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Abstract

Despite exciting progress in automatic 3D reconstruc-

tion from images, excessive and irregular triangular faces

in the resulting meshes still constitute a significant chal-

lenge when it comes to adoption in practical artist work-

flows. Therefore, we propose a method to extract regular

quad-dominant meshes from posed images. More specif-

ically, we generate a high-quality 3D model through de-

composition into an easily editable quad-dominant mesh

with pixel-level details such as displacement, materials, and

lighting. To enable end-to-end learning of shape and quad

topology, we QUADify a neural implicit representation us-

ing our novel differentiable re-meshing objective. Dis-

tinct from previous work, our method exploits artifact-free

Catmull-Clark subdivision combined with vertex displace-

ment to extract pixel-level details linked to the base geom-

etry. Finally, we apply differentiable rendering techniques

for material and lighting decomposition to optimize for im-

age reconstruction. Our experiments show the benefits of

end-to-end re-meshing and that our method yields state-

of-the-art geometric accuracy while providing lightweight

meshes with displacements and textures that are directly

compatible with professional renderers and game engines.

1. Introduction

Creating 3D content for entertainment platforms is both

time-consuming and entails technical and artistic skills. In-

dustry and academia have recently been working on auto-

matic 3D content creation to reduce production costs and al-

low artists to prioritize creativity. Photogrammetry [42, 49],

is a classical solution for converting multiple images of a

real-world object into a 3D model. This multi-step process

typically consists of stages such as multi-view stereo, fea-

ture extraction & matching, geometric extraction, texture

parametrization, material baking, and de-lighting [45, 46].

Each stage has conflicting optimization objectives, intro-

ducing cumulative errors. As a result, artists spend a signif-

icant amount of time manually cleaning up these 3D scans

for production use.

Our editable mesh &

subdiv. displacement

Our fine details &

decomposed materials
Nvdiffrec [35]

Figure 1. Our end-to-end learning uses re-meshing, subdivi-

sion, and displacement to produce a regular quad-dominant mesh,

which is aligned to the surface features with pixel-level details.

In this work, we frame the task as an inverse rendering

problem and end-to-end optimize for the surface, material,

and lighting parameters which best reconstruct the captured

images. While recent differentiable rendering approaches

can effectively reconstruct objects, they combine geometry,

material, and lighting into one neural network [26, 33, 55].

Disentangling these surface parameters has been proposed

on implicit surfaces [3, 4, 60], but surface extraction usu-

ally relies on iso-surfacing techniques like Marching Cubes

(MC) [29, 38], resulting in geometric inconsistencies, par-

ticularly at coarser resolutions. Working directly on trian-

gles meshes [20, 35] is promising, but these meshes can

contain "sliver" triangles, which create artifacts if the mesh

deforms during animation and simulation.

Quad re-meshing aims to extract superior meshes by op-

timizing for regular topology aligned to a triangle mesh [2,

21, 22]. However, this can introduce inaccuracies when

approximating the input mesh based on surface heuristics

alone. Importantly, these quad meshes can be subdivided

without introducing artifacts using Catmull-Clark subdivi-

sion [9, 17] and offer advantages in texturing and mesh edit-

ing. Existing techniques are however non-differentiable,

preventing the correction of re-meshing errors by tweaking

the input surface.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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We present a novel method to directly extract quad-

dominant meshes with decomposed materials and lighting

from multi-view images of objects. We assume the object is

lit under a single unknown environment with corresponding

camera poses and foreground masks. Our approach extracts

quad meshes by iteratively optimizing an orientation and

position field, commonly used in re-meshing [2, 22, 44],

while fitting the object’s shape with a Signed Distance

Function (SDF). We introduce a differentiable formulation

of re-meshing a triangle mesh extracted from the SDF to a

quad-dominant mesh by jointly learning orientation and po-

sition fields while reconstructing the surface. Further, we

apply a differentiable version of Catmull-Clark subdivision

and pixel-level displacement to recover details smaller than

individual quad faces. Building on Nvdiffrec [35], we ex-

tract spatially-varying materials and environment lighting,

producing high-quality meshes directly compatible with

current production pipelines. We optimize the surface, ori-

entation and position fields, material, and lighting parame-

ters end-to-end and achieve competitive results in view in-

terpolation and state-of-the-art surface accuracy with signif-

icantly improved topology driven mainly by an image loss.

Our contributions include:

• An end-to-end differentiable reconstruction of images to

quad-dominant meshes. We represent large-scale shapes

as the surface mesh and high-frequency details as dis-

placement and material roughness.

• A novel self-learning of orientation and position fields,

enabling stable re-meshing and gradient propagation.

• An unprecedented level of mesh details through pixel-

level displacement of the quad mesh using differentiable

Catmull-Clark subdivision.

2. Related Work

Classical methods for Multi-View 3D reconstruction tra-

ditionally find image correspondences to estimate depth

maps or combine shapes in a voxel grid. For depth-based

methods, a point cloud is reconstructed by identifying cor-

respondences between images, limited by the difficulty of

finding accurate point matches [46]. Voxel-based methods,

on the other hand, optimize over a voxel grid by enforcing

photometric multi-view consistency [5], but are limited by

the cubic memory requirement with increasing resolution.

Neural implicit methods have recently gained in pop-

ularity for novel view synthesis [33, 34] and reconstruc-

tion [26, 55] tasks. NeRF [33] learns a volumetric density

field similar to the voxel-based approach described above

but fails to extract high-quality surfaces due to a lack of

surface constraints. NeuS [55, 56] and Neuralangelo [26],

instead learn a Signed Distance Field (SDF), enabling high-

quality surface reconstructions but cannot be used directly

in traditional rendering pipelines, which require an explicit

Method Geometry Edit. Diff. Fact. Details

NeRF [33, 34] NeurVol ✓ Implicit

Neuralangelo [26] NeurSurf ✓ Implicit

NeuS [55, 56] NeurSurf ✓ Implicit

Nvdiffrec [20, 35] Tri ✓ ✓ Normal map

FlexiCubes [48] Tri ✓ ✓ Normal map

InstantMeshes [22] Quad ✓

Our QUADify Quad ✓ ✓ ✓ Displacement

Table 1. Taxonomy of methods: Geometry can be a neural volume

/ surface, triangle or quad-dominant mesh. Checkmarks inform if

the mesh is easily editable, the method is fully differentiable, can

factorize materials & lighting, and finally how details are realized.

mesh. Even though a mesh can be extracted at inference

time, this introduces additional errors not accounted for in

the optimization [47], resulting in either excessive geometry

to represent the scene or limited accuracy at low resolutions.

Explicit methods commonly extract a 3D mesh from im-

ages by optimizing a reconstruction loss on a fixed mesh

topology [10, 30, 54, 57]. Recent work explores differen-

tiable meshing of an implicit field [11, 12, 27, 47, 48], al-

lowing for changing topology during optimization. Even

though extracting an explicit mesh from an SDF is gener-

ally not globally continuous, in practice, local discontinu-

ities do not obstruct the optimization when using modern

momentum-based optimizers [23, 47]. In particular, Nvd-

iffrec [20, 35] extracts a triangle mesh using Deep Marching

Tetrahedra (DMTet) [47]. However, their meshes contain

many skinny, "sliver" triangles, making them unsuitable for

further processing as observed by concurrent work [48]. In

this work we directly extract regular quad meshes.

Field-aligned quad re-meshing optimizes a smoothly

varying orientation field on the surface to extract a quad-

dominant mesh from a triangle mesh [2]. Paired with a posi-

tion field aligned to these orientations prescribing the place-

ment of vertices and face connectivity, regularly sized quad

faces are extracted [21, 22, 31, 41]. InstantMeshes [22] pro-

poses a purely local optimization of these fields on a triangle

mesh, while QuadriFlow [21] considers a more global for-

mulation, improving the re-meshing quality at the cost of

runtime. However, the quad-dominant meshes extracted by

these methods only approximate the input triangle mesh. In

contrast, our work enables differentiating through the re-

meshing process, and allows for compensating these ap-

proximation errors by adapting the triangle mesh and op-

timal topology alignment based on the input images. Tab. 1

shows a comparison of these methods.

3. Preliminaries

Neural SDF. Using a Signed Distance Field (SDF) to rep-

resent an optimizable surface is a common choice, as the

surface can implicitly be represented by its zero-level set
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Figure 2. The orientation field (left) defines the dominant direction

oi,oj within the symmetry group of each vertex. The position

field (right) contains lattice points pi,pj aligned to oi,oj .

S = {x ∈ R
3 | s(x) = 0}. For each position x the SDF

s(x) measures the signed distance to the surface, positive

outside and negative inside. Learning such an SDF s(x) has

shown to be tractable when parameterized by a Multi-Layer

Perceptron (MLP) [26, 55, 56].

Multi-resolution hash grid encoding. Combining an

MLP with a multi-resolution hash-grid encoding to learn

s(x) proves to be effective both in terms of representational

power and memory consumption [26, 34]. For each vertex

x, the hash-grid encoder enc(x) : R3 → R
f×d linearly in-

terpolates a feature vector Fi ∈ R
d from a grid at each level

of the hierarchy. Instead of representing dense feature grids

in memory, a spatial hash maps query positions to features,

which get concatenated together to form the final feature

vector F ∈ R
f×d. For details, we refer the reader to [34].

Triangle mesh extraction. A mesh is usually extracted

with methods such as Marching Cubes (MC) or Marching

Tetrahedra (MT) by querying the SDF at the vertices of a

discrete voxel grid and linearly approximating the surface

location [16, 29]. For any two grid vertices xi,xj with

sign(s(xi)) ̸= sign(s(xj)) on a shared edge of a cube or

tetrahedron, the surface vertex xij is computed as:

xij =
xis(xj)− xjs(xi)

s(xj)− s(xi)
(1)

Even though the above formulation has a singularity for

s(xi) = s(xj), Wang et al. [47] experimentally show that

this case does not occur during optimization.

Orientation field. Quad-dominant re-meshing as defined

by Jakob et al. [22] first computes a smooth direction field

over the triangle mesh surface. Since a quad face is invariant

under 90◦ rotations, orientations need to exhibit the same

symmetry shown in Fig. 2. For each vertex vi ∈ V in the

triangular mesh, its representative orientation oi ∈ R
3 de-

fines a symmetry group R(oi) of four rotations of oi using

the matrix rot(ni, α) ∈ R
3×3 around the vertex normal ni:

R(oi) = {rot(ni, α)oi | α ∈ {0, π/2, π, 3π/2}} (2)

Two orientations oi,oj connected by an edge (i, j) ∈ E are

considered smooth if they align within the symmetry group:

argmino,k∡(Rkij
(oi),Rkji

(oj))
2. Where the ambiguity

introduced by the symmetry groupR(oi) is explicitly repre-

sented by the integer variables [kij , kji, . . . ] = k ∈ [0, 3]2E ,

which are chosen to minimize the angle of orientations in

R(oi),R(oj) respectively. Importantly, Jakob et al. [22]

show that this minimization can be performed explicitly by

locally smoothing the orientations on all vertices vi:

o′
i ← o′

i +R(oj , kij) oi ← o′
i/∥o

′
i∥ (3)

By updating all orientations oi in parallel, the smoothed ori-

entation field o∗ ∈ R
|V|×3 can be computed efficiently.

Position field. Given a smoothed orientation field and

fixed edge length s ∈ R, an isometric quadrangulation of

the surface can be extracted by aligning a lattice with origin

pi ∈ R
3 at each vertex vi in direction oi, shown in Fig. 2.

Similar to the orientation field, the position field is symmet-

ric under integer translations of length s in directions oi and

oi × ni. Precisely, all translations t ∈ Z
2 are symmetric:

T (p,n,o, t) = p+ s
[

o o× n
]

t (4)

Where t explicitly encodes the lattice point in the symme-

try group T (p,n,o, t). Jakob et al. [22] consider adjacent

lattices as smooth if they align in at least a single point.

By computing compatible lattice points tij , tji for all edges

(i, j) ∈ E , each vertex is explicitly smoothed:

p′
i ←

T (p′
i,ni,oi, tij)wi + T (pj ,nj ,oj , tji)

wi + 1
(5)

Where wi is incremented each time p′
i is visited. p′

i is then

rounded to the nearest lattice point to pi after processing all

edges [22]. Finally, the smoothed positions p∗ ∈ R
|V|×3

define consistent points of the local lattice around each ver-

tex as shown in Fig. 2. Since each lattice is aligned to

the smoothed orientation field, the quad-dominant mesh ex-

tracted from p∗ smoothly aligns to the surface.

4. Approach

We present an end-to-end method to extract quad-dominant

meshes from multi-view images that allows extracting

pixel-level details using displacements. Our approach is

summarized in Fig. 3. Using posed images with foreground

masks as supervision, our method directly optimizes for a

high-quality quad-dominant mesh while simultaneously ex-

tracting decomposed materials and lighting. Hence, unlike

related work in inverse rendering, we directly produce sim-

ple, regular geometry suitable for subdivision and displace-

ment. Our meshes can be easily edited by artists using tra-

ditional modeling tools such as Blender [13] shown in the

supplementary material.
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Marching Cubes

Neural SDF Neural o/p Neural d

Quad-dominant
re-meshing

Differentiable
Catmull-Clark subdiv.

Surface
displacement

Differentiable
rasterization

Neural Textures / Env.

Image space loss

Image Gradients

Figure 3. Overview of our approach. We jointly learn decomposed geometry, materials, and lighting using only posed 2D images as

supervision. From a neural SDF, we extract a triangle mesh using differentiable Marching Cubes. By self-learning orientation and position

fields o/p, we re-mesh the triangle mesh into a quad-dominant one and subdivide it with Catmull-Clark subdivision. On top of this

subdivided mesh, we extract pixel-level details using a neural displacement field. Finally, we use a differentiable material and lighting

model and back-propagate the image space loss. Our key contributions are the end-to-end learning of quad-dominant topology enabling

subdivision and pixel-level displacement, highlighted in gray. 3D model from Eduardo Maldonado and env. probe by Greg Zaal (CC0).

4.1. Self­learning of Orientation and Position Fields

The key idea of our approach is a novel combination of re-

meshing of a triangle mesh and inverse rendering: We de-

velop a self-learning formulation to obtain an orientation

and position field at each iteration and use these fields to

differentiably extract a quad-dominant mesh. We repre-

sent the surface using an MLP-based SDF varying smoothly

between iterations which implies that the derived optimal

quad-dominant topology also varies smoothly. Therefore,

the smoothed fields are also similar between iterations per-

mitting self-learning them.

Optimizing the SDF jointly with the orientation and po-

sition fields has two advantages: Firstly, since the SDF is

constantly changing during optimization, so is the topology

of the triangle input mesh extracted using Marching Cubes.

As the explicit field smoothing in Eq. 3 and Eq. 5 relies

on the local topology of the triangle mesh to smooth the

orientation and position fields, jointly learning the SDF im-

plicitly regularizes this smoothing. This prevents the local

smoothing iterations from getting stuck in local minima, as

noted by Jakob et al. [22]. Secondly, re-meshing slightly

changes the surface location of the triangle input mesh by

placing freely rotated quad faces on the surface. This error

can be compensated by the SDF, as shown in Fig. 4.

In the following, we introduce our self-learning re-

formulation of field-aligned re-meshing [22]. By using a

world-space o-MLP and p-MLP to learn the fields, we

jointly optimize surface and topology.

Orientation field self-learning. At each iteration, the o-

MLP predicts the initial value ôi for the orientation smooth-

ing in Eq. 3 at each vertex vi of the triangle mesh:

ôi ← o-MLP(vi) ôi ←
ôi − ni ⟨ôi,ni⟩

∥ôi − ni ⟨ôi,ni⟩ ∥
(6)

Since ôi ∈ R
3 is a normalized vector in the tangent plane

of vi, it only has one degree-of-freedom. However, we

found a full 3D representation of ôi could be more effec-

tively learned by the o-MLP. To supervise this network,

we explicitly consider the π/2-symmetry of the orientation

field in the loss, since all integer rotationsR(o) around nor-

mal ni represent the same quad face orientation. Therefore,

we base our self-learning loss on the von-Mises distribution

1−exp(cos θ−1) [32] with an increased winding frequency

similar to Dielen et al. [15]:

Lo(ô,o
∗) = 1−

1

|V|

∑

i∈V

exp(cos(4θi)− 1) (7)

Where θi is the angle between ôi and o∗
i which is mini-

mized within the symmetry group. Lo can be computed

efficiently as shown in the supplementary material.

Position field self-learning. We use a similar p-MLP to

predict an initial position offset for each input vertex:

p̂i ← tanh(p-MLP(vi)) p̂i ← vi + sTip̂i ∈ R
3 (8)

Where the 2D offset p̂i is projected to the tangent plane of

vi using the projection matrix Ti ∈ R
3×2, scaled by the re-

meshing length s, and used as the initial value for position

smoothing. Importantly, Ti is independent of oi, decou-

pling self-learning of p̂i from the orientation o∗
i . Measuring

the deviation of the predicted position p̂i and the smoothed

one p∗
i is done in tangent space since both are two degree-

of-freedom quantities. However, the two tangent spaces of

p̂i and pi generally do not have the same basis due to the

projection Ti. So we project both to the lattice aligned with

o∗
i before measuring the deviation:

Lp(p̂,p
∗) =

1

|V|

∑

i∈V

∥

∥

∥

∥

1

s

[

o∗
i
T

(o∗
i × ni)

T

]

(p̂i − p∗
i )

∥

∥

∥

∥

2

(9)
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Reference MC InstantMeshes Our Quad Our Displaced
Chamfer Distance (10−5)↓ | #Vertices 6.44 | 14k 6.52 | 14k 6.15 | 14k 5.59 | 55k

Figure 4. Mesh extraction from depth and mask images via SDF supervision by the reference mesh [36]. We extract meshes at matching

vertex counts across methods and report Chamfer distance wrt. the reference mesh. Differentiable Marching Cubes (MC) [29] reconstructs

the surface but fails to align topology to surface features. Re-meshing the MC mesh using InstantMeshes [22] as a post-processing step

aligns quad faces to the surface but is not differentiable and, therefore, cannot account for surface errors introduced by re-meshing. Our

method also extracts a quad-dominant mesh while end-to-end optimizing the underlying SDF for reconstruction accuracy. Fine details can

be extracted by differentiably subdividing and displacing our quad-dominant mesh. The Gargoyle model is from Myles et al. [36].

smooth

 

Meshing

: sg [·]

smooth

Figure 5. The self-learning losses Lo and Lp supervise the ori-

entation and position field, respectively, by treating o
∗ and p

∗ as

constants derived by smoothing from the predicted initial fields.

Combined loss. To learn both fields jointly, we combine

both losses in the Lop loss on the smoothed fields:

Lop = Lo(ô, sg [o∗]) + Lp(p̂, sg [p∗]) (10)

By using the stop-gradient operation sg [·] on the smoothed

fields o∗,p∗, we force the MLPs to self-learn the fields from

their predictions ô, p̂, as illustrated in Fig. 5.

Differentiation at the optimum. Since we re-mesh the

Marching Cubes mesh at each iteration, gradients need to be

back-propagated from the quad-dominant mesh to the trian-

gle input mesh, in turn supervising the SDF. However, the

orientation and position fields can change drastically during

field smoothing, causing unwanted gradients. As we run

multiple explicit smoothing steps in Eq. 3 and Eq. 5 each

iteration, the gradients of the smoothing process fail to su-

pervise the SDF, as shown in Sec. 5.4.

To still propagate meaningful gradients through the field

smoothing and supervise the SDF, even if self-learning has

not yet converged, we skip these smoothing gradients. In-

tuitively, by assuming the inputs to the field smoothing are

already optimal, i.e. ô = o∗ and p̂ = p∗, gradients of the

smoothing process can be removed. We enforce this is as-

sumption by copying gradients on the smoothed fields to the

initial values similar to Vector Quantization [53]:

o∗ ← ô+ sg [o∗ − ô] p∗ ← p̂+ sg [p∗ − p̂] (11)

During forward computation, the above equation evaluates

to the identity: o∗ ← o∗, p∗ ← p∗, while the gradients

of the smoothed fields get assigned to the respective initial

values skipping the field smoothing. Doing so allows for

learning the surface location jointly with field smoothing.

Quad-dominant face extraction. After orientation and

position field smoothing, we extract a quad-dominant mesh

from the position field by collapsing edges referring to the

same lattice points, following Jakob et al. [22]. Since col-

lapsing edges is a discrete process, we do not track gradients

w.r.t the clustering but only the merged quad vertices.

4.2. Pixel­level Subdivision & Displacement

Inspired by production renderers [8], we represent small-

scale details below the re-meshing edge length s using

Catmull-Clark subdivision [9, 17] and vector displacement,

as shown in Fig. 3. In contrast to previous methods, we ex-

tract pixel-level details by displacing the learned geometry

and do not rely on shading tricks such as normal maps.

Following the algorithm by Dupuy et al [17], we iter-

atively subdivide the quad-dominant mesh while tracking

gradients. Since subdivision only refines the re-meshed sur-

face and not the voxel grid, we can efficiently subdivide

each face until it reaches the size of individual pixels in

the reference image (typically after two subdivision steps).

Small-scale details are extracted by jointly learning a dis-

placement field on the subdivision surface:

vi ← vi + d(vi) d(vi) =
s

2
tanh(d-MLP(vi)) (12)

Each vertex is perturbed by the displacement d(vi) ∈ R
3,

chosen such that only details smaller than the quad faces are

extracted by displacement, as shown in Fig. 6. This implic-

itly decomposes the surface into a low-frequency mesh with

a high-frequency displacement.
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4.3. Optimization & Implementation

Losses. Let θ be our optimization parameters, including

SDF, o,p fields, materials and light probe. Given reference

images I ref
i with camera pose Ti ∈ R

4×4 we minimize the

empirical risk by rendering an image Iθ(T ) using a differ-

entiable renderer [25]: argminθ ET [Ltotal(I
θ(T ), I ref(T ))].

Where Ltotal = Limg + Lmask + λopLop + λregLreg are an

image space loss (∥ · ∥1 on tonemapped colors), mask loss

(∥ · ∥2
2
) the field loss and regularizers as used by Nvd-

iffrec [35]. We give details in the supplementary material.

Materials and Lighting. We use the physically-based

(PBR) material model by Disney [6] commonly used in dif-

ferentiable rendering [19, 20, 59]. We adopt the shading

model of Nvdiffrec [35] and represent materials with a dif-

fuse kd and specular term korm learned by a world-space

MLP. Current rendering pipelines store materials as 2D tex-

tures on the surface, requiring a 2D parametrization on the

mesh [8]. This is incompatible with the world-space textur-

ing used during optimization. Therefore, we follow Nvd-

iffrec and reparametrize the model once the surface and ma-

terials have converged. We generate unique texture coordi-

nates using Blender [13], initialize 2D textures (kd,korm,d)
from the world-space MLPs and continue optimizing using

frozen topology. Details in the supplementary material.

Progressive level of detail. During optimization, we it-

eratively enable the levels of our SDF and material hash

encoding, effectively regularizing the surface reconstruc-

tion by first fitting low-frequency surface features and then

learning high-frequency ones [26, 56, 58].

Enabling the finest subdivision level throughout the sur-

face optimization causes the surface to get stuck in local

minima, especially in concave regions. Since each subdi-

vided vertex is the weighted average of neighboring ver-

tices in the next coarser subdivision level, gradients on the

vertices of the finer subdivision level contribute to multi-

ple vertices in the coarser level. So, vertex gradients at the

coarse level are an average of the gradients on the fine level.

The resulting coarse-level average is not meaningful since

the gradients of neighboring vertices are substantially dif-

ferent if the reconstruction error is large. We sidestep this

limitation by progressively enabling subdivision levels and

displacement only once the surface has converged.

5. Experiments

This section evaluates our method on various applications.

First, we compare with state-of-the-art mesh extraction

methods in view interpolation and surface accuracy. To em-

phasize that our method is a drop-in replacement for cur-

rent iso-surfacing approaches, we evaluate the quality of

extracted meshes through differentiable iso-surfacing meth-

ods: Marching Cubes (MC) [29], DMTet [47], and the con-

current work FlexiCubes [48]. Then we compare our quad-

View Interpolation Geometry

PSNR❫ SSIM❫ LPIPS❴ vis. CD❴(10−2) #V (103)❴

Nvdiffrec 29.06 0.939 0.078 7.8 40

Nvdiffrecmc 26.56 0.913 0.115 5.5 42

FlexiCubes 28.95 0.936 0.082 3.3 52

Our Quad | Disp. 27.96 0.933 0.083 3.2 | 3.0 32 | 516

Table 2. Mesh rendering quality metrics averaged over all scenes

in the NeRF Synthetic dataset [33]. We re-trained Nvdiffrec [35],

NvdiffrecMC [20], and FlexiCubes [48] using public source code.

Our scores are competitive while enabling edible meshes.

Reference Our shaded mesh

Our extracted geometry Our Quad / ∥d∥ ∈ −
s
2

s
2

Figure 6. Mesh extraction results on the MATERIALS scene recon-

structed from 100 images from the NeRF Synthetic dataset [33].

dominant meshes to DMTet for artifact-free subdivision and

displacement. Finally, we ablate our o/p self-learning.

5.1. Inverse Rendering of Quad­dominant Meshes

Synthetic datasets. We show view interpolation and geo-

metric results on the NeRF Synthetic dataset [33] in Tab. 2

and show a qualitative example of the MATERIALS scene in

Fig. 6. Per-scene results are included in the supplementary

material. Even though view interpolation is not the main

focus of our method, it performs consistently on par with

Nvdiffrec in PSNR. Perceptually-based metrics (SSIM and

LPIPS) are even closer between all methods since slight

inaccuracies in the silhouette of an object are less detri-

mental to these metrics. Comparing visible Chamfer Dis-

tance (vis. CD) highlights the advantage of aligning quad

faces with the object surface: The quad-dominant mesh

(Our Quad) improves reconstruction accuracy compared to

related methods while using fewer vertices. Adding two

subdivision levels and displacement (Our Disp.) allows our

method to recover fine details, decreasing vis. CD even fur-

ther. Notably, the increased vertex count due to subdivision

and displacement does not hinder mesh editability, as it can

be efficiently computed during rendering [40, 52].

We continuously deform the MLP SDF initialized to a

sphere to fit the target shape as opposed to random initial-

ization, which allows for re-using the orientation and po-

sition fields between iterations. Yet, when supervised with

rasterization [25] instead of volume rendering [26, 55, 56],

the optimization can get stuck in local minima in poorly
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Reference MC DMTet FlexiCubes Our Quad Our Displaced

Figure 7. Visual comparison of different mesh extraction techniques. Our displaced and quad-dominant meshes, Marching Cubes (MC),

DMTet [47] and FlexiCubes [48] are generated by directly supervising predicted geometry with depth and mask losses on the ground truth.

Our meshes show clear alignment of the quad faces to object features and extraction of surface details visible in the displaced surfaces.
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Figure 8. Reconstruction on the real-world dataset from NeRD [3],

comparing our results with Nvdiffrec. Results for Nvdiffrec were

re-trained from public source code. Our method extracts regular

base geometry while recovering more fine details than Nvdiffrec,

such as the groves in the GOLD CAPE scene as displacement.

observed regions causing local inconsistencies. These arti-

facts are visible e.g. in the FICUS scene and get picked up

by visual metrics evaluating the full-size rendered images.

Real-world datasets. We provide reconstructions on

two scenes from the NeRD dataset [3] captured at di-

verse viewpoints with automatically generated (inaccurate)

masks. We show qualitative view interpolation results in

Fig. 8 and visually compare the extracted geometry. Meshes

extracted by our method are much smoother than the ones

by Nvdiffrec, since we parametrize the SDF with an MLP

instead of per vertex. Additionally, we progressively enable

details as described in Sec. 4.3 while constraining small-

scale details to this smooth surface through displacement.

View interpolation scores are similar between both meth-

ods, but our method extracts more fine detail in geometry.

However, on the GOLD CAPE scene, our method cannot

recover the hole in this crown-like object due to our SDF

parametrization continuously fitting a sphere to the obser-

vations. This causes a 3 dB drop in PSNR averaged over

all views. However, the reconstruction is still accurate from

frontal views, and we attribute this failure to inconsistent

foreground separation of this hole in the dataset [3, 35].

Method CD(10−5)❴ F1❫ AR>4(%)❴ RR>4(%)❴ #V(103)

MC 5.22 0.66 12.02 12.01 10.34

DMTet 5.23 0.67 16.89 16.32 10.92

FlexiCubes 4.87 0.69 6.69 8.26 11.87

Our Quad 4.96 0.67 0.00 0.24 10.66

Our Disp. 4.63 0.70 0.22 0.88 42.75

Table 3. Quantitative results on mesh reconstruction on 79 objects

from the Myles dataset [36]. We report the following metrics:

Chamfer Distance (CD), F1 Score, outlier percentage of Aspect

Ratio (AR) & Radius Ratio (RR), and number of vertices (#V).

5.2. Mesh Reconstruction

To compare the quality of meshes extracted with our

method without artifacts introduced by inverse rendering,

we follow the idealized experiment setup of Shen et al. [48]:

The reconstruction is supervised by rendering depth and

mask images and directly supervising the SDF at 1000

points randomly sampled from the reference mesh. Details

on the training setup are in the supplementary material. We

select the same 79 shapes [48] from the dataset collected by

Myles et al. [36] consisting of diverse shapes ranging from

3D scans to CAD models.

We show results in Tab. 3 and a visual example in Fig. 7.

Compared to DMTet [47], Marching Cubes (MC) [29], and

the concurrent work FlexiCubes (FC) [48] our method is

the only one extracting quad-dominant meshes. Since our

quadrangular faces are much more regular than the triangle

ones extracted with either related work, our method almost

eliminates faces with Aspect Ratio (AR) and Radius Ratio

(RR) above the commonly accepted threshold of 4, shown

in Tab. 3 and Fig. 9. Meanwhile, the Chamfer Distance

(CD) of the quad-dominant mesh (Our Quad) is consistently

on par and surpasses all baselines when subdividing it once

and adding displacement (Our Disp).

Reconstruction accuracy strongly depends on the mesh

resolution. Therefore, to fairly compare methods, we match

the number of vertices between methods by varying the

SDF grid resolution, following Huang et al. [48].
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Figure 9. Qualitative comparison of Angle Ratio, Radius Ratio,

and minimal and maximal face angles on all 79 objects. Our

method extracts clean editable meshes with significantly more

equilateral faces, resulting in lower AR and RR (rows 1 and 2)

and face angles concentrated around 90 degrees (rows 3 and 4).
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Figure 10. Visual artifacts from subdividing and displacing DMTet

vs. our quad-dominant mesh. Both are trained on a vast amount of

2D observations (40k views) with known lighting. We optimize

the base DMTet and our quad mesh for 1000 steps each, then ap-

ply one subdivision level S1 and displacement d, then run another

4000 steps. View interpolation metrics are the mean of 100 test

images. Spot by Keenan Crane [14].

5.3. Displacement on Triangle vs. Quad Meshes

In Fig. 10, we compare subdividing and displacing a trian-

gle mesh from DMTet with our Quad-dominant mesh. Sub-

dividing the triangle DMTet mesh with Catmull-Clark sub-

division creates irregularly sized faces due to skinny trian-

gles visible as shading artifacts. Displacing the subdivision

surface removes some artifacts but fails to accurately recon-

struct the reflected highlights of the reference. Our quad-

dominant topology does not suffer from these artifacts, re-

sulting in smoother shading and improved reconstruction.

5.4. Ablations

Self-learning. In Fig. 11, we ablate the field self-learning

introduced in Sec. 4.1. Learning the orientation and posi-

Reference Lop & grad. skip Lop & grad. skip Lop & grad. skip

Figure 11. Ablation results. Self-learning the orientation and posi-

tion fields with Lop is required to reconstruct the object and faces

to align to surface features. Gradient skipping is essential to prop-

agating meaningful gradients to the SDF.

tion fields with Lop is crucial to reconstructing the refer-

ence shape and aligning topology to surface features. With-

out Lop the optimization cannot progress from its spherical

initialization due to both fields changing significantly each

iteration when re-initialized randomly. This causes the sur-

face location to flicker and therefore fails to back-propagate

consistent gradients to the SDF.

Gradient skipping. At each iteration, we perform six

explicit smoothing steps of the orientation and position field

but do not track gradients for the smoothing iterations. In

Fig. 11, we show the necessity of skipping gradients dur-

ing smoothing, as the surface shape cannot be reconstructed

without it. We experimentally found skipping smoothing

gradients to be an effective solution for convergence issues.

6. Conclusion and Future Work

In summary, we propose a method to extract coarse quad-

dominant meshes with pixel-level displacement from im-

ages by end-to-end optimizing the appearance of the ren-

dered mesh. Our QUADify results surpass state-of-the-art

in geometric accuracy while reconstructing much more reg-

ular meshes, enabling artifact-free subdivision and displace-

ment to extract pixel-level details previously only possible

at excessive voxel resolutions. By design, our method di-

rectly extracts objects compatible with rendering and game

engines, enabling a multitude of applications and signifi-

cantly simplifying workflows by automatically extracting

meshes closer to those created by human artists. Re-

meshing covers the triangle mesh with coarser quad-faces,

decreasing the geometry resolution compared to the input

triangle mesh, and requires a continuous surface throughout

the optimization. Therefore, we do not use a discrete per-

vertex SDF but a continuous MLP-based one, which is more

prone to getting stuck in local minima, especially in concave

regions. In future work, we hope to address this limitation

and improve the reconstruction of challenging scenes.
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