
Continuous Optical Zooming: A Benchmark for Arbitrary-Scale Image
Super-Resolution in Real World

Huiyuan Fu1 Fei Peng1 Xianwei Li1 Yejun Li1 Xin Wang2 Huadong Ma1
1Beijing University of Posts and Telecommunications, China

2Stony Brook University
{fhy, pf0607, lixianwei, liyejun2415, mhd}@bupt.edu.cn

x.wang@stonybrook.edu

Abstract

Most current arbitrary-scale image super-resolution (SR)
methods has commonly relied on simulated data generated
by simple synthetic degradation models (e.g., bicubic down-
sampling) at continuous various scales, thereby falling short
in capturing the complex degradation of real-world images.
This limitation hinders the visual quality of these methods
when applied to real-world images. To address this issue, we
propose the Continuous Optical Zooming dataset (COZ), by
constructing an automatic imaging system to collect images
at fine-grained various focal lengths within a specific range
and providing strict image pair alignment. The COZ dataset
serves as a benchmark to provide real-world data for train-
ing and testing arbitrary-scale SR models. To enhance the
model’s robustness against real-world image degradation,
we propose a Local Mix Implicit network (LMI) based on
the MLP-mixer architecture and meta-learning, which di-
rectly learns the local texture information by simultaneously
mixing features and coordinates of multiple independent
points. The extensive experiments demonstrate the superior
performance of the arbitrary-scale SR models trained on
the COZ dataset compared to models trained on simulated
data. Our LMI model exhibits the superior effectiveness
compared to other models. This study is of great significance
in developing more efficient algorithms and improving the
performance of arbitrary-scale image SR methods in prac-
tical applications. Our dataset and codes are available at
https://github.com/pf0607/COZ.

1. Introduction
In the field of computer vision, Super-Resolution (SR) has
been a prominent area of research [7, 9, 11–13, 15, 19, 20, 22,
25, 27, 34, 35]. It aims to reconstruct a high-resolution (HR)
image from a low-resolution (LR) image. Recently, signifi-
cant progress has been made in arbitrary-scale image SR, pri-
marily based on learning the continuous representation of im-
ages. These methods typically require training with continu-
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Figure 1. The result exhibits that SR model trained on simulated
dataset struggles to address the real-world arbitrary-scale problem,
displaying noticeable blurriness and artifacts. In contrast, our ap-
proach is more natural and performs comparably to the real-world
continuous optical zooming effect.

ous fine-grained scale variation LR-HR image pairs within a
specific range(i.e., ×1.0-×4.0). [5, 8, 10, 16, 18, 29, 31]

However, there still remain problems when we apply
arbitrary-scale image SR methods to the real-world applica-
tion. As shown in Fig. 1, one problem is that most current
methods are trained and evaluated on several widely used SR
datasets including DIV2K [1], Urban100 [17], Manga109
[24], Set5 [3], Set14 [32], and BSD300 [23]. Typically, these
datasets apply simple synthetic degradation models (e.g.,
bicubic downsampling) to obtain data at different resolu-
tions. However, despite that satisfactory results are obtained
on simulated data, image degradation in the real world is
more complex, resulting in poor visual results on real-world
images. Another problem is several real-world image SR
datasets have been proposed, including RealSR [4], City100
[6], SR-RAW [33], and DRealSR [30] recently. However,
these datasets are limited as they only capture image pairs
at fixed magnification scales (e.g., ×2, ×3, ×4), lacking
continuous representation of images.

Given the set of issues, we summarize them as the intri-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3035

https://github.com/pf0607/COZ


cate real-world arbitrary-scale image SR problem. Current
methods fail to learn a continuous representation of real-
world images, resulting in SR outcomes that lack visual
naturalness. As shown in Fig. 1, to solve this problem and
improve the performance of current arbitrary-scale image
SR methods so that the quality can be like optical zoom,
we introduce a new dataset - the Continuous Optical Zoom
dataset (COZ), as the first real-world dataset for arbitrary-
scale image SR. We design and develop a continuous optical
zooming imaging system, where optical lens are wirelessly
controlled to rotate incrementally and uniformly within a
specific focal length. We capture multiple pairs of contin-
uous images from low to high magnification scales of the
same scene. Using a two-stage image pair alignment algo-
rithm based on SIFT matching points, we obtain accurately
aligned real-world LR-HR image pairs. This dataset pro-
vides rich real-world image pairs at various magnification
scales for training arbitrary-scale SR models, enabling the
learning of continuous image degradation in real-world sce-
narios. Comparative experimental results demonstrate that
models trained on our real-world image data outperform
those trained on simulated data when applied to real images.

To enhance the model’s robustness against real-world
complex image degradation, we propose an arbitrary-scale
image SR method based on MLP-mixer [28] architecture
and meta-learning [14], named Local Mix Implicit network
(LMI). In real world, texture information is manifested in
space as multiple coordinates along with their corresponding
RGB values. Our method utilizes meta-learning to simul-
taneously learn multiple local coordinate information and
generate mix weights, which are applied to features asso-
ciated with different coordinates to perform the effective
mixing. This is fundamentally different from the previous
methods that only consider one coordinate and its feature
information at a time, which is susceptible to the interference
of complex degradation. Experimental results demonstrate
that our approach is effective in learning the continuous
representation of real images and requires fewer parameters.

The primary contributions of this work are as follows:
• To our knowledge, this is the first work to address the

difficult real-world arbitrary-scale image SR problem.
Additionally, we build the first dataset for this task. It
can be served as a benchmark for training and testing
arbitrary-scale image SR models in real world.

• We propose the Local Mix Implicit network, which
simultaneously considers multiple independent point
coordinates and features, learning spatial texture in-
formation in a mix manner to enhance the robustness
against real-world image degradation.

• We conduct extensive experiments to validate the ef-
fectiveness of our dataset and the Local Mix Implicit
network by comparing our results with those produced
by state-of-the-art methods.

Dataset Conference Real-World Arbitrary-Scale Zoom
DIV2K [1] CVPRW 2017 # ! -
RealSR [4] ICCV 2019 ! # Manual
City100 [6] CVPR 2019 ! # Manual

SR-RAW [33] CVPR 2019 ! # Manual
DRealSR [30] ECCV 2020 ! # Manual
Ours (COZ) - ! ! Automatic

Table 1. Comparison with previous image super-resolution datasets.

2. Continuous Optical Zooming Dataset
We propose a benchmark dataset named Continuous Optical
Zooming dataset (COZ), for arbitrary-scale SR methods to
learn real-world continuous image representation. We build
an automatic continuous optical zooming imaging system to
collect data. This system employs a remote control transmis-
sion device to incrementally and uniformly rotate the lens
within a pre-defined focal length range, capturing images
after each rotation. This process facilitates the acquisition
of multiple images with fine-grained focal length variations
within a specific focal range of the same scene. Subse-
quently, we apply an improved two-stage Scale-Invariant
Feature Transform (SIFT) algorithm [21] to achieve the ac-
curate alignment of images at different resolutions. The
comparison between our COZ dataset and other SR datasets
is presented in Tab. 1.

2.1. Basic Equipment
We collect data using a Canon EOS R10 camera, which
boasts a resolution of 5328×4000 pixels. The camera is
equipped with an optical zoom lens spanning a focal length
range from 18mm to 150mm. Let’s denote the focal length,
object distance, and image distance as f , u, and v respec-
tively, and the camera operates under the assumption that
u ≫ f and v. Considering that the image distance v dictates
the actual size of the image, let’s contemplate capturing the
same object using two distinct focal lengths, f1 and f2, along
with corresponding object distances v1 and v2. The magni-
fication ratio, denoted as M , can be expressed as follows:

M ≈ v1
v2

≈ f1
f2

(1)

A small focal length tends to induce distortion issues at
the image edges, we opt not to commence image capture
directly from an 18mm focal length. Instead, we select a
focal length range of 35mm to 140mm for acquiring continu-
ous optical zoom images during the training data collection,
encompassing magnification scales from ×1.0 to ×4.0, as
calculated using Eq. (1). For the testing data, we choose a
focal length range of 25mm to 150mm to capture images
with magnification scales ranging from ×1.0 to ×6.0.

2.2. Automatic Continuous Zooming System
Traditional optical lenses necessitate manual rotation for
achieving zoom functionality. Frequent physical interaction
with the lens can induce angular deviations in the camera,
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2.22×1.0 ×1.32 ×1.58 ×1.93 ×3.68×2.53 ×2.81 ×3.11 ×3.43 ×3.99
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Figure 2. The example sequence of our COZ dataset. The top row shows a sample of 11 images from around 60 images captured within the
focal length range of 35mm to 140mm. The second row shows the aligned results after cropping the central regions from these images.
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Figure 3. The automatic continuous zooming imaging system we
build to collect data. A is the controller, B is the motor, C is the
transmission belt, and D is the optical lens.

leading to the accumulation of additional errors. We have
developed a fully automatic continuous zoom imaging sys-
tem, as illustrated in Fig. 3. First, we replace the manual
lens zooming step with a tightly coupled connection between
the lens zoom ring and a transmission belt (C). A precision
motor (B), positioned below, rotates the belt, thereby advanc-
ing the lens element (D) forward to alter the focal length.
The lens zooming is orchestrated by a precision motor, en-
suring the maximum stability and accuracy throughout the
entire process. The controller receives commands from a
smartphone to automatically complete the shooting process.
It first directs the motor to rotate the lens within a specific
focal length range to record the total travel distance. Then,
it divides this total distance into multiple evenly spaced
segments, prompting the motor to sequentially move each
segment’s distance and capture photos.

2.3. Image Pair Alignment
The luminance and resolution variations resulting from lens
zoom during the image capture can challenge widely used
image alignment algorithms like ORB [26], SURF [2], and
SIFT [21]. To tackle this, we propose a two-stage SIFT al-
gorithm. Initially, we adjust the luminance in the first stage.
SIFT matching points are gathered from both LR and HR
images. Maintaining a consistent quantity of SIFT matching
points regardless of resolution enables more precise lumi-
nance adjustment. We calculate the RGB standard deviation
and mean values of SIFT matching points in LR and HR
images as σH , σL, µH , and µL, respectively. Using the LR
image (IL), the luminance adjustment formula is applied as:

Continuous Zooming
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Figure 4. Statistics of COZ dataset. (a) is the distribution statistics
of images at different magnification scales ranging from ×1.0 to
×4.0 in training dataset. (b) is the scene diversity statistics.

IL =
σH

σL
IL + µH − σH

σL
µL (2)

Post luminance adjustment in LR images, SIFT is reap-
plied to crop corresponding regions for image pairs. The
alignment results exhibit precision due to minimal errors
introduced during the capture and the adjustment of lumi-
nance differences. In Fig. 2, examples of captured images
and alignment results from COZ dataset are presented. This
figure illustrates a scene with a focal length range of 35mm-
140mm, where we uniformly sample 11 images from a total
of 60 captured images and their corresponding aligned pairs.
The magnification scales relative to the lowest-resolution
image are indicated for each image.

2.4. COZ Dataset Detail
The training set of our COZ dataset contains 153 scenes,
comprising a total of 9,019 images. The testing dataset
includes 37 scenes. As current arbitrary-scale image SR
methods typically evaluate at specific fixed magnification
scales, we specifically select images with the magnification
scales closest to certain scales (×2.0, ×2.5, ×3.0, ×3.5,
×4.0, ×5.0, ×5.5, ×6.0) for the testing data. Our focus
during the scene acquisition is to ensure the diversity by cap-
turing objects with rich textures in both indoor and outdoor
living scenes. We exclude scenes featuring moving objects.
A small fraction of the data has a maximum magnification
scale lower than ×4.0 (minimum being ×3.6) due to captur-
ing limitations (e.g., friction loss). As we uniformly rotate
the lens during the capture, the magnification scale variation
corresponding to the focal length variation is not truly uni-
form, leading to a lesser number of HR images compared to
LR images. The distribution of magnification scales for all
the images in the training set is illustrated in Fig. 4.
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Figure 5. The proposed Local Mix Implicit Network framework.

3. Method
Recent arbitrary-scale image SR methods [5, 8, 10, 18, 29,
31] generally embrace an approach centered around con-
structing implicit functions for learning continuous image
representation. Denoting a continuous image as I and coordi-
nates within it as x. LR images are processed via commonly
used encoders such as EDSR [20] and RDN [35] to extract
latent codes Z, which are subsequently utilized in construct-
ing a decoding implicit function f . The expression for SR
prediction typically follows this form:

I(x) = f(Z, x) (3)

For a specific query point xq , assuming V ∗ is the coordinate
nearest to xq , and Z∗ is the latent code corresponding to V ∗,
the RGB prediction formula for xq can be articulated as:

I(xq) = f(Z∗, V ∗ − xq) (4)

These approaches typically focus on individual coordi-
nates and their corresponding latent codes in isolation. When
applied to simulated data generated through simple linear
synthetic degradation model, they demonstrate proficiency,
as the encoder adeptly encodes local area information into
the latent code. However, real-world image degradation is
notably more complex, insufficient reference information
such as one coordinate and latent code can easily lead to an
unstable result.

In the case of constructing the texture information in the
real world, texture is spatially manifested through multiple
coordinates, each with its corresponding RGB values. Hence,
considering multiple coordinates and their corresponding
features within local regions simultaneously provides a direct
means of capturing texture information.

3.1. Local Mix Implicit Network
This study introduces the Local Mix Implicit Network (LMI),
an advanced model structure depicted in Fig. 5. Based on
the mlp-mixer [28] architecture, LMI is crafted to adeptly
learn complex texture information by simultaneously mixing
multiple coordinates and their corresponding latent codes.
Commencing with the extraction of numerous latent codes
from local regions, each is treated as a token with its coordi-
nates preserved. These tokens collectively form the founda-
tional spatial information. LMI encompasses two stages of
mix modules, illustrated in Fig. 5 (a) and (b).

The Meta Spatial Mix Module (MSMM), built on top of a
meta-learning [14] network, transforms multiple coordinate
information to mix weights for guiding the mixing of latent
codes, facilitating the capture of spatial texture details. The
Query Mix Module (QMM) concentrates on internal mixing
within latent codes, embedding the original RGB value and
coordinate into corresponding tokens as queries. In the final
step, the results predicted from each token are ensemble to
enhance the overall robustness.

3.2. Local Token Unfolding
To acquire sufficient spatial information for texture capture,
we extract the latent codes of the 4×4 region closest to the
query point xq , denoting them as {Z∗

i } with 1 ≤ i ≤ 16. We
maintain the independence of latent codes, treating each as
an autonomous token. The tokens go through an unsqueezing
operation and are concatenated along the extended dimen-
sion. Let Λ represent the concatenation operation. We denote
these local tokens as LT (xq) and define them as follows:

LT (xq) = Λ{unsqueeze(Z∗
i )} (1 ≤ i ≤ 16) (5)
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Moreover, to appropriately learn local region information,
we utilize relative coordinates. The coordinates of each
token are defined as {V ∗

i } with 1 ≤ i ≤ 16, and the relative
coordinates of each token concerning the query coordinate
xq are defined as {Ci} with 1 ≤ i ≤ 16. Ci is defined as:

Ci = Vi − xq (1 ≤ i ≤ 16) (6)

3.3. Meta Spatial Mix Module
In order to extract spatial texture information from multiple
local tokens, we introduce the mixing operation between
tokens. We employ a Multi-Layer Perception(MLP) for the
token mixing and interaction, as illustrated in Fig. 5 (c). We
transpose LT (xq), pass them through the MLP for mixing,
and then transpose the result back. Let MLPs represent
the MLP used for spatial mixing, the mixed local tokens
LTM(xq) is defined as:

LTM(xq) = (MLPs(LT (xq)
T ))T (7)

However, if we directly perform the mixing operation be-
tween tokens, while enhancing the information of each token,
the local spatial relationship between tokens will be over-
looked. To address this issue, we employ a straightforward
approach which concatenates each relative coordinate Ci

with the transposed tokens and subsequently performs the
mixing. We repeat and expand coordinates to match the
shape of the transposed tokens and concatenate them with
the transposed tokens. Let E be the expand operation, Eq. (7)
can be improved as:

LTM(xq) = (MLPs(Λ(LT (xq)
T , {CE

i })))T (8)

The mix network simultaneously learns coordinate informa-
tion and mixes tokens, reducing the efficiency of the network.
In Fig. 5 (a), we employ a meta-learning approach using an
independent network to learn the spatial coordinate informa-
tion and construct the spatial mix weight with the same shape
as all tokens. We denote the mix weight as W and compute
it through several fully connected layers. The weight cal-
culation network is represented as ω, and we introduce a
scale factor r to enhance the accuracy of spatial information
learning. The expression for the weight is as follows:

W = ω({Ci}, 1/r) (9)

The mix weight W is then concatenated with LT (xq) and
input into the mix network MLPs, enabling the network to
focus on the mixing between tokens and acquire sufficient
local spatial texture information. The final expression for
LTM(xq) is defined as:

LTM(xq) = (MLPs(Λ(LT (xq)
T ,W )))T (10)

3.4. Query Mix Module
Following the spatial mixing, each token acquires the local
texture information, enhancing its capability to provide the
improved guidance for predicting the RGB value of xq. In
this stage, we incorporate the coordinate information Ci for
decoding. Given that SR involves a task transitioning from
one image to another, the original RGB information in the
image exhibits a strong correlation with the predicted RGB
values. Since each token corresponds directly to an image
coordinate, we introduce a modified form of the original
image’s “residual connection” and embed the RGB values of
the corresponding coordinates V ∗

i from the input image to
complement the token information. We denote the MLP used
for query mixing as MLPq, RGB values for coordinates
V ∗
i as R∗

i , and the query mixed tokens as LTQ(xq). Its
expression is formulated as follows:

LTQ(xq) = MLPq(LTM(xq), {Ci, R
∗
i })(1≤i≤16) (11)

3.5. Ensemble
After two stages of mixing, the query mixed tokens
LTQ(xq) are input into a fully connected layer for output.
Due to the assimilation of spatial texture information through
token mixing, each token comprehends valuable guidance
for accurately predicting the value of xq . In a manner remi-
niscent of LIIF’s local ensemble approach [10], we compute
the RGB value at coordinate xq by directly ensembling out-
puts of each tokens with the weight calculated with respect
to the area of the rectangle between xq and V ∗

i .

4. Experiments
Datasets. The COZ dataset serves as a reference for the
supervised training. LR-HR image pairs are selected from
a set of continuous images captured in the same scene. The
widths of the LR and HR images are represented as WL

and WH , respectively. The scale factor, denoted as s, is
computed as WH/WL.
Implementation Details. We adhere to the experimental
configurations established in previous studies [10, 16, 18].
Our method involves utilizing L1 loss and the Adam opti-
mizer, with the encoder being either EDSR-baseline [20]
or RDN [35]. The size of the input image patch are fixed
at 48×48. Specifically, we sample 482 pixels from both
high-resolution (HR) images and their corresponding coor-
dinates. Despite the diminished data volume compared to
the simulated dataset [1], we train all models for 300 epochs.
The learning rate is initially set at 1e-4, with a decay to 0.5 at
the 200-th epoch. The batch size is established at 16. In the
case of other arbitrary-scale super-resolution (SR) methods
[5, 8, 10, 16, 18, 29, 31], we maintain the original experi-
mental configurations. The evaluation metric for all models
is mainly Peak Signal-to-Noise Ratio (PSNR). We train all
the models on a RTX3090 GPU and test them on a RTX A40
GPU.
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EDSR-baseline [20] RDN [35]
In-scale Out-of-scale In-scale Out-of-scaleMethods Params

×2 ×2.5 ×3 ×3.5 ×4 ×5 ×5.5 ×6 ×2 ×2.5 ×3 ×3.5 ×4 ×5 ×5.5 ×6

MetaSR [16] 445.1K 28.70 27.43 26.55 25.62 25.17 24.31 23.93 23.25 28.80 27.55 26.65 25.80 25.22 24.39 24.09 23.31
LIIF [10] 346.9K 28.72 27.57 26.61 25.76 25.16 24.32 24.01 23.23 28.80 27.56 26.69 25.83 25.23 24.39 24.13 23.28
LTE [18] 493.8K 28.67 27.49 26.55 25.71 25.15 24.37 24.05 23.26 28.72 27.57 26.64 25.74 25.17 24.40 24.10 23.28
LINF [31] 794.9K 28.72 27.48 26.53 25.66 25.10 24.29 23.99 23.21 28.73 27.55 26.60 25.73 25.15 24.32 24.03 23.28
SRNO [29] 705.2K 28.73 27.54 26.59 25.70 25.15 24.31 24.05 23.25 28.74 27.60 26.67 25.73 25.19 24.40 24.09 23.28

LIT [8] 5.3M 28.74 27.56 26.58 25.71 25.16 24.35 24.00 23.19 28.80 27.63 26.66 25.79 25.19 24.36 24.03 23.25
LMI (ours) 87.9K 28.86 27.63 26.66 25.78 25.22 24.39 24.08 23.29 28.86 27.68 26.74 25.86 25.30 24.48 24.14 23.37

Table 2. Quantitative comparison with state-of-the-art methods for arbitrary-scale image SR on the COZ testing set (PSNR (dB)).

ScaleSelection Methods ×2 ×3 ×4 ×5 ×6

Fixed

MetaSR [16] 28.76 26.53 25.07 24.21 23.11
LIIF [10] 28.75 26.51 25.07 24.23 23.08
LTE [18] 28.65 26.50 25.07 24.23 23.13

LMI (Ours) 28.77 26.57 25.16 24.32 23.25

Random

MetaSR [16] 28.70 26.55 25.17 24.31 23.25
LIIF [10] 28.72 26.61 25.16 24.32 23.23
LTE [18] 28.67 26.55 25.15 24.37 23.26

LMI (Ours) 28.86 26.66 25.22 24.39 23.29

Table 3. Quantitative comparison (PSNR (dB)) on our COZ testing
set by methods trained with different HR image selection methods.

4.1. Quantitative Experiments
Randomly Selecting Training Strategy. The COZ dataset
offers the flexibility in choosing the LR-HR image pairs. We
introduce a more adaptable training strategy by randomly
selecting two images of different resolutions from a set to cre-
ate LR-HR pairs, as opposed to opting for the fixed highest-
resolution image as the HR image. Three representative
state-of-the-art (SOTA) models, namely MetaSR [16], LIIF
[10], LTE [18], and our proposed LMI, each employing
EDSR-baseline [20] as the encoder, are utilized. These mod-
els are trained using various HR image selection methods,
resulting in a total of 8 models. Subsequently, all 8 mod-
els undergo testing on the COZ testing set, and the results
are presented in Tab. 3. The models that select the fixed
highest-resolution image as the HR image exhibit the su-
perior performance at the low scale (×2) but experience a
pronounced decline at higher scales (×3, ×4, ×5, and ×6).
COZ dataset vs. Simulated dataset. To evaluate the ef-
ficacy of the COZ dataset, we train three representative
SOTA methods along with our proposed method on both
simulated dataset and our real dataset. We designate the
highest-resolution data from each scene within the COZ
dataset as the ground truth (GT) and employ bicubic down-
sampling (BD) to generate simulated data. Structural Simi-
larity (SSIM) evaluation metric is additionally incorporated.
The results are presented in Tab. 4. Notably, the models
trained on the COZ real-world data exhibit substantial im-
provements on both PSNR and SSIM. This indicates the
effectiveness of COZ to capture the continuous real-world
image degradation.
Models trained on COZ dataset. To showcase the effective-
ness of our LMI model, we undertake a comparative study
on the COZ dataset, assessing its performance alongside six
SOTA models: MetaSR [16], LIIF [10], LTE [18], LINF

ScaleDegradation Methods ×2 ×3 ×4

BD

MetaSR [16] 28.21 / 0.764 26.14 / 0.719 24.76 / 0.699
LIIF [10] 28.24 / 0.765 26.17 / 0.720 24.79 / 0.699
LTE [18] 28.21 / 0.764 26.14 / 0.719 24.76 / 0.699

LMI (Ours) 28.35 / 0.778 26.23 / 0.732 24.83 / 0.710

Real

MetaSR [16] 28.70 / 0.809 26.55 / 0.762 25.17 / 0.736
LIIF [10] 28.72 / 0.809 26.61 / 0.762 25.16 / 0.736
LTE [18] 28.67 / 0.812 26.55 / 0.765 25.15 / 0.738

LMI (Ours) 28.86 / 0.812 26.66 / 0.762 25.22 / 0.736

Table 4. Quantitative comparison (PSNR (dB)/SSIM) on our COZ
testing set with methods trained on different datasets generated by
bicubic downsampling (BD) and real degredation.

[31], LIT [8], and SRNO [29]. Each model is trained using
two encoders, namely EDSR-baseline [20] and RDN [35].

Comprehensive testing is conducted on the COZ testing
set. Following the conventional protocol for arbitrary-scale
SR experiments, the COZ dataset encompasses two types
of testing scales: within the training scales (×2, ×2.5, ×3,
×3.5, ×4) and outside the training scales (×5, ×5.5, ×6).
The experimental results are detailed in Tab. 2. Our LMI
method demonstrates noteworthy improvements with fewer
parameters compared to other methods, establishing its suit-
ability for real-world arbitrary-scale image SR.

4.2. Qualitative Experiments
COZ testing set. In Fig. 6, we present visualizations of
the testing outcomes generated by models trained on both
BD-simulated and real (COZ) datasets. It is apparent that
models trained on real-world data yield clearer and more
natural results, in contrast to models trained on simulated
data, which exhibit pronounced blurriness and artifacts. It is
crucial to emphasize that even for simple objects, such as bal-
loons, models trained on simulated data introduce noticeable
noise-like blurring and lack a sense of “realism”. Conse-
quently, training with real-world captured continuous optical
zoom images facilitates the development of SR models that
produce more realistic results.
Generalizability. To demonstrate the generalization capa-
bilities of models trained on our real dataset, we captured
images outside of our dataset using the Sony RX100M4 digi-
tal camera, Huawei Mate 40 Pro, and iPhone XS smartphone
cameras. Considering the perspective of optical zoom, we
selected various magnification scales for the images based
on visual perception. Subsequently, we applied bicubic inter-
polation, as well as the SOTA SRNO [29] method trained on
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Figure 6. Visual SR results on our COZ testing set by different methods (trained on different datasets). The results above are for a × 4scale,
while the results below are for a ×3 scale. Methods include MetaSR [16], LIIF [10], LTE [18] and LMI (ours). It can be easily observed
that even simple objects like balloons, when models are trained on simulated data, produce noticeable artifacts.

both BD simulated data and real data (COZ), and our LMI
method trained on real data. The visual results are depicted
in Fig. 7. Notably, models trained on real data exhibit consis-
tent high performance across different devices, while those
trained on simulated data display discernible blurriness and
artifacts. This indicates COZ dataset’s practical significance
in improving digital zoom quality on various devices.

4.3. Ablation Experiments
MSMM. To validate the guiding function of meta-learning
for multi-coordinate feature mixing, we conduct experiments
by eliminating the meta-learning component and directly
employing the multi-coordinate information embedded fea-
tures from Eq. (8) to guide the mixing (referred to as LMI-
a). Additionally, to demonstrate the effectiveness of multi-
coordinate mixing, we perform experiments solely involv-
ing multi-feature mixing without coordinates (referred to
as LMI-b) as outlined in Eq. (7), and we directly remove
the MSMM module (referred to as LMI-c). The experimen-
tal results, as presented in Tab. 5, show a gradual decrease
compared to LMI. This suggests that meta-learning-guided
multi-coordinate feature mixing is well-suited for learning
the continuous image degradation in real-world scenarios.
QMM. We exclude the embedding of LR’s RGB values in
the QMM module (referred to as LMI-d). When compar-

ScaleMethods ×2 ×3 ×4 ×5 ×6

LMI 28.86 26.66 25.22 24.39 23.29
LMI-a 28.77 26.58 25.15 24.34 23.23
LMI-b 28.74 26.55 25.13 24.32 23.20
LMI-c 28.67 26.51 25.11 24.31 23.18
LMI-d 28.81 26.64 25.22 24.37 23.27

Table 5. Quantitative ablation study of LMI. Evaluated on the
COZ testing set (PSNR (dB)). “-a/b/c” refers to replacing meta-
learning with direct coordinate embedding, removing meta-learning
of MSMM, and removing MSMM, respectively. “-d” refers to
removing the RGB embedding of QMM.

ing LMI-d with LMI in Tab. 5, a performance decrease is
observed, suggesting that the inclusion of RGB informa-
tion from the LR image serves as an effective addition for
real-world SR.

4.4. User Study
We conduct two user studies, comparing the visual quality of
the LMI method with other methods, and comparing models
trained on simulated data generated by bicubic downsam-
pling with models trained on real-world data. For each study,
we randomly select 30 real life images captured by Sony
RX100M4, Huawei Mate 40 Pro, and iPhone XS, and ask
20 participants to rate each image. The SR scale is ×4 and
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Figure 7. Visual SR results of different methods(trained on different datasets) on images captured by Sony RX100M4 digital camera, Huawei
Mate 40 Pro and iPhone XS smartphone cameras. Methods include bicubic interpolation, SRNO [29] and LMI (ours).
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Figure 8. The first user study result. In each histogram, the x-axis denotes the ranking index (1-7, “1” represents the highest), and the y-axis
denotes the number of images in each ranking index.
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Figure 9. The second user study result. The region included for each
data point, representing the variability or uncertainty associated
with the votes for each model under different data types.

participants are asked to assess image quality, considering
non-realistic artifacts and blurred edges.

For the first user study, participants are asked to rank 7
images generated by six previous methods [8, 10, 16, 18, 29,
31] and our LMI method each time. The average ranking for
each method on each image is calculated and used to gen-
erate the final rankings. The results are presented in Fig. 8.
Comparing the histograms reveals that our method produces
superior results in terms of human subjective evaluations
compared to the other methods. For the second user study,

participants are asked to vote 2 images generated by methods
trained on simulated data and our COZ real data each time.
The results are presented in Fig. 9, where all the methods
trained on real data receive more votings compared with
simulated data, revealing that our COZ data could improve
the visual results of arbitrary-scale image SR methods.

5. Conclusion
We introduce COZ, the first real-world dataset for arbitrary-
scale image SR. Captured using our automatic continuous
zooming imaging system, COZ offers accurately aligned
continuous resolution change image pairs. Leveraging MLP-
mixer and meta-learning, we propose the LMI model, which
simultaneously considers multiple independent coordinates
and corresponding features, learning spatial texture infor-
mation in a mixed manner. Extensive experiments and user
studies validate the effectiveness of our dataset and method,
and the results surpass those from the SOTA approaches.
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