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Abstract

Few-shot font generation (FFG) produces stylized font
images with a limited number of reference samples, which
can significantly reduce labor costs in manual font designs.
Most existing FFG methods follow the style-content dis-
entanglement paradigm and employ the Generative Adver-
sarial Network (GAN) to generate target fonts by combin-
ing the decoupled content and style representations. The
complicated structure and detailed style are simultaneously
generated in those methods, which may be the sub-optimal
solutions for FFG task. Inspired by most manual font design
processes of expert designers, in this paper, we model font
generation as a multi-stage generative process. Specifically,
as the injected noise and the data distribution in diffusion
models can be well-separated into different sub-spaces, we
are able to incorporate the font transfer process into these
models. Based on this observation, we generalize diffu-
sion methods to model font generative process by separating
the reverse diffusion process into three stages with different
functions: The structure construction stage first generates
the structure information for the target character based on
the source image, and the font transfer stage subsequently
transforms the source font to the target font. Finally, the
font refinement stage enhances the appearances and local
details of the target font images. Based on the above multi-
stage generative process, we construct our font genera-
tion framework, named MSD-Font, with a dual-network ap-
proach to generate font images. The superior performance
demonstrates the effectiveness of our model. The code is
available at: https://github.com/fubinfb/MSD-Font .

*Corresponding author: Yu Qiao

1. Introduction

Designing new fonts is time-consuming and labor-intensive
work for humans, especially for some glyph-rich scripts
(e.g., Chinese and Korean). The few-shot font genera-
tion (FFG) task aims to automatically generate new styl-
ized fonts with a few reference images, and it has received
significant interest due to its academic and commercial val-
ues. As the requirement of this task is to render the char-
acter images into the target font style, current FFG methods
[17, 27, 28, 39] usually employ the Generative Adversarial
Network (GAN) to perform few-shot font generation under
the style-content disentanglement paradigm. These models
usually simultaneously generate the complicated structure
and detailed style of target font images by combining the
content features from source characters and the style rep-
resentations from reference font images. Although many
methods have been proposed to obtain better content and
style representations, the generated font images still contain
artifacts, inconsistent styles, and broken structures.

Inspired by the common practice of expert designers, we
find the following characteristics that may be crucial for
high-quality font generation: As font design requires pre-
serving the global structure of the target characters, design-
ers usually generate a new font by modifying from a simi-
lar existing font, which can be viewed as a transfer process
from the source font to the target font. Thus, most manual
font designs can be regarded as a multi-stage process, in-
cluding template font generation for global structure, font
transfer from the template font to the target font, and re-
finement of fine-grained details. In light of this, we think
that the multi-stage generative process is an effective solu-
tion for high-quality font generation, since the problems of
broken structures, inconsistent styles, and artifacts can be
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Figure 1. The forward process of our proposed model and the traditional diffusion model (DDPM). The first and third rows display the
traditional forward process for the source image Ic and target font image Ig . The images with red boxes mark the path of our proposed
diffusion process. In our model, we incorporate the font transfer process in time interval (t1, t2], and align the distribution with the
traditional diffusion model at the timesteps t1 and t2. With this forward process, the generative process of our model can be separated into
three stages: the structure construction stage, the font transfer stage, and the font refinement stage, respectively. Note that the font images
in this figure are visualized from the diffusion model in image space for better illustration1, while we implement our model in latent space
to reduce computational consumption.

better handled by the above three stages.
The diffusion model provides a powerful generative

framework to achieve this multi-stage process, based on the
following two features: (1). Since the injected noise and the
data distribution in forward process can be well-separated
into different sub-spaces, we are able to incorporate the font
transfer process into diffusion models. (2). Recent studies
[7, 18] have revealed that the different steps in the gener-
ative process have different functions for image synthesis.
Therefore, modeling font generation as a transfer process
and constructing a multi-stage generative process based on
diffusion model is a promising direction for FFG task.

Motivated by the above observations, in this paper,
we incorporate the font transfer process into the diffusion
model and formulate font generation as a multi-stage gen-
erative process. To alleviate computational consumption,
we construct this diffusion process in latent space. Specifi-
cally, in latent space, we first separate the injected noise and
the data distribution into different sub-spaces, and then in-
corporate the font transfer process into the data sub-space in
a predefined time interval (t1, t2]. Combining with the de-
noising process, the font generative process in our proposed
diffusion model can be automatically separated into a multi-
stage process (shown in Fig. 1): the structure construction
stage, the font transfer stage, and the font refinement stage,
respectively. The structure construction stage first gener-
ates the structure information for the target character based
on the source image. Then, the font transfer stage gradually
transforms the source font to the target font. Finally, the
font refinement stage improves the appearances and local
details of the generated font images. Under this scheme, the
structure construction stage generates the global character
structure from source images, while the font transfer stage

1Specifically, we replace zc0 and zg0 with Ic and Ig in Eq. (8)-(12) to
visualize our proposed diffusion process in this figure.

provides a long generative path to produce detailed styles.
Moreover, as the prediction network has different behaviors
in font transfer stage and font refinement stage, we further
propose a dual-network approach to predict the target latent
features for different stages. Experiments demonstrate that
our model achieves the superior performance on FFG tasks,
verifying the effectiveness of our proposed approach.

In summary, our contributions in this paper are summa-
rized as follows:

(1). Instead of simultaneously generating font images
with complicated structures and detailed styles in most tra-
ditional FFG methods, we reformulate the font generation
as a multi-stage generative process by incorporating font
transfer process into the diffusion models.

(2). We construct the multi-stage font generation frame-
work, named MSD-Font, with a dual-network approach to
better deal with different behavious in different generative
stages.

(3). Experimental results show that our method achieves
superior performance on the FFG task, demonstrating the
effectiveness of our proposed method.

2. Related Works

This section offers a concise review of recent development
in font generation methods and diffusion models.

2.1. Many-shot Font Generation

As font generation can be formulated as mapping font im-
ages from the source domain to the target domain, early
methods [4, 40, 41] usually utilize the image-to-image (I2I)
methods [8, 14, 20, 50, 51] to learn the mapping func-
tion between different fonts. The mapping function will be
fine-tuned on hundreds of reference samples (many-shot)
to generate unseen font images. Based on the pix2pix [14]
framework, Zi2zi [40] and Rewrite [41] utilize one-hot style
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labels to optimize font generation models in a supervised
manner. HGAN [4] further extends Zi2zi model via a trans-
fer network and the hierarchical adversarial discriminator.
DC-font [15] utilizes a feature reconstruction network to
embed style information for font synthesis. AGEN [23]
employs the auto-encoder to transfer standard font to cal-
ligraphy font. Although these many-shot font generation
methods can generate promising font images, collecting
large numbers of reference samples to fine-tune the map-
ping function is still a difficult task for font generation.

2.2. Few-shot Font Generation

To relieve the weakness of the above models, few-shot
font generation (FFG) methods have become popular so-
lutions in recent years, which generate font images with a
few samples. As font styles have complex structures and
fine-grained details, the common-used statistics-based style
transfer techniques are not suitable for font generation. In-
stead, recent FFG models [2, 3, 10, 17, 21, 26–28, 39, 45–
47, 49] mainly follow the style-content disentanglement
paradigm, which transfers the target font styles by com-
bining the content representations of source characters with
the style codes of reference samples. SA-VAE [38], EMD
[49], and AGISNet [10] extract the style and content repre-
sentations as global features to generate target font images.
DM-Font [3], LF-Font [27], and MX-Font [28] decompose
characters into components and learn component-wise rep-
resentations to improve local details. CG-GAN [17] su-
pervises the font generator to decouple content and style
at the component level via a component-wise discrimina-
tor. Diff-Font [11] proposes a stroke-wise diffusion model
to generate font images under the guidance of three char-
acter attributes (content, style, and strokes). FsFont [39]
utilizes a cross-attention mechanism to aggregate style fea-
tures into the fine-grained style representation. XMP-Font
[21] develops a self-supervised cross-modality pre-training
strategy and a cross-modality transformer-based encoder to
model the style representations at all levels. DS-Font [12]
proposes a cluster-level contrastive style loss to learn bet-
ter style representations. DG-Font [45] and its extended
version DG-Font++ [5] propose a feature deformation skip
connection to learn geometric displacement maps between
different fonts. CF-Font [43] further extends DG-Font to
construct a robust content feature by projecting the content
feature into a linear space defined by the content features
of basis fonts. Besides, NTF [9] models font generation as
a continuous transformation process with a neural transfor-
mation field.

2.3. Diffusion Probabilistic Models

Diffusion model (DM) provides a powerful probabilis-
tic generative framework for high-quality image synthesis,
which is first introduced in [33] and subsequently improved

by Denoising Diffusion Probabilistic Model (DDPM) [13],
Denoising Diffusion Implicit Model (DDIM) [34], score-
based diffusion [35], and other techniques [25, 36, 37].
Early diffusion models construct the diffusion process
in RGB space, which requires huge computation pow-
ers to generate high-resolution images. Latent Diffusion
Model (LDM) [30] builds the diffusion process in a lower-
dimensional latent space, significantly reducing the com-
putation cost. The diffusion model has become the dom-
inant solution for various computer vision tasks, such as
image synthesis [29, 30, 32], image editing [1, 6, 24], and
image-to-image translation [31, 44]. Large-scale text-to-
image (T2I) diffusion models (e.g. DALL·E 2 [29], Ima-
gen [32], Stable Diffusion [30]) have shown superior per-
formance on high-quality image synthesis, which employ
text embedding generated by large language models (LLM)
as the condition to guide image generation. Recently, sev-
eral works [19, 22, 52] modify the denoising diffusion pro-
cess to model the residual between two given distributions.
Different from these works, in this paper, we introduce the
font transfer process into the diffusion model at a predefined
region, forming a multi-stage diffusion process. Moreover,
based on this process, a novel dual-network approach is pro-
posed to predict latent features in different stages.

3. Methodology

In this section, we present our proposed method in detail, in-
cluding a short background of the diffusion model (in Sec.
3.1), the proposed latent diffusion model with font transfer
process (in Sec. 3.2), the multi-stage font generative pro-
cess (in Sec. 3.3), and the overall framework (in Sec. 3.4).

3.1. Background and Preliminary

The diffusion model is a probabilistic generative model
aiming to learn the data distribution by gradually denois-
ing a variable sampled from a Gaussian distribution, which
includes a forward process and a reverse process.

Given a data distribution x0 ∼ q(x0), the Forward
Process (also named as the diffusion process) is fixed to
a Markov chain that gradually injects Gaussian noise to the
data at time t with a predefined variance schedule βt ac-
cording to the equations:

q(x1, . . . , xT |x0) =

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2)

where x1, · · · , xT are latent variables. With the sufficiently
large T , the distribution of xT will become an isotropic
Gaussian distribution. With the reparameterization trick
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Figure 2. (a). The forward diffusion process of our proposed model. (b). The reverse process of our proposed model. Our proposed
diffusion process is marked as black circles. The z̃t denotes the latent features in our diffusion process, while zct and zgt denote the latent
features of the source image and the target image in traditional diffusion process, respectively. As we have aligned our diffusion process
with the traditional diffusion process of zg and zc at t1 and t2, our model shares the same process with the traditional diffusion process
in the region (0, t1] and (t2, T ]. (c). Overall framework of our font generation model, including the VQ-VAE encoder E and decoder D,
the dual prediction networks z̃

(g,1)
θ1

(z̃t, t, y1) and z̃
(g,2)
θ2

(z̃t, t, y2), and the corresponding style and content encoders for each prediction

network. Due to the same structure, in this figure, we only plot one prediction network z̃
(g,i)
θi

(i ∈ {1, 2}) with its corresponding style
encoder Ei

s and content encoder Ei
c, where i is determined by the generative stage of timestep t. We use Ig and IG to denote the target

image and generated image, respectively.

[16], the latent variable xt can be written as

xt =
√
αtxt−1 +

√
1− αtϵ

∗
t−1, (3)

=
√
ᾱtx0 +

√
1− ᾱtϵ0, (4)

where ϵ∗t−1, ϵ0 ∼ N (0, I), αt = 1−βt, and ᾱt =
∏t

s=1 αs.
Thus sampling xt at arbitrary timestep has a closed form
q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I).

The Reverse Process generates data from isotropic
Gaussian noise xT , and gradually recovers x0 via the re-
verse distribution pθ(xt−1|xt):

pθ(x0) =

∫
pθ(x0:T )dx1:T , (5)

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt), (6)

where pθ(xt−1|xt) = N (xt−1|µθ(xt, t),Σθ(xt, t)) is a pa-
rameterized Gaussian transition network, and defined as

µθ(xt, t) =

√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x̂θ(xt, t)

1− ᾱt
,

and Σθ(xt, t) = (1 − ᾱt−1)βtI/(1 − ᾱt). x̂θ(xt, t) is a
function approximator for predicting x0 from xt and t. The
corresponding objective function can be simplified to:

L = Ex0,ϵ,t

[
∥x̂θ(xt, t)− x0∥22

]
. (7)

Latent Diffusion Model (LDM) [30] further employs
a VQ-VAE [42] encoder E to project image x0 into latent
space z0, and constructs the diffusion model in this lower-
dimensional latent space, significantly reducing computa-
tional consumption. Once z0 is sampled via the reverse
process, the VQ-VAE decoder D will project it back to the
image space.

Since LDM significantly reduces computation consump-
tion and maintains high-quality image synthesis, in this pa-
per, we construct our diffusion process in latent space.

3.2. Latent Diffusion Model with Font Transfer

As shown in Eq. (4), in the forward process, the data dis-
tribution x0 and the injected noise can be well-separated in
arbitrary timesteps. This characteristic enables us to con-
struct a multi-stage font generative framework in latent dif-
fusion model, by incorporating the font transfer process into
the data sub-space in a predefined time interval t ∈ (t1, t2].
Based on this observation, we develop our latent diffusion
model in this section, then discuss the multi-stage font gen-
erative process in the next section.

The Forward Process. After projecting the source im-
ages Ic and target images Ig into the latent features zc0 and
zg0 by the VQ-VAE encoder E , we implement our model in
latent space. As shown in Fig. 2(a), our proposed model
(marked as black circles and denoted as z̃t) is constructed
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by utilizing a font transfer process to connect the traditional
diffusion processes (DDPM) of the latent features zct and
zgt . Therefore, our latent diffusion process z̃t can be divided
into three regions: (1). In the region t ∈ (0, t1], only latent
feature zgt evolved with noise. The forward latent z̃t in this
region can be expressed as

z̃t = zgt =
√
ᾱtz

g
0 +

√
1− ᾱtϵ0 t ∈ (0, t1] . (8)

(2). In the region t ∈ (t1, t2], together with the continu-
ously injected noise, the latent feature zgt of the target font
is gradually replaced by the latent feature zct of the source
character, and only zct exists at t2. After careful derivation
(provided in Supplementary Materials), the forward latent
z̃t in this region can be expressed as

z̃t =
√
ᾱtz

g
0 +

√
1− ᾱtϵ0 − (zg0 − zc0) ΨHt, (9)

for t ∈ (t1, t2]. The notations Ht and Ψ are coefficients
obtained by aligning our model with traditional diffusion
processes (DDPM) of zg and zc at timesteps t1 and t2, re-
spectively. They are defined as

Ht = 1 +
√
αt +

√
αtαt−1 + · · ·+√

αt · · ·αt1+2 , (10)

Ψ =

√
α̃(1, t2)

1 +
∑t2

m=t1+2

√
α̃(m, t2)

, (11)

where α̃(t1, t2) =
∏t2

i=t1
αi. Ht can be further reduced

to Ht = 1 +
√
αtHt−1. (3). In the region t ∈ (t2, T ],

the injected noise finally disrupts the latent feature zct to
Gaussian noise, and the forward latent z̃t in this region can
be expressed as

z̃t = zct =
√
ᾱtz

c
0 +

√
1− ᾱtϵ0 t ∈ (t2, T ] . (12)

The Reverse Process. Now we turn to discuss our
choices for pθ(z̃t−1|z̃t) = N (z̃t−1|µθ(z̃t, t),Σθ(z̃t, t)). As
shown in Eq. (8) and Eq. (12), in the time region (0, t1] and
(t2, T ], we have aligned the forward latent z̃t with the tradi-
tional diffusion processes (DDPM [13]), thus they share the
same parameterized mean functions: for t ∈ (0, t1]

µθ =

√
αt(1− ᾱt−1)z̃t +

√
ᾱt−1(1− αt)z̃

(g)
θ (z̃t, t)

1− ᾱt
,

(13)
where z̃(g)θ (z̃t, t) is the prediction network for predicting zg0
from noisy latent feature z̃t and time index t, while for t ∈
(t2, T ],

µθ =

√
αt(1− ᾱt−1)z̃t +

√
ᾱt−1(1− αt)z̃

(c)
θ (z̃t, t)

1− ᾱt
,

(14)
where z̃

(c)
θ (zt, t) is the prediction network for predicting zc0

from noisy latent feature z̃t and time index t. The param-
eterized mean function for the region t ∈ (t1, t2] can be

derivated via Bayes’ theorem:

µθ =

√
αt(1− ᾱt−1)

1− ᾱt
z̃t +

√
αt(1− ᾱt−1)

1− ᾱt
Ψz̃

(g)
θ (z̃t, t)

+

[
Ht−1(1− αt)−

√
αt(1− ᾱt−1)

]
1− ᾱt

Ψzc0

+
(
√
ᾱt−1 −Ht−1Ψ)(1− αt)

1− ᾱt
z̃
(g)
θ (z̃t, t). (15)

As we only incorporate the font transfer process in the
data sub-space and keep the noise sub-space unchanged, the
variance in the reverse process remains the same as DDPM:

Σθ(z̃t, t) = σ2
t I =

(1− αt)(1− ᾱt−1)

1− ᾱt
I. (16)

Therefore, the latent z̃t−1 in reverse process can be obtained
via the formula pθ(z̃t−1|z̃t) = N (z̃t−1;µθ(z̃t, t), σ

2
t I),

where the µθ(z̃t, t) is calculated from Eq. (13)-(15) based
on different timesteps.

The Optimization Objective. As the forward behaviors
keep the same as DDPM in the region (0, t1] and (t2, T ],
the optimization objectives of z̃(g)θ (z̃t, t) and ẑ

(c)
θ (z̃t, t) have

the same expressions as DDPM in these regions. For the
optimization objective of z̃

(g)
θ (z̃t, t) in the region (t1, t2],

it can be derived from the variational bound on negative
log-likelihood [13], and only the coefficient is different with
the DDPM’s loss function. Moreover, as DDPM and LDM
adopt the simplified training objectives in their implemen-
tations, we also simplify our loss functions and obtain the
optimization objective as

L = Lg + Lc, (17)

Lg = EE(x0),ϵ,t∼U(0,t2]

[
∥z̃(g)θ (z̃t, t)− zg0∥22

]
, (18)

Lc = EE(x0),ϵ,t∼U(t2,T ]

[
∥z̃(c)θ (z̃t, t)− zc0∥22

]
, (19)

where U(t1, t2] denotes the uniform distribution in region
(t1, t2].

The Conditioning Mechanism. Following the LDM
[30], we generalize our method to model conditional dis-
tributions by implementing with the conditional prediction
networks:

z̃
(i)
θ (z̃t, t, y), i ∈ {g, c}, (20)

where y is the condition for controlling the synthesis pro-
cess.

Extension to Conditional Font Generation. We further
extend this conditional model to perform the font generation
task. Since the few-shot font generation task aims to render
the source character Ic into the target font style by a few
reference samples Is, we utilize the style encoder Es and
the content encoder Ec to extract the style code from the
reference images Is and the content representations from
the source images Ic. The style and content features are
flattened and concatenated to build condition y.
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3.3. Multi-Stage Font Generative Process

Based on our proposed model, the font generation in the
reverse process can be automatically separated into three
different stages: the structure construction stage, the font
transfer stage, and the font refinement stage.

As shown in Fig. 2(b), starting with the sampled Gaus-
sian noise z̃T , in the region t ∈ (t2, T ], Structure Con-
struction Stage generates the structure information for the
target character via predicting the latent feature zc0 of the
source image Ic. However, since we can access the source
image Ic during the inference, the iterative generative steps
from T to t2 can be replaced by a single forward step to
generate the noised latent variable z̃t2 at time t = t2 via
Eq. (12). This will significantly reduce inference time and
provide more accurate structure information. Font Trans-
fer Stage performs font transformation from the timestep
t2 to t1, where the noised latent feature z̃t2 is gradually
transformed to the noised latent feature z̃t1 of target im-
ages via the z̃

(g)
θ (z̃t, t, y). To predict the latent feature zg0 ,

the prediction network z̃
(g)
θ (z̃t, t, y) in this stage is opti-

mized to not only denoise the latent features but also per-
form font transfer under the condition y. Finally, in the
region t ∈ (0, t1], Font Refinement Stage improves ap-
pearances and local details for the generated font images via
predicting zg0 from the noisy latent feature z̃t. Based on the
above three stages, we can implement the reverse process to
generate high-quality font images.

To better present this multi-stage font generative process,
we summarize above steps and provide the pseudo-code in
Supplementary Materials.

3.4. Overall Framework for Font Generation

As discussed in Sec. 3.3, the network z̃
(c)
θ (z̃t, t, y) can be

replaced by a single forward step. Moreover, instead of
implementing a single prediction network z̃

(g)
θ (z̃t, t, y) to

predict zg0 , we adopt a dual-network approach in this paper,
since the network z̃

(g)
θ (z̃t, t, y) has different behaviors in the

font transfer stage and the font refinement stage. The dual
networks z̃(g,1)θ1

(z̃t, t, y1) and z̃
(g,2)
θ2

(z̃t, t, y2) share the same
structure, but are trained to predict the latent feature zg0 in
different regions: one for font transfer stage and the other
for font refinement stage. Therefore, as shown in Fig. 2(c),
the overall framework of our font generation model contains
the following parts: the VQ-VAE encoder E , the VQ-VAE
decoder D, the dual prediction networks z̃(g,1)θ1

(z̃t, t, y1) and

z̃
(g,2)
θ2

(z̃t, t, y2), and the corresponding style and content en-

coders for each prediction network z̃
(g,i)
θi

(z̃t, t, yi). Finally,
from Eq. (17), the optimization objective of our font gener-

ative model can be further reduced to

L = L1
g + L2

g, (21)

L1
g = EE(x0),ϵ,t∼U(t1,t2]

[
∥z̃(g,1)θ1

(z̃t, t, y1)− zg0∥22
]
, (22)

L2
g = EE(x0),ϵ,t∼U(0,t1]

[
∥z̃(g,2)θ2

(z̃t, t, y2)− zg0∥22
]
. (23)

4. Experiments
In this section, we conduct extensive experiments to evalu-
ate our proposed model on the FFG task.

4.1. Implement Details

Our models are implemented on the Stable Diffusion [30]
platform. We utilize T = 1000 steps to generate 128 ×
128×3 font images with 8 reference samples. The VQ-VAE
encoder E and decoder D, the dual-network z̃

(g,1)
θ1

(z̃t, t, y1)

and z̃
(g,2)
θ2

(z̃t, t, y2) are initialized by the pre-trained Stable
Diffusion models. The style encoder Es and content en-
coder Ec are initialized by Kaiming initialization. We keep
VQ-VAE encoder E and decoder D frozen and optimize the
remaining networks.

4.2. Dataset and Evaluation Metrics

Datasets: As DM needs more training data to optimize, we
collect 900 Chinese fonts to evaluate our method on FFG
task. We randomly select 840 fonts as the training set (seen
fonts) and the remaining 60 fonts as the testing fonts (un-
seen fonts). As each collected font covers different Chi-
nese characters, we randomly sample 800 characters from
the commonly-used Chinese characters (the first-level Chi-
nese Character Table) to train our method. For the test set,
we use 214 characters as the unseen contents and sample
200 characters in our training set as the seen contents.

Therefore, the training set contains 840 fonts with 800
characters, while the test set includes two parts: one is the
Unseen Fonts Unseen Contents (UFUC) test set, containing
60 unseen fonts with 214 unseen characters; the other is the
Unseen Fonts Seen Contents (UFSC) test set, containing 60
unseen fonts with 200 seen characters.
Evaluation Metrics: In this paper, we utilize four com-
monly used measurements to evaluate our model, includ-
ing root mean squared error (RMSE), peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM),
and learned perceptual image path similarity (LPIPS) [48].

4.3. Ablation Study

With the above dataset and metrics, we conducted extensive
experiments in different settings.

4.3.1 Ablation Study on the Overall Framework

We first construct a Base Model with traditional diffusion
process (DDPM) to verify the effectiveness of our proposed
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Figure 3. Visualization results of the intermediate results z̃t by projecting z̃t back to image space via VQ-VAE decoder D.

Figure 4. Visualization results of the predicted latent feature zg0 in
the intermediate timesteps by projecting zg0 back to image space
via VQ-VAE decoder D.

Table 1. Ablation study for the overall framework on UFUC
dataset. The bold number indicates the best.

Methods RMSE↓ PSNR↑ SSIM↑ LPIPS↓
Base Model 0.2676 11.72 0.6961 0.1561
Single-Net 0.2601 12.02 0.7096 0.1531
Dual-Net 0.2475 12.45 0.7189 0.1527

latent diffusion model. Moreover, as discussed in Sec. 3.4,
there are two different selections to obtain zg0 in the reverse
process: One utilizes a single network to predict zg0 at all
timesteps. The other adopts the dual networks to predict the
latent feature zg0 in font transfer stage and font refinement
stage, respectively.

As shown in Tab. 1, compared with the Base Model, our
Single-Net model improves the Base Model with 0.0075,
0.30, 0.0135 ,and 0.0030 in terms of RMSE, PSNR, SSIM,
and LPIPS, verifying the effectiveness of our proposed la-
tent diffusion model. Moreover, the Dual-Net approach fur-
ther improves the Single-Net model with 0.0126, 0.43, and
0.0093 in terms of RMSE, PSNR, and SSIM, illustrating
that the use of separate models is beneficial for predicting
zg0 in different stages.

4.3.2 Ablation Study on the Multi-Stage Font Genera-
tive Process

The selections of the region for different stages in the multi-
stage generative process are hyper-parameters in our model,

which significantly impact image quality. Therefore, we
study the influence on model performance by selecting dif-
ferent t1 and t2. Due to the page limitation, the experimen-
tal results and the detailed discussions are provided in sup-
plementary materials, and we briefly summarize the con-
clusion: The hyper-parameters t1 and t2 are trade-off selec-
tions, and the configuration t1 = 200 and t2 = 800 achieves
the best record. Thus, we select this configuration for the
following experiments.

4.3.3 Visualization Results

In this section, we provide the visualization results of our
generative process to verify the effectiveness of our model.

As our diffusion process is implemented in latent space,
we visualize the intermediate generative results z̃t by using
the VQ-VAE decoder D to project them back into the im-
age space. As shown in Fig. 3, the images in the first and
third rows are the intermediate results for source image Ic
and target image Ig generated by the traditional diffusion
process (DDPM), while the images in the second row are
generated by our multi-stage font generative process. From
this figure, we can clearly observe a font transfer process
from the source font to the target font, and the font refine-
ment stage slightly improves style consistency by modify-
ing local details.

To further evaluate the font refinement stage, we also vi-
sualize the predicted zg0 from different timesteps in the font
refinement stage. As shown in Fig. 4, from t = 200 to
t = 0, the font refinement stage can gradually enhance lo-
cal details by modifying anomalous pixels, recovering un-
wanted structures, and improving visual appearances.

4.4. Comparison with the State-of-the-art Methods

In this section, we compare our model with several state-
of-the-art works, including LF-Font [27], DG-Font [45],
MX-Font [28], FsFont [39], NTF [9], and Diff-Font [11].
LF-Font and MX-Font are component-related methods,
which decompose characters into components and learn
component-wise representations to improve local details.
FsFont focuses on fine-grained local styles, which utilizes
cross attention to aggregate the reference styles into target
styles. DG-Font and NTF are shape transformation mod-
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Figure 5. Qualitative comparisons of our proposed model with other state-of-the-art methods on UFUC dataset.

Table 2. Quantitative comparison of our proposed model with
other state-of-the-art methods on few-shot font generation task.
The bold number indicates the best.

Methods RMSE↓ PSNR↑ SSIM↑ LPIPS↓
Unseen Fonts and Seen Contents

LF-Font [27] 0.3025 10.66 0.6469 0.2787
DG-Font [45] 0.2833 11.24 0.6651 0.1479
MX-Font [28] 0.3007 10.75 0.6438 0.1651
FsFont [39] 0.2443 12.56 0.7105 0.1468
NTF [9] 0.2650 11.83 0.6896 0.1517
Diff-Font2[11] 0.2811 10.95 0.6846 0.1557
MSD-Font 0.2439 12.61 0.7110 0.1348

Unseen Fonts and Unseen Contents
LF-Font [27] 0.2910 11.09 0.6762 0.2564
DG-Font [45] 0.2750 11.54 0.6893 0.1534
MX-Font [28] 0.2845 11.29 0.6789 0.1635
FsFont [39] 0.2509 12.29 0.7185 0.1642
NTF [9] 0.2574 12.11 0.7108 0.1553
MSD-Font 0.2475 12.45 0.7189 0.1527

els. DG-Font models font generation as a shape deformable
problem via the deformation skip connection, while NTF
models font generation as a continuous transformation pro-
cess. We train above methods on our dataset and use the
same reference images to generate fonts in inference.

4.4.1 Quantitative Comparison

The quantitative results are shown in Tab. 2. From the ta-
ble, we find that modeling font style in fine-grained manners
by multiple localized encoders (MX-Font) or cross atten-
tion mechanism (FsFont) can improve the quality of gen-
erated font images. The shape transformation approaches
(DG-Font and NTF) are also promising solutions for FFG
task. Our MSD-Font achieves superior performance on both
UFUC and UFSC datasets, which demonstrates the effec-
tiveness of our proposed method. Specifically, compared
with the NTF on the UFUC dataset, our method improves
the generation performance with 0.0099, 0.34, 0.0081, and
0.0026 in terms of RMSE, PSNR, SSIM, and LPIPS.

2Diff-Font is one-shot font generation model, we randomly select one
image from 8 reference samples to calculate style code.

4.4.2 Qualitative Comparison

To further evaluate our methods, as shown in Fig. 5, we vi-
sualize the generated font images in UFUC setting. LF-Font
sometimes generates font images with some broken struc-
tures. The DG-Font keeps the global structure for the target
character, but the generated images may contain some un-
wanted local structures and artifacts. FsFont utilizes several
carefully selected reference characters to generate font im-
ages, thus sometimes it will fail to produce accurate struc-
tures for target images with randomly selected reference
characters. The MX-Font and NTF also contain some miss-
ing strokes and distorted local details. Our MSD-Font is
able to generate high-quality font images, which achieves
higher visual quality than other state-of-the-art methods in
terms of style consistency and structure completeness.

5. Conclusion

In this paper, we propose a multi-stage font generative pro-
cess for few-shot font generation task, by incorporating font
transfer process into the diffusion model. The proposed
font generation model includes three stages: a structure
construction stage to generate global structures from the
source images, a font transfer stage to transform the source
font into the target font, and a font refinement stage to
improve the appearances and local details for the generated
font images. Based on this multi-stage generative process,
we construct our font generation framework, named
MSD-Font, with a dual-network approach to generate
high-quality font images using a few reference samples.
The promising experimental results verify the effectiveness
of our proposed model.
Limitations: As our MSD-Font based on diffusion models,
there is an increase in the inference time and model size
compared with previous GAN-based FFG methods. Many
recent works have focused on improving the efficiency and
model compactness of diffusion models, and most of these
methods can be used in our model.
Acknowledgements: This work is supported by the Na-
tional Key R&D Program of China (NO. 2022ZD0160102).
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