
Make Me a BNN: A Simple Strategy for Estimating
Bayesian Uncertainty from Pre-trained Models

Gianni Franchi,1, *, † Olivier Laurent,1, 2, * Maxence Leguéry,1 Andrei Bursuc,3

Andrea Pilzer4 & Angela Yao5

U2IS, ENSTA Paris, Institut Polytechnique de Paris,1 Université Paris-Saclay,2

valeo.ai,3 NVIDIA,4 National University of Singapore5

10 15 20 25 30 35
FPR95 (%)

94

95

96

97

98

99

A
U

P
R

(%
)

5h 15h

Standard

Laplace

ABNN

Deep Ensembles

LPBNN

BatchEnsemble

cat

Training dataset

dog   

apple

Test Time

Single model

P(Y=cat)=0.9

ABNN Ensemble

P(Y=Cat)=0.9
P(Y=dog)=0.9

P(Y=apple)=0.9

Figure 1. Benefits of ABNNs. (left) Trade-off between computational cost (training time) and performance (FPR95 score, lower the better)
for various uncertainty quantification techniques on CIFAR-10 with WideResNet-28x10 and ensembles of size 3. The circle area is propor-
tional to the training time. (right) Benefits of using ABNN ensembling at test time. Notably, given an out-of-distribution sample, a simple
DNN may make high-confidence incorrect predictions, whereas ABNN produces uncertain decisions through its diverse predictions.

Abstract

Deep Neural Networks (DNNs) are powerful tools for
various computer vision tasks, yet they often struggle with
reliable uncertainty quantification — a critical requirement
for real-world applications. Bayesian Neural Networks
(BNN) are equipped for uncertainty estimation but can-
not scale to large DNNs where they are highly unstable to
train. To address this challenge, we introduce the Adapt-
able Bayesian Neural Network (ABNN), a simple and scal-
able strategy to seamlessly transform DNNs into BNNs in a
post-hoc manner with minimal computational and training
overheads. ABNN preserves the main predictive properties
of DNNs while enhancing their uncertainty quantification
abilities through simple BNN adaptation layers (attached
to normalization layers) and a few fine-tuning steps on pre-
trained models. We conduct extensive experiments across
multiple datasets for image classification and semantic seg-
mentation tasks, and our results demonstrate that ABNN
achieves state-of-the-art performance without the computa-
tional budget typically associated with ensemble methods.

*equal contribution, † gianni.franchi@ensta-paris.fr

1. Introduction
Deep Neural Networks (DNNs) have emerged as power-
ful tools with a profound impact on various perception
tasks, such as image classification [18, 50], object detec-
tion [32, 70], natural language processing [17, 69, 76],
etc. With this progress, there is growing excitement and
expectation about the potential applications of DNNs
across industries. To meet this end, there is a critical
need to address a fundamental challenge: improving DNN
reliability by quantifying the inherent uncertainty in their
predictions [36, 37, 83]. Deploying DNNs in real-world
applications, particularly in safety-critical domains such as
autonomous driving, medical diagnoses, industrial visual
inspection, etc., requires a comprehensive understanding of
their limitations and vulnerabilities beyond their raw predic-
tive accuracy, often considered a main performance metric.
By quantifying the uncertainty within these models with
millions of parameters and non-trivial inner-working [1, 94]
and failure modes [33, 66] in front of the many different
long-tail scenarios [7, 56], we can make informed decisions
about when and how to rely on their predictions.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12194



In deep learning, uncertainty estimation has been
traditionally addressed under Bayesian approaches drawing
inspiration from findings in Bayesian Neural Networks
(BNNs) [5, 58, 64, 86] that stand on solid theoretical
grounds and properties [44, 62, 90]. BNNs estimate the pos-
terior distribution of the model parameters given the train-
ing dataset. At runtime, ensembles can be sampled from
this distribution, and their predictions can be averaged for
reliable decisions. BNNs promise improved predictions and
reliable uncertainty estimates with intuitive decomposition
of the uncertainty sources [16, 41]. However, although they
are easy to formulate, BNNs are notoriously difficult to train
over large DNNs [20, 67], in particular for complex com-
puter vision tasks, due to training instability and computa-
tional inefficiency as they are typically trained through vari-
ational inference [45]. This limitation of BNNs has inspired
two major lines of research toward scalable uncertainty es-
timation: ensembles and last-layer uncertainty approaches.

Deep Ensembles [51] emerge as a simple and highly
effective alternative to BNNs for uncertainty estimation
on large DNNs. Deep Ensembles are trivial to train by
essentially instantiating the same training procedure over
different weight initializations of the same network and
have been shown to preserve many of the properties of
BNNs in terms of predictions diversity [22, 90]. This is a
beneficial property for out-of-distribution (OOD) general-
ization [63]. However, their high computational cost (dur-
ing both training and inference) makes them inapplicable to
many practical applications with computational constraints.
In the last few years, multiple computationally efficient
alternatives have emerged aiming to reduce training cost
during training and/or inference [13, 23, 25, 26, 30, 59, 87].
However, these methods propose specific network archi-
tectures and non-trivial trade-offs in computational cost,
accuracy, and predictive uncertainty quality.

Last-layer uncertainty approaches aim for BNNs with
fewer stochastic weights to produce ensembles or uncer-
tainty estimates [6, 9, 12, 48, 60]. These methods leverage
popular DNN architectures [31] to which they attach a
stochastic layer and train all parameters for a full training
cycle. While training stability is improved compared to
standard BNNs, joint optimization of deterministic and
stochastic parameters requires careful tuning. Daxberger et
al. [12] propose training the last layer separately in a post-
hoc manner effectively leveraging Laplace approximation
for optimization [58, 72, 81]. Decoupling the optimization
of the encoder from the uncertainty layer enables the use of
the typical training recipes for the encoder or simply lever-
aging off-the-shelf pre-trained networks. The limitation of
last-layer methods is related to the access to only high-level
features for producing uncertainty estimates, whereas
signals of distribution shift or small anomaly patterns (e.g.,
in semantic segmentation) can be found mostly in low-level

features earlier in the network. Indeed, strong uncertainty
estimation methods leverage information from multiple
layers of the networks [13, 25, 55].

In this work, we aim for scalable and effective un-
certainty estimation without sophisticated optimization
schemes and potential training instability and without
compromising predictive performance. We propose a
post-hoc strategy that starts from a pre-trained DNN and
transforms it into a BNN with a simple plug-in module at-
tached to the normalization layers and only a few epochs of
fine-tuning. We show that this strategy, dubbed Adaptable-
BNN (ABNN), can estimate the posterior distribution
around the local minimum of the pre-trained model in a
resource-efficient manner while still achieving competitive
uncertainty estimates with diversity. Furthermore, ABNN
allows for sequential training of multiple BNNs starting
from the same checkpoint, thus modeling various modes
within the true posterior distribution.

To summarize, our contributions are: (1) We propose
ABNN, a simple strategy to transform a pre-trained DNN
into a BNN with uncertainty estimation capabilities. ABNN
is computationally efficient and compatible with multiple
DNN architectures (ConvNets: ResNet-50, WideResnet28-
10; ViTs), provided they are equipped with normalization
layers. (2) We observe that the variance of the gradient for
ABNN’s parameters is lower compared to that of a classic
BNN, resulting in a more stable backpropagation. (3) Ex-
tensive experiments validate that ABNN, although simple
and computationally frugal, achieves competitive perfor-
mance in terms of accuracy and uncertainty estimation over
multiple datasets and tasks: image classification (CIFAR-
10, CIFAR-100 [49], ImageNet [15]) and semantic segmen-
tation (StreetHazards, BDD-Anomaly [35], MUAD [24]) in
both in- and out-of-distribution settings. We train our mod-
els using TorchUncertainty (https://github.com/ENSTA-
U2IS-AI/torch-uncertainty) and make all our configuration
files and supplementary scripts available on GitHub.

2. Related work
Epistemic uncertainty and Bayesian posterior. Tackling
epistemic uncertainty estimation [39] – the uncertainty on
the model itself – is essential to improve the reliability of
DNNs [41]. However, obtaining satisfying approximations
of this uncertainty remains a challenge as it requires a
scalable estimation of the extremely high dimensional dis-
tribution of the weights, the posterior. Our work presents
ABNN, a significantly more scalable method compared to
the BNNs [28] that predominantly shape the landscape of
epistemic uncertainty estimations [27].
Bayesian Neural Networks and Ensembles. BNNs [82]
formulate probabilistic predictions by both introducing
explicit and controllable prior knowledge on the network
weights [46, 64] and estimating the posterior. While

12195

https://github.com/ENSTA-U2IS-AI/torch-uncertainty
https://github.com/ENSTA-U2IS-AI/torch-uncertainty
https://github.com/ENSTA-U2IS-AI/ABNN-configs


mathematically formulating the posterior distribution
is possible [90], its computation for modern models is
intractable. This need for scalability leads to approximation
techniques that include variational inference BNNs [4, 5],
which fit simpler distributions to the posterior (diagonal
Gaussian for the former). Many other approximation meth-
ods have been proposed, like efficient probabilistic back-
propagation [38], Monte-Carlo Dropout [26] that model the
posterior as a mixture of Diracs and Laplace methods that
estimate the posterior thanks to the local curvature of the
loss [58, 72, 74, 81]. However, deep ensembles [29, 51],
the most successful solution is simpler. It consists of
simply averaging the predictions of several independently
trained models. This method is powerful as it improves the
reliability and the quality of the predictions, albeit costly
in training and inference. Many approximate methods
stepped into the breach and proposed to reduce the number
of parameters, the training time, or the number of forward
passes [23, 25, 30, 53, 87, 91]. The proposed method is in
this line of scalability and computational efficiency.
Post-hoc uncertainty quantification. In today’s context
of computer vision, with ever-increasing datasets [47, 75],
model sizes [14], and inference constraints, post-hoc
methods could be a solution to benefit from both the power
of foundation models [42, 73, 96] and uncertainty quantifi-
cation. The Laplace method reigns among these post-hoc
uncertainty quantification methods, especially with its
last-layer approximations [72] that make them even more
scalable. However, even with the coarse approximation of
the posterior achieved by Kronecker-factored Laplace [74],
it is not always very efficient with modern datasets. We
propose a straightforward and effective method that works
with pre-trained models.

3. Background
We start by introducing our formalism and a brief overview
of the Bayesian posterior and BNNs for uncertainty
quantification.

3.1. Preliminaries

Notations. Let us denote D = {(xi, yi)}Ni=1 the training
set containing N samples and labels drawn from a joint
distribution P(X,Y ). The input xi ∈ Rd is processed
by a neural network fω , of parameters ω, that outputs
classification predictions ŷi = fω(xi) ∈ R.
From MLE to MAP. In our context, P (Y =yi | X=xi,ω)
is a categorical distribution over the classes within the range
of Y . We omit the random variable notation in the fol-
lowing for clarity. The log-likelihood of this distribution
typically corresponds to the cross-entropy loss, which
practitioners often minimize with stochastic gradient
descent to obtain a maximum likelihood estimate (MLE):
LMLE(ω) = −∑(xi,yi)∈D logP (yi | xi,ω).

Going further, the Bayesian framework allows us to
incorporate prior knowledge regarding ω denoted as the
distribution P (ω) that complements the likelihood and
leads to the research of the maximum a posteriori (MAP),
via the minimization of the following loss function:

LMAP(ω) = −
∑

(xi,yi)∈D

logP (yi | xi,ω)− logP (ω). (1)

The normal prior is the standard choice for P (ω), leading
to the omnipresent L2 weight regularization.

3.2. Bayesian Posterior and BNNs

Typically, DNNs retain a single set of weights ωMAP at the
end of the training to use at inference. As such, we de facto
consider this model as an oracle. In contrast, BNNs attempt
to model the posterior distribution P (ω | D) to take all
possible models into account. The prediction y for a new
sample x is computed as the expected outcome from an
infinite ensemble, including all possible weights sampled
from the posterior distribution:

P (y | x,D) =

∫
ω∈Ω

P (y | x,ω)P (ω | D)dω. (2)

However, in practice, this Bayes ensemble approach is
intractable since the integral Eq. (2) is computed over the
entire parameter space Ω. Practitioners [51] approximate
this integral by averaging predictions derived from a finite
set {ω1, . . .ωM} of M weight configurations sampled
from the posterior distribution:

P (y | x,D) ≈ 1

M

M∑
m=1

P (y | x,ωm). (3)

Let us start with a simple Multi-Layer Perceptron (MLP)
with two hidden layers, without loss of generality. For
a given input data point x, the prediction of the DNN is
defined as follows:

h1 = W (1)x

u1 = norm(h1, β1, γ1) =
h1 − µ̂1

σ̂1
× γ1 + β1

a1 = a(u1)

u2 = norm
(
W (2)a1, β2, γ2

)
, and a2 = a(u2)

h3 = W (3)a2, and P (y | x,ω) = soft(h3),

(4)

where h1 and h2 are the preactivation maps and a(·) the
activation function. In Eq. (4), soft(·) is the softmax, a1
and a2 are the hidden activations, and {W (j)}j∈{0,1,2}
correspond to the weights of the linear layers. The operator
norm(·, βj , γj), of trainable parameters βj and γj , can

12196



refer to any batch, layer, or instance normalization (BN,
LN, IN). Finally, norm comes with its empirical mean µ̂uj

and variance σ̂uj
. We omit the small value often added for

computational stability.
In the current form, we can leverage this architecture to

learn different tasks. However, modeling the uncertainty
of the predictions beyond the use of softmax scores as
confidence proxies is non-trivial. BNNs [5] are one solution
to improve uncertainty estimation. Generally, they hypoth-
esize the independence of the layers and sample from the
resulting posterior estimate. For the j-th layer, this yields:

uj = norm(W (j)x, βj , γj), W (j) ∼ P (W (j)|D),

aj = a(uj).
(5)

As such, BNNs approximate the marginalization (2) of the
parameters – an extremely complex task – by generating
multiple predictions. Variational inference BNNs [5], the
most scalable version among these methods, base their
estimation on the ”reparametrization trick”, here at layer j:

uj = norm
([

W (j)
µ + ϵjW

(j)
σ

]
hj−1, βj , γj

)
, and

aj = a(uj),
(6)

where the matrices W
(j)
µ and W

(j)
σ denote the mean and

standard deviation of the posterior distribution of layer j,
and ϵj ∼ N (0,1) is a zero-mean unit-diagonal Gaussian
vector or matrix. This method enables learning an estimate
of a diagonal posterior distribution at the cost of tripling
the number of parameters compared to a standard network.

4. ABNN

4.1. Converting DNNs into BNNs

We base our post-hoc Bayesian strategy on pre-trained
DNNs that incorporate normalization layers such as batch
[43], layer [3], or instance normalization [84]. This is not
a limiting factor as most modern architectures include one
type of these layers [18, 31, 57]. Subsequently, we modify
these normalization layers by introducing a Gaussian
perturbation, incorporating our novel Bayesian Normaliza-
tion Layer (BNL). This adaptation aims to transform the
initially deterministic DNN into a BNN. The introduction
of the BNL allows us to efficiently leverage pre-trained
models, facilitating the conversion to a BNN with minimal
alterations. We propose replacing the normalization layers
with our novel Bayesian normalization layers (BNL) that
incorporate Gaussian noise to transform the deterministic
DNNs into BNNs easily. BNLs unlock the power of pre-
trained models for uncertainty-aware Bayesian networks.

Formally, our BNN is defined as:

uj = BNL
(
W (j)hj−1

)
, and

aj = a(uj) with

BNL(hj) =
hj − µ̂j

σ̂j
× γj(1 + ϵj) + βj .

(7)

The empirical mean and variance are still represented by
µ̂uj

and σ̂uj
and computed through batch, layer or instance

normalization. In the equation, ϵj ∼ N (0,1) signifies a
sample drawn from a Normal distribution, and γj and βj

are the two learnable vectors of the j-th layer.
The DNN being transformed into a BNN, we exclusively

retrain the parameters γj and βj for a limited number of
epochs using the loss introduced in Section 4.2. To further
improve its reliability and generalization properties [90],
we do not train a singular ABNN, but rather multiple copies
of ABNNs, as explained in section 4.2, resulting in a finite
set ω1, . . .ωM of M weight configurations. We discuss the
benefits of this multi-modality in Appendix A.2.

During inference, for each sample from ABNN ωm, we
augment the number of samples by independently sampling
multiple ϵj ∼ N (0,1). With ϵ the concatenation of all
ϵj , and {ϵl}l∈[1,L] the set of ϵs, each individual ABNN
sample is expressed as P (y | x, ω, ϵ). During inference,
the prediction y for a new sample x is computed as the
expected outcome from a finite ensemble, encompassing
all the weights sampled from the posterior distribution:

P (y | x,D) ≈ 1

ML

L∑
l=1

M∑
m=1

P (y | x,ωm, ϵl). (8)

We study the effects of L and M in Section H.

4.2. ABNN training loss

The multimodality [22, 44, 54] of the posterior distribution
of DNNs is a challenge to any attempt to perform variational
inference with on a mono-modal distribution. Wilson and
Izmailov [90] have proposed to tackle this issue by training
multiple BNNs. However, such approaches inherit the in-
stability of classical BNNs and may struggle to capture dif-
ferent modes accurately. ABNN encounters a similar chal-
lenge, requiring safeguards against collapsing into the same
local minima during post-training. To mitigate this prob-
lem, we introduce a small perturbation to the loss function,
preventing collapse and encouraging diversity into the train-
ing process. This perturbation involves a modification of the
class weights within the cross-entropy loss, now defined as:

E(ω) = −
∑

(xi,yi)∈D

ηi logP (yi | xi,ω). (9)

In this formula, ηi represents the class-dependent random
weight we initialize at the beginning of training. Typically,

12197



1. Train a single model 3. Train ABNN2. Transform weights with ABNN

Figure 2. Illustration of the training process for the ABNN. The procedure begins with training a single DNN ωMAP, followed by
architectural adjustments to transform it into an ABNN. The final step involves fine-tuning the ABNN model.

it can be set to zero or one to amplify the effect of certain
classes. In contrast to classical variational BNNs [5] that
optimize the evidence lower-bound loss, ABNN maximizes
the MAP. The optimization involves the following loss:

L(ω) = LMAP(ω) + E(ω). (10)

Drawing inspiration from Fort et al. [22], we introduce
class-dependent random weight to enhance ensemble
diversity. For ABNN ensembles, we introduce a bias
through E , aimed at augmenting diversity while minimally
impacting BNN predictions. Specifically, we randomly
assign a portion of classes to be intentionally prioritized
(i.e., akin to creating a form of experts), and amplify the
loss associated with these classes by a factor of 5 or 7.

4.3. ABNN training procedure

ABNN is trained through a post-hoc process designed to
leverage the strength of Bayesian concepts, improving
the uncertainty prediction of DNNs. The training pseudo
code for ABNN – in Alg. 1 – details the transformation of
conventional DNNs into ensembles of Bayesian models.

We start from a pre-trained neural network (Alg. 1, line
1) and introduce the Bayesian normalization layers, replac-
ing the old batch, instance, or layer normalization layers
of the former DNN (Alg. 1 lines 2 to 10). This operation
transforms the conventional deterministic network into a
BNN to help quantify uncertainty. We initialize the weights
of the new layers with the values of the original layers.

Then, we fine-tune the modified network to capture bet-
ter the inherent uncertainty (Alg. 1 lines 12 to 24). The full
process is described in Figure 4, providing a clear overview
of the modifications made to enable Bayesian modeling.
To improve the posterior estimation of our ABNN models,
we fine-tune multiple instances of the normalization layers
(typically 3 to 4). This ensemble approach provides
robustness and contributes to a more reliable estimation of
the posterior distribution. Training multiple ABNNs, each

starting from the same checkpoint, enhances our ability
to capture diverse modes of the true posterior, thereby
improving the overall uncertainty quantification.

Algorithm 1 ABNN training procedure

1: fωMAP , : pre-trained network ,λ : learning rate,
nb epoch : number of epoch

2: (Step 2: adapt the DNN to a DNN)
3: # Build a list of all the normalisation layers
4: normalisation=[Batch normalisation, Layer normalisation,

Instance normalisation]
5: for layer ∈ fωMAP .layers : to do
6: begin
7: (Transform all Normalization Layers)
8: if (layer ∈ normalisation) : then
9: replace layer by BNL

10: end
11: (Step 3: train ABNN)
12: t=0
13: for (epoch) ∈ nb epoch : to do
14: begin
15: for (x, y) ∈ trainloader : to do
16: begin
17: (Forward pass)
18: ∀xi ∈ B(t) calculate fω(t)(xi)
19: evaluate the loss L(ω(t), B(t))
20: ω(t)← ω(t− 1)− λ∇Lω(t)

21: (Step update)
22: t← t+ 1
23: end
24: end

4.4. Theoretical analysis

Our approach raises several theoretical questions. In the
supplementary material – as detailed in Section A.1 – we
show that ABNN exhibits greater stability than classical
BNNs. Indeed, in variational inference BNNs, the gradients
vary greatly: ϵ, crucial for the Bayesian interpretation,

12198



CIFAR-10 CIFAR-100
Method Acc ↑ NLL ↓ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓ Acc ↑ NLL ↓ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓ Time (h) ↓

R
es

N
et

-5
0

Single Model 95.1 0.211 3.1 95.2 91.9 23.6 78.3 0.905 8.9 87.4 77.9 57.6 1.7
BatchEnsemble 93.9 0.255 3.3 94.7 91.3 20.1 66.6 1.788 18.2 85.2 74.6 60.6 17.2
MIMO (ρ = 1) 95.4 0.197 3.0 95.1 90.8 26.0 79.0 0.876 7.9 87.5 76.9 64.7 6.7
LPBNN 94.3 0.231 2.3 92.7 86.7 54.9 78.5 1.02 11.3 88.2 77.8 73.5 17.2
MCDropout 94.4 0.190 1.9 93.1 86.9 43.8 76.9 0.858 3.9 87.8 77.1 64.1 1.7
MCBN 95.0 0.168 0.7 95.7 92.6 20.1 78.4 0.83 2.8 86.8 77.5 57.7 1.7
Deep Ensembles 96.0 0.136 0.8 97.0 94.7 15.5 80.9 0.713 2.6 89.2 80.8 52.5 6.8
Laplace 95.3 0.160 1.3 96.0 93.3 18.8 78.2 0.99 14.2 89.2 81.0 51.8 1.7
ABNN 95.0 0.160 1.0 96.5 93.9 17.5 77.8 0.828 4.5 90.0 82.0 51.3 2.0

W
id

eR
es

N
et

-2
8×

10

Single Model 95.4 0.200 2.9 96.1 93.2 20.4 80.3 0.963 15.6 81.0 64.2 80.1 4.2
BatchEnsemble 95.6 0.206 2.7 95.5 92.5 22.1 82.3 0.835 13.0 88.1 78.2 69.8 25.6
MIMO (ρ = 1) 94.7 0.234 3.4 94.9 90.6 30.9 80.2 0.822 2.8 84.9 72.0 72.8 12.6
LPBNN 95.1 0.249 2.9 95.4 91.2 29.5 79.7 0.831 7.0 79.0 70.1 71.4 23.3
MCDropout 95.7 0.138 0.6 96.2 93.5 12.8 79.2 0.758 1.2 89.4 80.1 58.6 4.2
MCBN 95.5 0.133 0.5 96.5 94.2 14.6 80.4 0.749 1.4 80.4 67.8 63.1 4.2
Deep Ensembles 95.8 0.143 1.3 97.8 96.0 12.5 82.5 0.903 22.9 81.6 67.9 71.3 16.6
Laplace 95.6 0.151 0.8 95.0 90.7 31.9 80.1 0.942 16.0 83.4 72.1 59.9 4.2
ABNN 95.3 0.146 1.1 96.9 94.6 16.3 80.4 0.734 3.4 88.9 78.7 58.0 5.0

Table 1. Performance comparison on CIFAR-10/100 using ResNet-50 and WideResNet28×10 (averaged over multiple runs). All
ensembles have M = 3 subnetworks, and L = 3 for ABNN. We highlight the best performances in bold. Time is the training time in
hours on a single RTX 3090, similar for CIFAR-10 and CIFAR-100.

introduces instabilities, perturbating the training. ABNN
reduces this burden by applying this term on the latent space
rather than the weights, thereby reducing the variance of the
gradients, as empirically demonstrated in Appendix A.1.

Another question concerns the theoretical need to
modify the loss and add the second term E . We show in
Appendix A.2 that it is theoretically sound in the case of
a convex problem. Given that DNN optimization is inher-
ently non-convex, adding this term may be theoretically
debatable. However, a sensitivity analysis of this term –
developed in Appendix D – shows empirical benefits for
performance and uncertainty quantification

Finally, we discuss the challenge of estimating the
equivalent BNNs to our networks in Appendix A.3. De-
spite the theoretical value this information could provide
concerning the posterior, it remains unused in practice.
We solely sample the ϵ and average over multiple training
terms to generate robust predictions during inference.

5. Experiments & Results

We test ABNN on image classification and semantic
segmentation tasks. For each task, dataset, and architec-
ture, we report metrics relative to the performance of the
models but also measure their uncertainty quantification
abilities. All our models are implemented in PyTorch and
lightning and trained on a single Nvidia RTX 3090 using
the TorchUncertainty framework. Appendix G details
the hyper-parameters used in our experiments across the
different architectures and datasets.

5.1. Image classification

Datasets. We demonstrate the efficiency of ABNN
on different datasets and backbones. We start with
CIFAR-10 and CIFAR-100 [49] with ResNet-50 [31] and
WideResNet28-10 [95]. We then report results for ABNN
on ImageNet [15] with ResNet-50 and ViT [18]. In the
former case, we train all models from scratch. In the latter,
we start from torchvision pre-trained models [68].
Baselines. We compare ABNN against Deep Ensem-
bles [51] and four other ensembles: BatchEnsemble [87],
MIMO [30], Masksembles [19], and Laplace [12]. Addi-
tionally, we include MCBN [80], and MCDropout [26].
Metrics. We evaluate the performance on classifica-
tion tasks with the accuracy (Acc) and the Negative
Log-Likelihood (NLL). We complete these metrics with
the expected top-label calibration error (ECE) [61] and
measure the quality of the OOD detection using the Areas
Under the Precision/Recall curve (AUPR) and the operating
Curve (AUC), as well as the False Positive Rate at 95%
recall (FPR95) similarly to Hendrycks et al. [34]. We
express all metrics in %.
OOD detection datasets. For OOD detection tasks on
CIFAR-10 and CIFAR-100, we use the SVHN dataset [65]
as the out-of-distribution dataset and transform the initial
problem into binary classification between in-distribution
and out-of-distribution data using the maximum soft-
max probability as the criterion. For ImageNet, we use
Describable Texture [85] as the out-of-distribution dataset.
Results. Tables 1 and 2 present the performance of ABNN
across various architectures for CIFAR-10/100 and Ima-
geNet, respectively. Notably, ABNN consistently surpasses

12199

https://torch-uncertainty.github.io/


Method Acc ↑ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓

R
es

N
et

-5
0

Single Model 77.8 12.1 18.0 80.9 68.6
BatchEnsemble 75.9 3.5 20.2 81.6 66.5
MIMO (ρ = 1) 77.6 14.7 18.4 81.6 66.8
Deep Ensembles 79.2 23.3 19.6 83.4 62.1
Laplace 80.4 44.3 13.9 75.9 82.8
ABNN 79.5 9.65 17.8 82.0 65.2

V
iT

Single Model 80.0 5.2 19.5 84.1 58.5
Deep Ensembles 81.7 13.5 21.7 85.5 60.3
Laplace 81.0 10.8 22.1 83.1 70.6
ABNN 80.6 4.32 21.7 85.4 55.1

Table 2. Performance on ImageNet using ResNet-50 and ViT
concerning in distribution and out-of-distribution metrics.

Laplace approximation and single-model baselines on most
datasets and architectures. Furthermore, ABNN exhibits
competitive performance compared to Deep Ensembles,
achieving equivalent results with a similar training time
to a single model. These findings underscore ABNN as a
powerful and efficient method, demonstrating superior un-
certainty quantification capabilities in image classification
tasks while being easier to train.

5.2. Semantic segmentation

For the semantic segmentation part, we compare ABNN
against MCP [34], Deep Ensembles [51], MC Dropout
[26], TRADI [23], MIMO [30] and LP-BNN [25], on
StreetHazards [35], BDD-Anomaly [35], and MUAD [24]
that allows comparison on diverse uncertainty quantifica-
tion aspects of semantic segmentation.
StreetHazards [35]. StreetHazards is a large-scale syn-
thetic dataset comprising various images depicting street
scenes. The dataset consists of 5, 125 images for training
and an additional 1, 500 images for testing. The training
dataset has pixel-wise annotations available for 13 different
classes. The test dataset is designed with 13 classes seen
during training and an additional 250 out-of-distribution
(OOD) classes that were not part of the training set. This
diverse composition allows for assessing the algorithm’s
robustness in the face of various potential scenarios. In our
experiments, we employed DeepLabv3+ with a ResNet-50
encoder, as introduced by Chen et al. [8].
BDD-Anomaly [35]. BDD-Anomaly, a subset of the
BDD100K dataset [92], comprises 6, 688 street scenes
for training and an additional 361 for the test set. Within
the training set, pixel-level annotations are available
for 17 distinct classes. The test dataset consists of the
same 17 classes seen during training and introduces 2
out-of-distribution (OOD) classes: motorcycle and train.
In our experimental setup, we adopted DeepLabv3+[8]
and followed the experimental protocol outlined in[35].
Similar to previous experiments, we utilized a ResNet-50
encoder [31] for the neural network architecture.

Method mIoU ↑ AUPR ↑ AUC ↑ FPR95 ↓ ECE ↓

St
re

et
H

az
ar

ds

Single Model 53.90 6.91 86.60 35.74 6.52
TRADI 52.46 6.93 87.39 38.26 6.33
Deep Ensembles 55.59 8.32 87.94 30.29 5.33
MIMO 55.44 6.90 87.38 32.66 5.57
BatchEnsemble 56.16 7.59 88.17 32.85 6.09
LP-BNN 54.50 7.18 88.33 32.61 5.20
ABNN 53.82 7.85 88.39 32.02 6.09

B
D

D
-A

no
m

al
y

Single Model 47.63 4.50 85.15 28.78 17.68
TRADI 44.26 4.54 84.80 36.87 16.61
Deep Ensembles 51.07 5.24 84.80 28.55 14.19
MIMO 47.20 4.32 84.38 35.24 16.33
BatchEnsemble 48.09 4.49 84.27 30.17 16.90
LP-BNN 49.01 4.52 85.32 29.47 17.16
ABNN 48.76 5.98 85.74 29.01 14.03

M
U

A
D

Single Model 57.32 26.04 86.24 39.43 6.07
MC-Dropout 55.62 22.25 84.39 45.75 6.45
Deep Ensembles 58.29 28.02 87.10 37.60 5.88
BatchEnsemble 57.10 25.70 86.90 38.81 6.01
MIMO 57.10 24.18 86.62 34.80 5.81
ABNN 61.96 24.37 91.55 21.68 5.58

Table 3. Comparative results on the OOD task for semantic
segmentation. We run all methods in similar settings using
publicly available code for related methods and average over three
seeds. The architecture is a DeepLabv3+ based on ResNet50.

MUAD [24]. MUAD consists of 3,420 images in the
training set and 492 in the validation set. The test set
comprises 6,501 images, distributed across various subsets:
551 in the normal set, 102 in the normal set with no
shadow, and 1,668 in the out-of-distribution (OOD) set.
All these sets cover both day and night conditions, with
a distribution of 2/3 day images and 1/3 night images.
MUAD encompasses 21 classes, with the initial 19 classes
mirroring those found in CityScapes [10]. Additionally,
three classes are introduced to represent object anomalies
and animals, adding diversity to the dataset. In our first
experiment, we employed a DeepLabV3+ [8] network with
a ResNet50 encoder[31] for training on MUAD.
Results. Table 3 presents the results of ABNN, compared
to various baselines on the three datasets. ABNN performs
competitively with Deep Ensembles, a technique known
for accurately quantifying uncertainty. Moreover, our ap-
proach exhibits faster training times, making it potentially
more appealing for practitioners. We have not included a
comparison with Laplace approximation [12], as it is not
commonly applied to semantic segmentation, and adapting
DNNs for Laplace Approximation is not straightforward.

6. Discussions

6.1. General discussions

We develop several discussions in the supplementary ma-
terials. First, we explore the theoretical aspects, including
the stability of the DNNs in Appendix A.1, the importance

12200



of multi-mode in Section A.2, and the relationship with
classical BNNs in Appendix A.3. We experiment on the
transfer of ViT-B-16 from Imagenet 21k [71] to CIFAR-100
which highlights the potential of ABNN in transfer learning,
achieving an accuracy of 92.18%. Additionally, we perform
several ablation studies, notably on the impact of discarding
multi-mode or the loss term E (defined in Section 4.2) in
Appendix D. We show that discarding E reduces the perfor-
mance while incorporating the multi-mode improves uncer-
tainty quantification. Moreover, in Section B, we analyze
the variance of the gradients, confirming that our technique
exhibits lower gradients than BNNs, making it more stable
and easier to train. Finally, Appendix C delves into the
variability of our method under different scenarios, explor-
ing cases where we initiate ABNN from a single model and
optimize from various initial checkpoints. Although our
technique inherits the instabilities of the DNN, we observe
that the standard variation is five times larger than that of the
single model, indicating less stability than a standard DNN.

6.2. Diversity of ABNN

Concerning diversity, we train ABNN on CIFAR-10 using
a ResNet-50 architecture Specifically, we optimize a
ResNet for 200 epochs and then fine-tune three ABNNs,
starting from the optimal checkpoint. Additionally, we
train two other ResNet-50s on CIFAR-10 to form proper
Deep Ensembles. As depicted in Figure 3, ABNN does not
exhibit the same level of diversity as the Deep Ensembles.
However, it is intriguing that even when initiated from a
single DNN, ABNN manages to depart from its local mini-
mum and explore different modes. This concept of different
modes is further supported by Section E, where we analyze
the mutual information of various ABNN checkpoints.

7. Conclusion
Our approach, ABNN, introduces a novel perspective
to uncertainty quantification. Leveraging the strengths
of pre-trained deterministic models, ABNN strategically
transforms them into Bayesian networks with minimal
modifications, offering enhanced stability and efficient pos-
terior exploration. Through comprehensive experimental
analyses, we demonstrate the effectiveness of ABNN both
in predictive performance and uncertainty quantification,
showcasing its potential applications in diverse scenarios.

The multi-mode characteristic of ABNN, coupled with
a carefully designed loss function, not only addresses the
challenge of the multi-modality of the posterior but also
provides a stable and diverse ensemble of models. Our
empirical evaluations on various datasets and architectures
highlight the superiority of ABNN over traditional BNNs
and post-hoc uncertainty quantification methods such as the
Laplace approximation and showcase its competitiveness
compared to state-of-the-art such as Deep Ensembles.

−40 −20 0 20 40
T-SNE x-axis

−20

−10

0

10

20

T
-S

N
E

y-
ax

is

ABNN α

ABNN β

ABNN γ

(a) ABNN

−10 −5 0 5 10
T-SNE x-axis

−10

−5

0

5

10

T
-S

N
E

y-
ax

is

DNN α

DNN β

DNN γ

(b) Deep Ensembles

Figure 3. Comparison of the diversities of ABNN and Deep
Ensembles [51]. T-SNE plot of the 20 principal components of
the logits from 384 images for ABNN (a) and Deep Ensembles (b).

Moreover, ABNN exhibits promising results in trans-
fer learning scenarios, underscoring its potential for
broader applications. The insights gained from theoretical
discussions and ablation studies further elucidate the
underlying mechanisms of ABNN, contributing to a deeper
understanding of its behavior and performance.

In summary, ABNN emerges as a robust and flexible
solution for uncertainty-aware deep learning, offering
a pragmatic bridge between deterministic and Bayesian
paradigms. Its simplicity in implementation, coupled with
superior performance and stability, positions ABNN as a
valuable tool in the contemporary landscape of machine
learning and Bayesian modeling.

Acknowledgments. This work was partially supported
by ELSA - European Lighthouse on Secure and Safe AI
funded by the European Union under grant agreement No.
101070617. This work was performed using HPC resources
from GENCI-IDRIS (Grant 2023-[AD011011970R3]).

12201



References
[1] Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier

Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,
Salvador Garcı́a, Sergio Gil-López, Daniel Molina, Richard
Benjamins, et al. Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward
responsible ai. IF, 2020. 1

[2] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov,
and Dmitry Vetrov. Pitfalls of in-domain uncertainty estima-
tion and ensembling in deep learning. In ICLR, 2019. 15

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. In NeurIPSW, 2016. 4

[4] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Vari-
ational inference: A review for statisticians. JASA, 2017. 3

[5] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural network.
In ICML, 2015. 2, 3, 4, 5, 12

[6] Nicolas Brosse, Carlos Riquelme, Alice Martin, Sylvain
Gelly, and Éric Moulines. On last-layer algorithms for
classification: Decoupling representation from uncertainty
estimation. arXiv preprint arXiv:2001.08049, 2020. 2

[7] Robin Chan, Krzysztof Lis, Svenja Uhlemeyer, Hermann
Blum, Sina Honari, Roland Siegwart, Pascal Fua, Mathieu
Salzmann, and Matthias Rottmann. Segmentmeifyoucan: A
benchmark for anomaly segmentation. In NeurIPS, 2021. 1

[8] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 7

[9] Charles Corbière, Marc Lafon, Nicolas Thome, Matthieu
Cord, and Patrick Pérez. Beyond first-order uncertainty es-
timation with evidential models for open-world recognition.
In ICMLW, 2021. 2

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 7

[11] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPR, 2020. 16

[12] Erik Daxberger, Agustinus Kristiadi, Alexander Immer,
Runa Eschenhagen, Matthias Bauer, and Philipp Hennig.
Laplace redux–effortless Bayesian deep learning. In
NeurIPS, 2021. 2, 6, 7

[13] Erik Daxberger, Eric Nalisnick, James U Allingham, Javier
Antorán, and José Miguel Hernández-Lobato. Bayesian
deep learning via subnetwork inference. In ICML, 2021. 2

[14] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr
Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alab-
dulmohsin, et al. Scaling vision transformers to 22 billion
parameters. In ICML, 2023. 3

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 2, 6

[16] Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale
Doshi-Velez, and Steffen Udluft. Decomposition of
uncertainty in bayesian deep learning for efficient and
risk-sensitive learning. In ICML, 2018. 2

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 1, 4, 6

[19] Nikita Durasov, Timur Bagautdinov, Pierre Baque, and
Pascal Fua. Masksembles for uncertainty estimation. In
CVPR, 2021. 6

[20] Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma,
Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan,
and Dustin Tran. Efficient and scalable bayesian neural nets
with rank-1 factors. In ICML, 2020. 2, 12, 14

[21] William Feller. An introduction to probability theory and its
applications, Volume 2. John Wiley & Sons, 1991. 14

[22] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan.
Deep ensembles: A loss landscape perspective. arXiv
preprint arXiv:1912.02757, 2019. 2, 4, 5, 15

[23] Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine
Dubuisson, and Isabelle Bloch. TRADI: Tracking deep
neural network weight distributions. In ECCV, 2020. 2, 3, 7

[24] Gianni Franchi, Xuanlong Yu, Andrei Bursuc, Angel Tena,
Rémi Kazmierczak, Séverine Dubuisson, Emanuel Aldea,
and David Filliat. MUAD: Multiple uncertainties for
autonomous driving, a benchmark for multiple uncertainty
types and tasks. In BMVC, 2022. 2, 7

[25] Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine
Dubuisson, and Isabelle Bloch. Encoding the latent posterior
of bayesian neural networks for uncertainty quantification.
T-PAMI, 2023. 2, 3, 7

[26] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In ICML, 2016. 2, 3, 6, 7

[27] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi,
Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang Feng,
Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher,
et al. A survey of uncertainty in deep neural networks. AI
Review, 2023. 2

[28] Ethan Goan and Clinton Fookes. Bayesian neural networks:
An introduction and survey. Case Studies in Applied
Bayesian Data Science, 2020. 2

[29] Lars Kai Hansen and Peter Salamon. Neural network
ensembles. T-PAMI, 1990. 3

[30] Marton Havasi, Rodolphe Jenatton, Stanislav Fort,
Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan,
Andrew Mingbo Dai, and Dustin Tran. Training independent
subnetworks for robust prediction. In ICLR, 2021. 2, 3, 6, 7

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2, 4, 6, 7

12202



[32] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask r-cnn. In ICCV, 2017. 1

[33] Matthias Hein, Maksym Andriushchenko, and Julian Bitter-
wolf. Why relu networks yield high-confidence predictions
far away from the training data and how to mitigate the
problem. In CVPR, 2019. 1

[34] Dan Hendrycks and Kevin Gimpel. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. In ICLR, 2017. 6, 7

[35] Dan Hendrycks, Steven Basart, Mantas Mazeika, Moham-
madreza Mostajabi, Jacob Steinhardt, and Dawn Song.
A benchmark for anomaly segmentation. arXiv preprint
arXiv:1911.11132, 2019. 2, 7

[36] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. Jacob steinhardt et justin
gilmer. the many faces of robustness: A critical analysis of
out-of-distribution generalization. In ICCV, 2021. 1

[37] Dan Hendrycks, Nicholas Carlini, John Schulman, and
Jacob Steinhardt. Unsolved problems in ml safety. arXiv
preprint arXiv:2109.13916, 2021. 1

[38] José Miguel Hernández-Lobato and Ryan Adams. Proba-
bilistic backpropagation for scalable learning of bayesian
neural networks. In ICML, 2015. 3

[39] Stephen C Hora. Aleatory and epistemic uncertainty in
probability elicitation with an example from hazardous
waste management. Reliability Engineering & System
Safety, 1996. 2

[40] Jiri Hron, Roman Novak, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Wide bayesian neural networks have a
simple weight posterior: theory and accelerated sampling.
In ICML, 2022. 14

[41] Eyke Hüllermeier and Willem Waegeman. Aleatoric and
epistemic uncertainty in machine learning: An introduction
to concepts and methods. ML, 2021. 2

[42] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman,
Cade Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller,
Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt.
Openclip, 2021. 3

[43] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In ICML, 2015. 4

[44] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and
Andrew Gordon Gordon Wilson. What are bayesian neural
network posteriors really like? In ICML, 2021. 2, 4

[45] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola,
and Lawrence K Saul. An introduction to variational
methods for graphical models. ML, 1999. 2

[46] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? NeurIPS,
2017. 2

[47] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment
anything. In ICCV, 2023. 3

[48] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig.
Being bayesian, even just a bit, fixes overconfidence in relu
networks. In ICML, 2020. 2

[49] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, MIT, 2009. 2, 6

[50] A Krizhevsky, I Sutskever, and G Hinton. Imagenet classifi-
cation with deep convolutional networks. In NeurIPS, 2012.
1

[51] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In NeurIPS, 2017. 2, 3, 6, 7, 8

[52] John Lambert, Ozan Sener, and Silvio Savarese. Deep
learning under privileged information using heteroscedastic
dropout. In CVPR, pages 8886–8895, 2018. 15

[53] Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Ge-
offrey Daniel, Jean-Marc Martinez, Andrei Bursuc, and
Gianni Franchi. Packed-ensembles for efficient uncertainty
estimation. In ICLR, 2023. 3

[54] Olivier Laurent, Emanuel Aldea, and Gianni Franchi. A
symmetry-aware exploration of bayesian neural network
posteriors. In ICLR, 2024. 4, 13

[55] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A
simple unified framework for detecting out-of-distribution
samples and adversarial attacks. In NeurIPS, 2018. 2

[56] Kaican Li, Kai Chen, Haoyu Wang, Lanqing Hong, Chao-
qiang Ye, Jianhua Han, Yukuai Chen, Wei Zhang, Chunjing
Xu, Dit-Yan Yeung, et al. Coda: A real-world road corner
case dataset for object detection in autonomous driving. In
ECCV, 2022. 1

[57] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, 2022. 4

[58] David JC MacKay. A practical bayesian framework for
backpropagation networks. Neural computation, 1992. 2, 3

[59] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P
Vetrov, and Andrew Gordon Wilson. A simple baseline for
bayesian uncertainty in deep learning. In NeurIPS, 2019. 2

[60] Andrey Malinin and Mark Gales. Predictive uncertainty
estimation via prior networks. In NeurIPS, 2018. 2

[61] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In AAAI, 2015. 6

[62] Eric Thomas Nalisnick. On priors for Bayesian neural
networks. University of California, Irvine, 2018. 2

[63] Niv Nayman, Avram Golbert, Asaf Noy, Tan Ping, and Lihi
Zelnik-Manor. Diverse imagenet models transfer better.
arXiv preprint arXiv:2204.09134, 2022. 2

[64] Radford M Neal. Bayesian learning for neural networks.
2012. 2

[65] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural
images with unsupervised feature learning. In NeurIPSW,
2011. 6

[66] Yannic Neuhaus, Maximilian Augustin, Valentyn Boreiko,
and Matthias Hein. Spurious features everywhere-large-
scale detection of harmful spurious features in imagenet. In
ICCV, 2023. 1

12203



[67] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David
Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshmi-
narayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset
shift. In NeurIPS, 2019. 2

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 6

[69] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. Technical report, OpenAI, 2018. 1

[70] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object
detection. In CVPR, 2016. 1

[71] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi
Zelnik-Manor. Imagenet-21k pretraining for the masses. In
NeurIPS Datasets and Benchmarks, 2021. 8

[72] Hippolyt Ritter, Aleksandar Botev, and David Barber. A
scalable laplace approximation for neural networks. In
ICLR, 2018. 2, 3

[73] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, 2022. 3

[74] Subhankar Roy, Martin Trapp, Andrea Pilzer, Juho Kannala,
Nicu Sebe, Elisa Ricci, and Arno Solin. Uncertainty-guided
source-free domain adaptation. In ECCV, 2022. 3

[75] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. NeurIPS, 2022. 3

[76] Aliaksei Severyn and Alessandro Moschitti. Learning
to rank short text pairs with convolutional deep neural
networks. In SIGIR, 2015. 1

[77] Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and
John Guttag. Better aggregation in test-time augmentation.
In ICCV, 2021. 15

[78] Jongwook Son and Seokho Kang. Efficient improvement of
classification accuracy via selective test-time augmentation.
IS, 2023. 15

[79] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In CVPR, 2016. 16

[80] Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian
uncertainty estimation for batch normalized deep networks.
In ICML, 2018. 6

[81] Luke Tierney and Joseph B Kadane. Accurate approxima-
tions for posterior moments and marginal densities. JASA,
1986. 2, 3

[82] Tishby, Levin, and Solla. Consistent inference of probabili-
ties in layered networks: predictions and generalizations. In
IJCNN, 1989. 2

[83] Dustin Tran, Jeremiah Liu, Michael W Dusenberry, Du
Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang,
Zelda Mariet, Huiyi Hu, et al. Plex: Towards reliability

using pretrained large model extensions. arXiv preprint
arXiv:2207.07411, 2022. 1

[84] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Instance normalization: The missing ingredient for fast
stylization. arXiv preprint arXiv:1607.08022, 2016. 4

[85] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang.
ViM: Out-of-distribution with virtual-logit matching. In
CVPR, 2022. 6

[86] Max Welling and Yee W Teh. Bayesian learning via
stochastic gradient langevin dynamics. In ICML, 2011. 2

[87] Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble:
an alternative approach to efficient ensemble and lifelong
learning. In ICLR, 2019. 2, 3, 6

[88] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 16

[89] Ross Wightman, Hugo Touvron, and Herve Jegou. Resnet
strikes back: An improved training procedure in timm. In
NeurIPSW, 2021. 17

[90] Andrew G Wilson and Pavel Izmailov. Bayesian deep
learning and a probabilistic perspective of generalization.
NeurIPS, 2020. 2, 3, 4, 13

[91] Guoxuan Xia and Christos-Savvas Bouganis. Window-based
early-exit cascades for uncertainty estimation: When deep
ensembles are more efficient than single models. In ICCV,
2023. 3

[92] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, 2020. 7

[93] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In CVPR, 2019. 16

[94] Éloi Zablocki, Hédi Ben-Younes, Patrick Pérez, and
Matthieu Cord. Explainability of deep vision-based au-
tonomous driving systems: Review and challenges. IJCV,
2022. 1

[95] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In BMVC, 2016. 6

[96] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In ICCV, 2023. 3

[97] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin,
and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In ICLR, 2018. 16

12204

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	. Introduction
	. Related work
	. Background
	. Preliminaries
	. Bayesian Posterior and BNNs

	. ABNN
	. Converting DNNs into BNNs
	. ABNN training loss
	. ABNN training procedure
	. Theoretical analysis

	. Experiments & Results
	. Image classification
	. Semantic segmentation

	. Discussions
	. General discussions
	. Diversity of ABNN

	. Conclusion

