth-

ods represent a static 3D scene with fully implicit [30, 31,

49] or low-level explicit structures [10, 13, 16, 23, 32, 43,
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52, 65] such as voxels, points, surfels, meshes or 3D gaus-

sians. In parallel, implicit [19, 37, 50, 62, 63] and low-level

explicit [9, 27, 36, 38] neural representations for dynamic

4D scenes have been investigated. However, fewer works

have focused on decomposing scenes into higher-level enti-

ties [18, 26, 46, 56]. In computer graphics and 3D mapping,

scene graphs have been used to represent complex scenes in

a multi-level hierarchy [1, 44, 51]. In view synthesis, Ost et

al. [35] apply this concept by describing actors in a dynamic

scene as entities of a scene graph. However, their represen-

tation lacks the ability of [1, 44] to represent scenes at mul-

tiple levels, thereby limiting their representation to short,

single sequences.

While earlier methods for view synthesis focused on

object-centric scenes with controlled camera trajectories,

recent works move towards radiance field reconstruction

of large-scale environments from in-the-wild captures.

Among these, many methods focus on static environments,

removing dynamic actors from the input data [22, 24, 29,

42, 45, 53, 57]. A few works explicitly model dynamic

actors [18, 35, 67], but either do not scale to more than a

single, short video [18, 35, 67], or struggle to accurately

represent individual object instances [58]. This complicates

the evaluation of these methods for real-world applications

because existing benchmarks neither scale to large urban

areas [18, 35] nor reflect realistic capturing conditions [12].

To address these issues, we propose a multi-level neural

scene graph representation that spans large geographic areas

with hundreds of dynamic objects. In contrast to previous

works, our multi-level scene graph formulation allows us

to distinguish and represent dynamic object instances effec-

tively and further to represent a scene under varying condi-

tions. To make our representation viable for large-scale dy-

namic environments, we develop a composite ray sampling

and rendering scheme that enables fast training and render-

ing of our method. To test this hypothesis, we introduce a

benchmark for radiance field reconstruction in dynamic ur-

ban environments based on [61]. We fuse data from dozens

of vehicle captures under varying conditions amounting to

more than ten thousand images with several hundreds of dy-

namic objects per reconstructed area. We summarize our

contributions as follows:

• We propose a multi-level neural scene graph formulation

that scales to dozens of sequences with hundreds of fast-

moving objects under varying environmental conditions.

• We develop an efficient composite ray sampling and ren-

dering scheme that enables fast training and rendering of

our representation.

• We present a benchmark that provides a realistic,

application-driven evaluation of radiance field reconstruc-

tion in dynamic urban environments.

We show state-of-the-art view synthesis results on both es-

tablished benchmarks [4, 14] and our proposed benchmark.

2. Related Work

3D and 4D scene representations. Finding the right scene

representation is a core issue in 3D computer vision and

graphics [5]. Over the years, a wide variety of options have

been explored [1, 3, 8, 15, 25, 30, 40, 46–48], and, more

recently, neural rendering [33] has been used to enable a

new generation of scene models that support photo-realistic

novel view synthesis. Scene representations for neural ren-

dering can be roughly classified as “implicit” [30, 31, 49],

which store most of the information in the weights of a

neural network, or “explicit”, which use low-level spatial

primitives such as voxels [10, 23, 32, 52], points [65], sur-

fels [13], meshes [43], or 3D gaussians [16].

Similarly, different 4D dynamic scene representations

for view synthesis have been investigated, including both

implicit [11, 19, 37, 41, 55, 58, 62, 63] and explicit [9, 27,

36, 67] approaches. Dynamics are generally modeled as

deformations of a canonical volume [9, 37, 41, 55, 62], a

separate scene motion function [11, 19, 20, 58, 63], or rigid

transformations of local geometric primitives [27].

Another line of work investigates the decomposition of

scenes into higher-level entities [18, 26, 46, 56]. To express

the composition of different entities into a complex scene,

classical computer graphics literature [7] uses scene graphs.

In particular, entities are represented as nodes in a hierar-

chical graph and are connected through edges defined by

coordinate frame transformations. Thus, global transforma-

tions can be acquired by traversing the graph from its root

node. For indoor 3D mapping, this concept was proposed

by Armeni et al. [1] to represent static scenes at multiple

levels of hierarchy, i.e. buildings, rooms and objects, and

was later extended to dynamic scenes by Rosinol et al. [44].

Recently, Ost et al. [35] have revisited this concept for view

synthesis, describing multi-object scenes with a graph that

represents the dynamic actors in the scene. However, their

representation lacks the ability of [1, 44] to represent scenes

at multiple levels of hierarchy and is thus inherently limited

to single, short video clips. On the contrary, we present a

scalable, multi-level scene graph representation that spans

large geographic areas with hundreds of dynamic objects.

Representing large-scale urban scenes. Compared

to controlled captures of small scenes, in-the-wild cap-

tures of large-scale scenes pose distinct challenges. Lim-

ited viewpoint coverage, inaccurate camera poses, far-away

buildings and sky, fast-moving objects, complex lighting,

and auto exposure make radiance field reconstruction chal-

lenging. Therefore, previous works aid the reconstruc-

tion by using depth priors from e.g. LiDAR, refining cam-

era parameters, adding information about camera expo-

sure, and using specialized sky and light modeling compo-

nents [22, 29, 42, 45, 53, 60, 64]. While many of these

works simply remove dynamic actors, some methods ex-

plicitly model scene dynamics [18, 35, 58, 67]. However,
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Figure 2. Ego-vehicle trajectories of our benchmark. We show

the residential (left) and the downtown (right) areas, trajectories

superimposed on 2D maps obtained from OpenStreetMap [34].

these methods either struggle to scale to more than a single

sequence [18, 35, 67] or to accurately represent and dis-

tinguish dynamic actors [58]. To address these issues, we

present a decomposed, scalable scene representation for dy-

namic urban environments.

Efficient scene rendering. Especially for large-scale

scenes, the efficiency of a scene representation in training

and inference is crucial. To alleviate the burden of ray

traversal in volumetric rendering, many techniques for ef-

ficient sampling [2, 10, 32, 57] have been proposed. Re-

cently, researchers have exploited more efficient forms of

rendering, e.g. rasterization of meshes [22, 24] or other 3D

primitives [16]. While these approaches are focused on

static scenes, we extend the approach of [2] to our scene

graph representation and thus to dynamic scenes.

3. Data

We investigate how to synthesize novel views of a dynamic

urban environment from a set of captures taken from mov-

ing vehicles. Specifically, we are interested in captures

spanning the same geographic area under varying condi-

tions. This data presents unique challenges due to limited

viewpoint coverage, different lighting, weather, and sea-

son, and even varying geometry due to distinct dynamic and

transient objects.

Previous benchmarks in this area [18, 35] are limited to

short, single video clips with simple ego trajectories and a

few dynamic objects. Therefore, we present a benchmark

that better reflects the aforementioned challenges. We base

our benchmark on Argoverse 2 [61] which provides a rich

set of captures from a fleet of vehicles deployed in multiple

US cities that span different weather, season, and time of

day. The vehicles are equipped with a surround-view cam-

era rig with seven global shutter cameras, a LiDAR sensor,

and a GPS. Furthermore, the timings of the different sen-

sors are provided, so that one can relate the LiDAR-based

3D bounding box annotations to camera timestamps.

We leverage the GPS information to globally align the

sequences and to identify regions that we are interested in

mapping. We then extract the specific vehicle captures.

Figure 3. Sequence alignment visualization. The initial GPS-

based alignment is imprecise, as evidenced by the duplicated struc-

tures in the overlaid LiDAR point clouds (left). After our ICP

alignment, the area is well reconstructed (middle) according to its

real geometry (right, from Argoverse 2 [61]).

Since GPS-based localization accuracy is only coarsely pre-

cise in urban areas, we align the captures via a global, of-

fline iterative-closest-point (ICP) procedure applied to the

LiDAR point clouds of all sequences to achieve satisfactory

alignment for novel view synthesis purposes (see Fig. 3).

Following this procedure, we build a benchmark that en-

ables real-world evaluation of novel view synthesis from

diverse vehicle captures. It is composed of 37 vehicle

captures split into two geographic regions as illustrated in

Fig. 2. The regions cover a residential and a downtown area

to resemble the different characteristics of urban environ-

ments. The residential area spans 14 captures with 10493

training and 1162 testing images with more than 700 dis-

tinct moving objects. The downtown area spans 23 captures

with 16933 training and 1876 testing images with more than

600 distinct moving objects.

4. Method

Problem setup. We are given a set of sequences S cap-

tured from moving vehicles in different conditions. Each

sequence s ∈ S consists of a set of images taken from

cameras Cs mounted on the vehicle at different timesteps

indexed by Ts. We assume the vehicle’s sensors are cali-

brated with respect to a common vehicle and a global world

frame. In particular, we assume given sensor extrinsic Tc =
[Rc|tc] ∈ SE(3) for each camera c ∈ C =

⋃

s Cs, and ego-

vehicle poses P
t
s = [Rt

s|t
t
s] ∈ SE(3) for each timestamp

t ∈ Ts and sequence s ∈ S. Furthermore, we assume all

cameras to have known intrinsics Kc. Each sequence s en-

tails a set Os of dynamic objects. For each object o ∈ Os,
we assume to have an estimated 3D bounding box track To
consisting of object poses {ξt0o , ..., ξ

tn
o } ⊂ SE(3) w.r.t. the

ego-vehicle frame, where ti ∈ Ts, and the 3D object dimen-

sions so ∈ R
3
>0. The images span a common geographic

area for which we would like to estimate a radiance field

fθ(x,d, t, s) = (σ(x, t, s), c(x,d, t, s)) (1)

that outputs volume density σ ∈ R≥0 and color c ∈ [0, 1]3

conditioned on 3D location x, viewing direction d, time t
and sequence s.
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4.1. Multi­Level Neural Scene Graph

Overview. We illustrate our representation in Fig. 1. We

decompose the scene into a graph G = (V, E) where the

set of nodes V is composed by a root node vr that defines

the global coordinate system, camera nodes {vc}c∈C , and,

for each sequence s ∈ S, sequence nodes {vts}t∈Ts and

dynamic object nodes {vo}o∈Os . The nodes are connected

through oriented edges e ∈ E that represent rigid transfor-

mations between the coordinate frames of the nodes, consis-

tently with the edge direction. In addition, each node v ∈ V
can have an associated latent vector ω. Given the scene

graph G, we model fθ using two radiance fields, namely φ
for largely static and ψ for highly dynamic scene parts. We

use the latent vectors ω to condition the radiance fields. In

particular, we use latent vectors ωts of a sequence node vts to

condition φ:

φ(x,d, ωts) = (σφ(x, ω
t
s), cφ(x,d, ω

t
s)). (2)

Since the graph G has multiple levels, a node associated

with a dynamic object will naturally fall into the sequence s
it appears in. Therefore, the radiance field ψ is conditioned

on latent vectors ωts and ωo:

ψ(x,d, ωts, ωo) = (σψ(x, ω
t
s, ωo), cψ(x,d, ω

t
s, ωo)) (3)

of the corresponding sequence and object nodes vts and vo.

Appearance and geometry variation. Reconstructing

an environment from multiple captures is challenging from

two perspectives: in addition to varying dynamic objects,

there is i) varying appearance across captures, and ii) slow-

moving or static transient geometry such as tree leaves or

construction sites. Since both transient geometry and ap-

pearance can vary across captures, but are usually smooth

within a sequence, we model these phenomena as smooth

functions over time

ωts = [AsF(t), GsF(t)] (4)

where As is an appearance matrix, Gs is a transient ge-

ometry matrix and F(·) is a 1D basis function of sines

and cosines with linearly increasing frequencies at log-

scale [58, 66]. We normalize time t into the interval

[−1, 1] using the maximum sequence length maxs∈S |Ts|.
Crucially, this allows to model near-static, but sequence-

specific regions of the input, as well as appearance changes

due to e.g. auto-exposure. The degree of variation across

time can be controlled by the number of frequencies.

Sequence nodes. The sequence nodes vts are connected to

the root node vr with an edge evtsvr = P
t
s, i.e. the sequences

S share a common global world frame. Each sequence node

holds the latent vector ωts that conditions the radiance field

φ. We model φ with a multi-scale 3D hash grid representa-

Figure 4. Modifying car appearance with scene appearance.

We exchange ωt

s for different car instances. The car’s appearance

in a rendered, car-centric view (top) changes according to the en-

vironmental conditions visible in the sequence s (bottom).

tion [32] and lightweight MLP heads:

fx = H3(x) (5)

hσφ , σφ = MLPσφ(fx) (6)

cφ = MLPcφ
(hσφ , γSH(d),AsF(t)) (7)

σG, cG = MLPG(hσφ ,GsF(t)) (8)

where γSH(·) is a spherical harmonics encoding [32]. The

final colors and densities are computed as a mixture of static

and transient output (analogous to Eq. 12, see supp. mat.).

Dynamic nodes. The dynamic nodes vo are connected

to the sequence nodes vts with edges evovts = ξto. The dy-

namic node vo associated with object o holds a latent vector

ωo that conditions the radiance field ψ. We model ψ fol-

lowing [31] with an MLP conditioned on ωo to represent

different instances with the same network [35, 67]

hσψ , σψ = MLPσψ (γPE(x), ωo) (9)

cψ = MLPcψ
(hσψ , γPE(d), ωo, ω

t
s) (10)

where γPE(·) is a positional encoding [31]. Note that 3D po-

sition x and viewing direction d are transformed into the lo-

cal object coordinate frame with (Pt
sξ
t
o)

−1
I3(1/max(so)).

We condition ψ on both the scene and object-dependent la-

tent vectors. This allows us to disentangle scene-dependent

appearance from the object texture and thus to transfer ob-

jects across sequences. We illustrate this process in Fig. 4.

Camera nodes. The cameras c ∈ Cs are connected to

the sequence nodes vts through edges evcvts = Tc, i.e. the

calibration of camera c w.r.t. the ego-vehicle frame. This

way, we can tie camera poses to a specific ego-vehicle pose.

4.2. Scene Graph Rendering

We describe how we render our scene graph G for a given

set of rays R. The sampling locations along a ray (r, t, s) ∈
R at time t in sequence s are defined as r(u) = o+ud with

o = R
t
stc + t

t
s and d = R

t
sRcK

−1
c (px, py, 1)

T .
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Continuous-time pose. In order to realistically render

videos at different frame rates, we treat the dynamic object

poses {ξt0o , ..., ξ
tn
o } as a continuous function of time ξo(t).

We compute ξo(t) by interpolating between the two near-

est poses at ta ≤ t < tb to time t. This allows us also

to synchronize estimated object poses originating from the

LiDAR measurements with the camera timestamps.

Ray-node intersection. To render the dynamic nodes, we

measure the intersection of their 3D bounding boxes with

each (r, t, s) ∈ R. In particular, given the sequence s and

time t the ray r is associated with, we first traverse the graph

G to retrieve all relevant nodes vo and their 3D bounding

boxes b
t
o = [ξo(t), so] at time t. Then, we transform r

into each local node coordinate system and subsequently

use AABB-ray intersection [28] to compute the entry and

exit locations uin
o , u

out
o along ray r.

Composite rendering. To render the color Ĉ of ray r in

sequence s at time t, we use volumetric rendering [31]

Ĉ(r, t, s) =

∫ uf

un

U(u)σ(r(u), t, s)c(r(u),d, t, s) du

whereU(u) = exp

(

−

∫ u

un

σ(u′)du′
)

. (11)

We obtain density σ and color c at sampling location r(u)
as mixture of the radiance fields φ and ψ

σ = σφ + σψ , c =
σφ

σφ + σψ
cφ +

σψ
σφ + σψ

cψ. (12)

Crucially, we set σψ to zero when r(u) does not lie within

a 3D bounding box of a dynamic node given the calculated

entry and exit points uin, uout.

Composite ray sampling. Instead of densely sampling

the space [18, 42] or leveraging separate ray sampling

mechanisms per node [35], we use a composite ray sam-

pling strategy illustrated in Fig. 5. We extend the proposal

sampling mechanism introduced in [2] by joint sampling

from a computationally efficient density field σprop and dy-

namic nodes vo at time t. In particular, as in Eq. 12, we

represent σ(r(u), t, s) by a mixture of σprop(r(u), ω
t
s) and

σψ(r(u), ω
t
s, ωo). However, analogous to our rendering

step, we constrain sampling from σψ to [uin, uout]. This

allows us to skip empty space efficiently by distilling the

static density σφ into σprop. At the same time, sparsely

querying σψ when r(u) falls into a dynamic node enables

us to still accurately represent the full, dynamic σ.

Since there are only few samples that fall into dynamic

nodes when performing uniform sampling, the computa-

tional overhead in the first ray sampling iteration is negli-

gible. In the second iteration, we apply inverse transform

sampling given the CDF F (u) = 1− U(u) along ray r and

thus the samples are concentrated at the first surface inter-

section. Hence, only for rays that fall in the line of sight of

PDF

Transmittance 𝑈
𝑣𝑟 𝑣𝑠𝑡, 𝜔𝑠𝑡𝐏𝑠𝑡𝜉𝑜𝑡 𝐓𝑐

𝜓(𝐱, 𝐝, 𝜔𝑠𝑡, 𝜔𝑜)𝜎prop(𝐱, 𝐝, 𝜔𝑠𝑡)
𝑣𝑜, 𝜔𝑜

Figure 5. Composite ray sampling. If a ray intersects with an ob-

ject vo, we sample from both proposal network σprop and radiance

field ψ, and σprop otherwise. We condition each with the latents ω

of the respective nodes. The PDF is a mixture of all node densities

that intersect with the ray. The transmittance U drops at the first

surface intersection (tree) where further samples will concentrate.

an object surface will we sample σψ more than a few times.

In total, we use two ray sampling iterations as in [54].

Space contraction. Following [2, 54], we contract the

unbounded scene space into a fixed-size bounding box, nor-

malizing the scene with bounds computed from the LiDAR

point clouds and the ego-vehicle poses P into a unit cube.

5. Optimization

We optimize the parameters θ of the radiance field fθ with

L =
∑

(r,t,s)∈R

Lrgb(r, t, s) + λdistLdist(r, t, s) + λprop

Lprop(r, t, s) + λdepLdep(r, t, s) + λentrLentr(r, t, s)

(13)

where Ldist and Lprop follow [2]. We supervise σprop with

σφ only to learn effective composite ray sampling.

Photometric loss. We compare the rendered training rays

with their ground truth color

Lrgb(r, t, s) = ||C(r, t, s)− Ĉ(r, t, s)||22. (14)

Expected depth loss. We render the expected depth values

for each ray and compare it with the ground truth depth

Ldep(r, t, s) = ||D(r, t, s)− D̂(r, t, s)||22 (15)

where the expected depth is calculated via integrating the

sampling values D̂(r, t, s) =
∫ uf

un
uU(u)σ(r(u), t, s) du.

Entropy regularization. While static and dynamic scene

parts can overlap, i.e. inside a 3D bounding box b
t
o there

could be a part of the street or sidewalk, their density should

be strictly separated w.r.t. a single sampling location r(u).
We leverage an entropy regularization loss [62] to encour-

age clear separation between entities in φ and ψ

Lentr(r, t, s) =

∫ uf

un

H

(

σψ(r(u), t, s)

σφ(r(u), s) + σψ(r(u), t, s)

)

du

(16)

where H(·) is the Shannon entropy and we use t, s as a re-

placement for the vectors ωts, ωo for ease of notation.
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Method
Residential Downtown Mean

Train time (h)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Nerfacto + Emb. 19.83 0.637 0.562 18.05 0.655 0.625 18.94 0.646 0.594 8.0

Nerfacto + Emb. + Time 20.05 0.641 0.562 18.66 0.656 0.603 19.36 0.654 0.583 13.2

SUDS [58] 21.76 0.659 0.556 19.91 0.665 0.645 20.84 0.662 0.601 54.8

Ours 22.29 0.678 0.523 20.01 0.681 0.586 21.15 0.680 0.555 17.2

Table 1. Novel View Synthesis on Argoverse 2. While the static Nerfacto baseline has the weakest performance, the dynamic variant

Nerfacto + Time improves only marginally upon it. The state-of-the-art method SUDS exhibits stronger view synthesis results but takes

more than 3× longer to train. Our method outperforms all methods across all metrics and exhibits competitive training speed.

Method

KITTI [75%] KITTI [50%] KITTI [25%]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [31] 18.56 0.557 0.554 19.12 0.587 0.497 18.61 0.570 0.510

NeRF + Time 21.01 0.612 0.492 21.34 0.635 0.448 19.55 0.586 0.505

NSG [35] 21.53 0.673 0.254 21.26 0.659 0.266 20.00 0.632 0.281

Nerfacto + Emb. 22.75 0.801 0.156 22.38 0.793 0.160 21.24 0.758 0.178

Nerfacto + Emb. + Time 23.19 0.804 0.155 23.18 0.803 0.155 21.98 0.777 0.172

SUDS [58] 22.77 0.797 0.171 23.12 0.821 0.135 20.76 0.747 0.198

Ours 28.38 0.907 0.052 27.51 0.898 0.055 26.51 0.887 0.060

Method

VKITTI2 [75%] VKITTI2 [50%] VKITTI2 [25%]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [31] 18.67 0.548 0.634 18.58 0.544 0.635 18.17 0.537 0.644

NeRF + Time 19.03 0.574 0.587 18.90 0.565 0.610 18.04 0.545 0.626

NSG [35] 23.41 0.689 0.317 23.23 0.679 0.325 21.29 0.666 0.317

Nerfacto + Emb. 22.15 0.847 0.145 21.88 0.843 0.148 21.28 0.827 0.155

Nerfacto + Emb. + Time 22.11 0.849 0.144 21.78 0.844 0.147 21.00 0.825 0.157

SUDS [58] 23.87 0.846 0.150 23.78 0.851 0.142 22.18 0.829 0.160

Ours 29.73 0.912 0.065 29.19 0.906 0.066 28.29 0.901 0.067

Table 2. Novel View Synthesis on KITTI and VKITTI2. We compare our method to prior art, following the experimental protocol

in [58]. We test the view synthesis performance of the methods with varying fractions of training views and observe that fewer training

views generally result in lower performance. Our method outperforms previous works by a large margin on all settings.

Hierarchical pose optimization. Alongside scene geom-

etry, we optimize edges evtsvr and evovts in our graph, i.e.

we refine ego-vehicle poses Pt
s ∈ SE(3) and object poses

ξto ∈ SE(3). In particular, we optimize for pose residuals

δPt
s ∈ se(3) and δξto ∈ se(2). We constrain the object pose

residual to se(2) since objects are usually upright and move

along the ground plane. Given each residual, we update

the ego-vehicle pose with P̂t
s = expmap(δPt

s)P
t
s and the

object pose with ξ̂to = expmap(δξto)SE(2)→SE(3)ξ
t
o, where

expmap(·) is the exponential map of each lie group.

Compared to naively optimizing camera and object

poses, optimizing the edges along our scene graph has

two key advantages. First, we leverage multi-camera con-

straints, i.e. we keep the camera extrinsics Tc fixed and op-

timize the ego-vehicle poses P
t
s only. This is in contrast

to prior art that generally treats each camera pose as inde-

pendent. Second, the residual δPt
s propagates to the object

poses since they are defined w.r.t. the ego-vehicle coordi-

nate frame instead of the global world frame. Given that

optimizing a radiance field as well as camera and object

poses jointly is notoriously difficult [21], these constraints

are vital to view synthesis quality (see Tab. 6).

6. Experiments

Datasets. To evaluate against competing methods on our

proposed benchmark on Argoverse 2 [61], we hold out ev-

ery 10th sample in uniform time intervals where a sample

corresponds to seven ring-camera images. To compare our

methods against prior art on KITTI [14] and VKITTI2 [4],

we follow the experimental protocol and data splits in [58].

We use the provided 3D bounding box annotations for all

datasets. We provide results using an off-the-shelf 3D

tracker [68] in the supplemental material.

Metrics. Following [58], we measure image synthesis

quality with PSNR, SSIM [59], and LPIPS (AlexNet) [69].

Implementation details. We implement our method in Py-

Torch [39], accelerating the time-consuming ray-node inter-

section with a custom CUDA implementation. We train our

model on a single RTX 3090 GPU for 250,000 steps on Ar-

goverse 2 and 100,000 steps on KITTI and VKITTI2, with

8192 rays per batch. All model parameters are optimized

using Adam [17] with β1 = 0.9, β2 = 0.999, and an ex-

ponential decay learning rate schedule: from 10−5 to 10−6

for pose parameters, and from 10−3 to 10−4 for all others.

In order to counter pose drift, we further apply weight de-

cay with a factor 10−2 to δP and δξ. The static radiance

field φ is trained from scratch, while ψ is initialized from a

semantic prior [6] following [18].

Baselines. We compare our method against prior work in

dynamic outdoor scene representation, i.e. SUDS [58] and

NSG [35]. Further, we include results obtained by augment-

ing Nerfacto [54], the closest state-of-the-art NeRF archi-

tecture to ours, with components designed to handle multi-

capture reconstruction and scene dynamics. In particular,
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SRN [49] NeRF [31] NeRF + Time NSG [35] PNF [18] SUDS [58] Ours

PSNR ↑ 18.83 23.34 24.18 26.66 27.48 28.31 29.36

SSIM ↑ 0.590 0.662 0.677 0.806 0.870 0.876 0.911

Table 3. Image reconstruction on KITTI. We outperform prior

art in image reconstruction, i.e. our method can better fit the train-

ing views. We follow the experimental protocol in [18, 35, 58].

O
u
rs

G
T

Figure 6. Qualitative results on KITTI. With only 25% of views

(approx. 15-20) for training, we can still synthesize sharp and re-

alistic novel views with dynamic objects rendered at high quality.

we consider two variants: “Nerfacto + Emb.”, where we

incorporate our appearance embedding AsF(t) and the ex-

pected depth loss; and “Nerfacto + Emb. + Time”, where

we further include time modeling with 4D hash tables fol-

lowing [38, 63]. For both Nerfacto variants, we set hash

table and MLP sizes to be aligned with our method.

6.1. Comparison to state­of­the­art

We first compare to prior work on our proposed benchmark

in Tab 1. We observe that the static Nerfacto + Emb. has the

weakest performance, which slightly increases by adding

time modeling in Nerfacto + Emb. + Time. Meanwhile, the

current state-of-the-art method SUDS [58] outperforms the

Nerfacto variants, while being much slower to train. Our

method performs the best on all metrics. The improvement

is particularly pronounced in the perceptual quality metrics

(SSIM and LPIPS). The training speed of our method is

competitive to Nerfacto + Emb. + Time and more than 3×
faster than SUDS.

In addition, we show a qualitative comparison in Fig. 7.

We observe major differences in both the rendered images

and depth maps. In particular, all other methods struggle to

recover the dynamic objects in the scene, while our method

produces realistic renderings and accurate depth maps for

both static and dynamic areas. We also observe that, thanks

to our transient geometry embedding GsF(t), we are able

to accurately recover the geometry of the trees and their

leaves which notably are not present in every sequence of

the area that is reconstructed due to seasonal changes. At

the same time, other methods struggle to recover those de-

tails. Specifically, other methods exhibit artifacts in the

depth maps and degraded rendering quality of the trees left

and right of the street in columns five and six of Fig. 7, while

our method produces accurate color and depth renderings.

Next, we evaluate our method on established bench-

marks, namely KITTI and VKITTI2, in Tab. 2 following

the experimental protocol in [58]. In particular, we com-

pare novel view synthesis quality at different fractions of

AsF(t) GsF(t) PSNR ↑ SSIM ↑ LPIPS ↓

- - 19.70 0.653 0.588

✓ - 22.22 0.670 0.546

✓ ✓ 22.49 0.671 0.541

Table 4. Ablation study on graph structure. We show that using

the multi-level graph structure of sequences and objects is crucial,

i.e. omitting sequence vectors ωt

s results in degraded quality since

there is no conditioning on scene-specific appearance. Combining

appearance and transient geometry embeddings performs best.

Sampling Samples per ray PSNR ↑ SSIM ↑ LPIPS ↓ Rays / sec.

Uniform [18] 192 25.72 0.730 0.456 28K

Uniform [18] 1024 25.84 0.734 0.449 4K

Separate [35] 1024+64+(32+64) 26.65 0.762 0.351 2.5K

Ours 1024+64 27.07 0.759 0.362 30K

Table 5. Ray Sampling schemes. Our composite ray sampling is

about 12× more efficient to train than separate ray sampling [35]

with comparable performance. Uniform sampling [18] exhibits

lower performance and is slow when sampled more densely.

Pose optimization PSNR ↑ SSIM ↑ LPIPS ↓

- 22.49 0.671 0.541

Naive 21.28 0.663 0.519

Hierarchical (Ours) 22.29 0.678 0.523

Table 6. Pose optimization. Compared to naively optimizing

camera and object poses, optimizing vehicle and object poses hier-

archically on the edges of our graph benefits view synthesis quality

more consistently, i.e. both in SSIM and LPIPS. Note that PSNR

is very sensitive to pose drift, and thus does not improve.

training views, i.e. testing different levels of view supervi-

sion. We run our method and our baselines and observe

substantially better view synthesis quality for our method,

both compared to our baselines and prior works. All meth-

ods exhibit a similar performance drop when the fraction of

training views decreases. We illustrate the rendering quality

of our method with only 15-20 training views in Fig. 6. Fi-

nally, we also report the results on the task of image recon-

struction, i.e. reconstruction of images seen during training,

following [18, 35, 58] in Tab. 3 on the KITTI dataset. We

significantly outperform previous works in both metrics.

6.2. Ablation studies

We verify our design through ablation studies. We perform

these on the residential area of our benchmark unless other-

wise noted. First, we ablate on the multi-level structure of

our scene graph. In particular, in Tab. 4, we ablate the latent

codes of the sequence nodes, reducing to a representation

similar to [35] and observe that the quality of the synthe-

sized views drops significantly. In contrast, our scene graph

representation achieves better view synthesis quality, i.e.

achieves almost three points higher PSNR. Further, adding

our transient geometry embeddings in addition to sequence-

level appearance embeddings improves the view synthesis

quality. See supplemental material for a qualitative com-

parison. This adds to the fact that through our multi-level

graph structure, we show the ability to modulate car appear-
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Figure 7. Qualitative results on Argoverse 2. While prior art struggles with dynamic actors in the scene, our representation renders both

realistic novel views and plausible depth maps. Further, our method models complex transient geometry subject to, e.g., seasonal changes

such as tree leaves. Note that prior art produces depth artifacts and exhibits degraded view quality in those regions (columns 5 and 6).

ance through sequence appearance in Fig. 4.

In Tab. 5, we compare our composite ray sampling

scheme to uniformly sampled rays as in [18] and rays

sampled separately per node as in [35]. We compare the

schemes under the assumption that all other model param-

eters are equal, implementing them in our method. Ours is

about 12× more efficient to train than densely sampling a

ray in uniform intervals or separately sampling the ray per

node while producing similar results to the latter and be-

ing significantly better than the former. Sparsely sampling

a ray at uniform intervals is similarly fast as our method,

but yields degraded view synthesis quality. Note that we

run this ablation study on only a single sequence of the res-

idential area in our benchmark since densely sampling the

rays and separately sampling the rays for all nodes are pro-

hibitively expensive to train in large-scale urban areas.

Finally, in Tab. 6, we compare our hierarchical pose op-

timization to naive camera pose optimization employed in

previous works [21, 54]. While naive camera pose op-

timization degrades the results significantly in pixel-wise

metrics, our hierarchical pose optimization improves the

SSIM and maintain a comparable PSNR. Meanwhile, our

hierarchical pose optimization exhibits similar gains to

naive pose optimization in terms of the perceptual LPIPS

metric. This shows that our pose optimization mitigates

pose drift while also enabling a more accurate reconstruc-

tion. Pose drift usually causes a misalignment between the

evaluation viewpoint and scene geometry, which degrades

pixel-wise metrics in particular.

7. Conclusion

We introduce a novel multi-level scene graph representation

for radiance field reconstruction in dynamic urban environ-

ments that scales to large geographic areas with more than

ten thousand images from dozens of sequences and hun-

dreds of dynamic objects. We train our representation with

an efficient composite ray sampling and rendering scheme

and introduce latent variables that enable modeling com-

plex phenomena like varying environmental conditions and

transient geometry present across different vehicle captures.

We leverage our representation to refine camera and ob-

ject poses hierarchically using multi-camera constraints. Fi-

nally, we propose a new view synthesis benchmark for dy-

namic urban driving scenarios. Our approach yields sub-

stantially improved results compared to prior art while al-

lowing for flexible de- and recomposition of the scene.
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Davide Scaramuzza, José Neira, Ian Reid, and John J

Leonard. Past, present, and future of simultaneous localiza-

tion and mapping: Toward the robust-perception age. IEEE

Transactions on robotics, 32(6):1309–1332, 2016. 2

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 6

[7] Steve Cunningham and Michael J Bailey. Lessons from

scene graphs: using scene graphs to teach hierarchical mod-

eling. Computers & Graphics, 25(4):703–711, 2001. 2

[8] Nathaniel Fairfield, George A. Kantor, and David S. Wetter-

green. Real-time slam with octree evidence grids for explo-

ration in underwater tunnels. Journal of Field Robotics, 24,

2007. 2

[9] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xi-

aopeng Zhang, Wenyu Liu, Matthias Nießner, and Qi Tian.

Fast dynamic radiance fields with time-aware neural voxels.

In SIGGRAPH Asia 2022 Conference Papers, 2022. 2

[10] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong

Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:

Radiance fields without neural networks. In CVPR, 2022. 1,

2, 3

[11] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.

Dynamic view synthesis from dynamic monocular video. In

CVPR, 2021. 2

[12] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell,

and Angjoo Kanazawa. Monocular dynamic view synthesis:

A reality check. NeurIPS, 2022. 2

[13] Yiming Gao, Yan-Pei Cao, and Ying Shan. Surfelnerf: Neu-

ral surfel radiance fields for online photorealistic reconstruc-

tion of indoor scenes. In CVPR, 2023. 1, 2

[14] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In CVPR, 2012. 2, 6

[15] Michael Kaess. Simultaneous localization and mapping with

infinite planes. 2015 IEEE International Conference on

Robotics and Automation (ICRA), pages 4605–4611, 2015.

2

[16] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,

and George Drettakis. 3d gaussian splatting for real-time

radiance field rendering. ACM Transactions on Graphics

(ToG), 42(4):1–14, 2023. 1, 2, 3

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[18] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Car-

oline Pantofaru, Leonidas J Guibas, Andrea Tagliasacchi,

Frank Dellaert, and Thomas Funkhouser. Panoptic neural

fields: A semantic object-aware neural scene representation.

In CVPR, 2022. 2, 3, 5, 6, 7, 8

[19] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.

Neural scene flow fields for space-time view synthesis of dy-

namic scenes. In CVPR, 2021. 2

[20] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker,

and Noah Snavely. Dynibar: Neural dynamic image-based

rendering. In CVPR, 2023. 2

[21] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-

mon Lucey. Barf: Bundle-adjusting neural radiance fields.

In ICCV, 2021. 6, 8

[22] Jeffrey Yunfan Liu, Yun Chen, Ze Yang, Jingkang Wang,

Sivabalan Manivasagam, and Raquel Urtasun. Real-time

neural rasterization for large scenes. In ICCV, 2023. 2, 3

[23] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. NeurIPS,

2020. 1, 2

[24] Fan Lu, Yan Xu, Guang Chen, Hongsheng Li, Kwan-Yee

Lin, and Changjun Jiang. Urban radiance field representation

with deformable neural mesh primitives. In ICCV, 2023. 2,

3

[25] Yan Lu and Dezhen Song. Visual navigation using hetero-

geneous landmarks and unsupervised geometric constraints.

IEEE Transactions on Robotics, 31:736–749, 2015. 2

[26] Jonathon Luiten, Tobias Fischer, and Bastian Leibe. Track

to reconstruct and reconstruct to track. IEEE Robotics and

Automation Letters, 5(2):1803–1810, 2020. 2

[27] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and

Deva Ramanan. Dynamic 3d gaussians: Tracking

by persistent dynamic view synthesis. arXiv preprint

arXiv:2308.09713, 2023. 2

[28] Alexander Majercik, Cyril Crassin, Peter Shirley, and Mor-

gan McGuire. A ray-box intersection algorithm and efficient

dynamic voxel rendering. Journal of Computer Graphics

Techniques Vol, 7(3):66–81, 2018. 5

[29] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,

Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. In CVPR, 2021. 2

[30] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In CVPR,

2019. 1, 2

[31] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. Communications of the ACM, 65(1):99–106, 2021. 1,

2, 4, 5, 6, 7

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a mul-

tiresolution hash encoding. ACM Transactions on Graphics

(ToG), 41(4):1–15, 2022. 1, 2, 3, 4

21133



[33] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Differentiable volumetric rendering: Learn-

ing implicit 3d representations without 3d supervision. In

CVPR, 2020. 1, 2

[34] OpenStreetMap contributors. Planet dump re-

trieved from https://planet.osm.org . https :

//www.openstreetmap.org, 2017. 3

[35] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and

Felix Heide. Neural scene graphs for dynamic scenes. In

CVPR, 2021. 2, 3, 4, 5, 6, 7, 8

[36] Byeongjun Park and Changick Kim. Point-dynrf: Point-

based dynamic radiance fields from a monocular video,

2023. 2

[37] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T

Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-

Brualla, and Steven M Seitz. Hypernerf: A higher-

dimensional representation for topologically varying neural

radiance fields. arXiv preprint arXiv:2106.13228, 2021. 2

[38] Sungheon Park, Minjung Son, Seokhwan Jang, Young Chun

Ahn, Ji-Yeon Kim, and Nahyup Kang. Temporal interpola-

tion is all you need for dynamic neural radiance fields. In

CVPR, 2023. 2, 7

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zem-

ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library.

NeurIPS, 2019. 6

[40] Marc Pollefeys, David Nistér, Jan-Michael Frahm, Amir Ak-

barzadeh, Philippos Mordohai, Brian Clipp, Chris Engels,

David Gallup, Seon Joo Kim, Paul C. Merrell, C. Salmi,

Sudipta N. Sinha, B. Talton, Liang Wang, Qingxiong Yang,

Henrik Stewénius, Ruigang Yang, Greg Welch, and Herman

Towles. Detailed real-time urban 3d reconstruction from

video. IJCV, 78:143–167, 2007. 2

[41] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and

Francesc Moreno-Noguer. D-nerf: Neural radiance fields for

dynamic scenes. In CVPR, 2021. 2

[42] Konstantinos Rematas, Andrew Liu, Pratul P Srini-

vasan, Jonathan T Barron, Andrea Tagliasacchi, Thomas

Funkhouser, and Vittorio Ferrari. Urban radiance fields. In

CVPR, 2022. 2, 5

[43] Gernot Riegler and Vladlen Koltun. Stable view synthesis.

In CVPR, 2021. 1, 2

[44] Antoni Rosinol, Arjun Gupta, Marcus Abate, Jingnan Shi,

and Luca Carlone. 3d dynamic scene graphs: Actionable

spatial perception with places, objects, and humans. arXiv

preprint arXiv:2002.06289, 2020. 2

[45] Viktor Rudnev, Mohamed Elgharib, William Smith, Lingjie

Liu, Vladislav Golyanik, and Christian Theobalt. Nerf for

outdoor scene relighting. In ECCV, 2022. 2

[46] Renato F Salas-Moreno, Richard A Newcombe, Hauke

Strasdat, Paul HJ Kelly, and Andrew J Davison. Slam++: Si-

multaneous localisation and mapping at the level of objects.

In CVPR, 2013. 2

[47] Aron Schmied, Tobias Fischer, Martin Danelljan, Marc

Pollefeys, and Fisher Yu. R3d3: Dense 3d reconstruction

of dynamic scenes from multiple cameras. In ICCV, 2023.

[48] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk.

Interpolating and approximating implicit surfaces from poly-

gon soup. In ACM SIGGRAPH 2004 Papers, page 896–904,

2004. 2

[49] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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