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Abstract

In order to mimic the human few-shot learning (FSL)
ability better and to make FSL closer to real-world applica-
tions, this paper proposes a practical FSL (pFSL) setting.
pFSL is based on unsupervised pre-trained models (analo-
gous to human prior knowledge) and recognizes many novel
classes simultaneously. Compared to traditional FSL, pFSL
is simpler in its formulation, easier to evaluate, more chal-
lenging and more practical. To cope with the rarity of train-
ing examples, this paper proposes IbM2, an instance-based
max-margin method not only for the new pFSL setting, but
also works well in traditional FSL scenarios. Based on the
Gaussian Annulus Theorem, IbM2 converts random noise
applied to the instances into a mechanism to achieve max-
imum margin in the many-way pFSL (or traditional FSL)
recognition task. Experiments with various self-supervised
pre-training methods and diverse many- or few-way FSL
tasks show that IbM2 almost always leads to improvements
compared to its respective baseline methods, and in most
cases the improvements are significant. With both the new
pFSL setting and novel IbM2 method, this paper shows that
practical few-shot learning is both viable and promising.

1. Introduction

We human have the ability to learn new concepts based on
a few exemplars, thanks to both our ability to learn and
the previously accumulated knowledge. As a stark contrast,
learning machines (especially deep learning models) mostly
require plentiful training examples to learn just few (e.g., 5)
concepts. Both the vision and learning community are fully
aware of this shortcoming, and few-shot learning (FSL) is
our community’s effort to counter this weakness, which has
been studied for a long time [39].

FSL relies on prior knowledge, too. Currently, the set-
ting is to set aside a collection of object categories (known
as the base set), with many training examples in every base
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Figure 1. Instance-based max-margin. We create a hypersphere
(large dashed circles) centered at every example (solid shapes),
sample many virtual examples (hollow shapes) around the hyper-
sphere, and require the decision boundary to classify all virtual
samples correctly. Then we in effect achieve instance-based max-
margin. Best viewed in color.

set category. A model is first pre-trained on the base set,
which naturally encodes prior knowledge. Then, few novel
object categories (most commonly 5) are to be recognized
based on the pre-trained model given few training examples
from these new concepts (e.g., 1 or 5 per category). Note
that the base and novel training sets are semantically closely
related (e.g., both contain different kinds of birds).

There is a clear mismatch between the human ability
and this FSL setting. We human can learn many instead
of few novel concepts; and, the human prior knowledge
include those accumulated as both common-sense and do-
main knowledge from many diverse domains rather than a
limited set of concepts closely related to a specific task.

Although this FSL setting has served our community
well and has pushed the technical frontier for years, with
the immense advances in deep learning and emerging prac-
tical needs for real-world FSL applications, it is time that
we need a better, simpler, and more practical FSL setting.

Hence we advocate a practical few-shot learning (or
pFSL) setting: based on an unsupervised model pre-trained
from a large number of concepts (e.g., ImageNet [30]), si-
multaneously learn many new concepts (e.g., 200) with few
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examples (e.g., 1 or 5 per category).

An ImageNet pre-trained model is more analogous to hu-
man knowledge than those learned from a base set in tradi-
tional FSL, and learning many new concepts makes it more
practical in applications. Without the base set, the learning
phase of pFSL is simple, too. More importantly, evalua-
tion of algorithms is difficult, complicated, and very time
consuming in the current FSL setting [16], but as will be
discussed later, pFSL does not suffer from this drawback.

Although an ImageNet pre-trained model undoubtedly
contains more prior knowledge than a base-set trained one,
simultaneously learning many new concepts will inevitably
make pFSL much more difficult than traditional FSL. We
believe that a more challenging task will help technology
advancement, too—the traditional FSL setting is already
saturated to certain extent (cf . results in [22, 41]).

Hence, we propose a novel approach for pFSL: Instance-
based Max-margin (IbM2), which is effective in traditional
FSL, too. The max-margin idea has been shown to be ef-
fective in improving generalization. Classic methods like
SVM [7] build max-margin decision boundaries with only
a very small portion of the training examples (i.e., support
vectors). This idea is problematic when we have both very
few training examples and a very high dimensionality. Intu-
itively, the support vectors chosen by SVM are highly likely
wrong or misleading, because a small training set leads to
excessively unstable estimation [16].

In the proposed IbM2, we achieve max-margin at the in-
stance level, instead of at the class level as in SVM. As illus-
trated in Fig. 1, we create a hypersphere for every training
example, with the example being the center of the hyper-
sphere. Then, we can sample as many virtual samples as
we want around this hypersphere, and assign the label of the
center (original training example) to all its associated virtual
examples. By finding a properly maximized radius for the
hypersphere and requiring a classifier to correctly classify
the virtual examples, we in effect achieve max-margin. An-
other benefit of IbM2 is that we do not need any special
handling for multi-class recognition, while vanilla SVM is
for binary classification only. In short, the contributions of
this paper are twofold:

• We propose a practical few-shot learning setting (pFSL):
many-way (e.g., 200-way) recognition, uses an unsuper-
vised pre-trained model, and has no base set.

• We propose IbM2, an instance-based max-margin algo-
rithm, which suits few-shot, high dimensionality, and
multi-class naturally.

As will be shown by extensive experiments, IbM2 con-
sistently improves both traditional FSL and the proposed
pFSL. The benefits of pFSL against traditional FSL will be
verified by both analyses and experiments, too.

2. Related Work

Few-shot learning aims at recognizing novel categories with
the help of prior knowledge. Given the base set as prior
knowledge, few-shot learning methods can be roughly di-
vided into two types: those based on meta-learning or
transfer-learning.

Meta-learning based FSL. Meta-learning [21] learns a
model through a large quantity of episodes consisting of dif-
ferent training and evaluation sets. Given a new task during
evaluation, the model performs what it does in training to
predict. In FSL, the training episodes are randomly sam-
pled from the base set. One line of work [14, 15, 25, 31]
focuses on learning general initial weights for fast adapting
the model to unseen categories with a few steps of opti-
mization. For example, [14] explicitly trains the classifier
in a model-agnostic way. [25] extends meta-learning with
linear predictors as a differentiable convex problem. [15]
learns the task distribution from a probabilistic perspective.
Another line of work [1, 11, 32, 33, 37, 42, 43] boosts meta-
learning by exploring different distance metrics. For exam-
ple, [32] aggregates training features to generate prototypes
for different classes as the classification head. [43] lever-
ages the Earth Mover’s Distance to calculate the structural
distance for classification. [1] extracts sets of features from
each image to build a set-based matching schema.

Transfer-learning based FSL. This line of attack [9, 12,
27, 35, 40] leverages the idea of standard transfer learning,
which first pre-trains a model on base classes and then fine-
tunes the model weights with limited training samples from
novel classes. [9] normalizes the features and classification
weights and calculates their cosine distances as the logits.
[27] pre-trains with manifold mixup [36] to improve robust-
ness. [12] introduces a baseline for effectively and transduc-
tively finetuning. [40] calibrates the training distribution of
a few-shot task using statistics from the base set. [35] ex-
plores learning a general representation of base classes in
supervised or self-supervised ways with self-distillation.

Self-supervised learning. We stress that in pFSL the
pre-trained model is unsupervised, for which the reason is to
be explained in Sec. 3. Self-supervised learning (SSL) is the
mainstream approach to train a deep net in the unsupervised
manner. Popular SSL methods, whether applied to tradi-
tional ResNet [18] models (e.g., BYOL [17], MoCo [19]
and SwAV [5]) or Vision Transformers (ViT) [13] (e.g.,
MSN [2], DINO [6] and MoCov3 [10]), all produce pre-
trained models based on large-scale datasets. In this paper,
we utilize such models as our prior knowledge in FSL.

3. pFSL: Practical Few-Shot Learning

In traditional FSL, the training dataset is split into 1)
the base set with Nb labeled images, denoted as Db =
{(xbi , ybi )}

Nb
i=1 where ybi ∈ Yb is the label of instance xbi and
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Yb is the label space ofDb; 2) the novel set withNn labeled
images, denoted as Dn = {(xnj , ynj )}

Nn
j=1 where ynj ∈ Yn is

the label of xnj and Yn is the label space of Dn. Note that
although Yb ∩ Yn = ∅, the concepts in Yb and Yn are se-
mantically similar to each other. Then, the task is to learn a
recognizer generalizing well on unknown samples from Yn.
By letting Nn � Nb, the training samples in Dn are few-
shot (i.e., few training examples per class). In traditional
FSL, |Yb| is relatively large but |Yn| is small. For example,
in most cases |Yn| = 5, which is called a 5-way FSL. The
evaluation of traditional FSL is a rather complicated task.

3.1. The pFSL Formulation

To make FSL simpler, more practical, and closer to human’s
few-shot learning capability, we propose a new practical
few-shot learning (pFSL) paradigm, which is characterized
by the following properties:
• Removing the base set. The prior knowledge obtained

through pre-training on the base set is limited, as the
base set only contains limited number of concepts. In
some applications, collecting data sharing similar con-
cepts with the novel set may be as difficult as collecting
more samples for the novel set itself.
• Pre-trained model based on big data. A model pre-

trained on a large training set containing a wide variety
of concepts is analogous to the common-sense and do-
main knowledge our brains encode, which will be useful
for few-shot learning in diverse domains.
• Many-way FSL. In a N -way k-shot FSL, we seek N to

be large and k to be small, e.g., using all the CUB [38]
categories (N = 200 categories and k is 1 or 5). This
makes pFSL much closer to real-world applications than
traditional FSL.
• Unsupervised pre-training. In pFSL, we require the

pre-training to be unsupervised. Since a large scale
dataset (e.g., ImageNet) may contain the concept in few-
shot learning (e.g., those birds in CUB), avoiding using
the labels during pre-training is necessary to make the
evaluation of FSL algorithm fairer.

These properties distinguish pFSL from traditional FSL and
some recent variants of it [9, 12, 22, 23, 27].

3.2. Simplicity and Better Evaluation

The pFSL framework is clearly simpler than traditional
FSL, and it leads to not only benefits in the training phase,
but more importantly better evaluation of FSL algorithms.

Traditional N -way k-shot FSL typical use N = 5 and
k = 1, 5, which inevitably leads to unreliable estimation of
the test accuracy. Hence, the common practice is to sample
a large number of n episodes (n ≥ 500), find the accuracy
in each episode, and report the average accuracy µ along
with its 95% confidence interval Z95%. Note that with n
episodes, the standard deviation σ of the accuracy within

the n episodes is σ = 0.51
√
nZ95%. For example, a typ-

ical result is: average accuracy 64.93%, 95% confidence
interval 0.18%, but the standard deviation of accuracy is
9.18% [16] (in which n = 10000). In short, one single eval-
uation of traditional FSL requires training and testing for n
times (n ≥ 500) and the evaluation results are still unreli-
able. Because of the complicated setup, both learning and
evaluation of traditional FSL algorithms are not only costly,
but often carried out in slightly different ways, which ren-
ders the fair comparison even more difficult.

As a stark contrast, pFSL is much simpler and as the ex-
perimental results will show in Table 1, the estimate of av-
erage accuracy is reliable. The standard deviation is small
(mostly < 1.0%). This reliable estimation comes from the
fact that pSFL is many-way (i.e., N is large). Hence, in-
stead of running n episodes, few episodes (e.g., 3) is enough
to evaluate pFSL, which not only means savings in compu-
tation, but also more reliable evaluation of algorithms.

4. IbM2: Instance-based Max-margin
In pFSL, we have a pre-trained model M (unsupervised
trained on a large set) and a novel set. There is no base
set Db any more, hence we will simply denote the novel set
as D = {xi, yi}Mi=1 (that is, ignoring the subscript b). The
label set ofD is Y . In anN -way k-shot pFSL task, we have
|Y| = N and there will be k training examples in each of
the N novel classes, hence M = kN . Note that we expect
|Y| = N to be large (i.e., many-way FSL) and k to be small
(e.g., 1 or 5).

4.1. Generating Virtual Samples

Since k (the number of training images in each class) is still
small but the number of classes (N ) becomes much larger
(e.g., from 5 in traditional FSL to 200 in pFSL), we expect
that the challenge in learning a pFSL model is greater than
that in traditional FSL. This is verified by our experiments
(cf . the results in Table 1 vs. those in Table 3).

Virtual examples, or examples that are sampled based on
the original training examples, have been repeatedly proven
useful when the number of training examples is small, e.g.,
in traditional few-shot learning [40] or long-tailed recogni-
tion (where the tail classes have few training images) [20].

The common idea in generating virtual samples is to
make the virtual samples follow the underlying distributions
of the classes. However, in few-shot learning this require-
ment is very difficult to entertain even with the help of tech-
niques such as distribution calibration (DC) in [40], because
there is only 1 or 5 examples per class.

In contrast, we do not try to sample from any underlying
distribution, but try to achieve max-margin of the decision
boundary, as illustrated in Fig. 1. Specifically, for every
training instance xi, we i.i.d. generate R virtual samples
xi,r (1 ≤ r ≤ R) which distribute around the shell of the
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hypersphere centered at xi and whose radius is controlled
by a parameter ε. Note that the same ε is shared by all train-
ing examples xi (1 ≤ i ≤ kN ).

Technically, let zi be the feature vector produced by the
pre-trained modelM: zi =M(xi) from a forward calcula-
tion. Then, a noise vector δi,r is randomly sampled from the
standard multi-dimensional normal distribution N(0, Id),
where d is the length of zi and Id is a d × d identity ma-
trix. By adding a scaled version of the noise vector to the
i-th training example, we obtain zi,r (the r-th virtual exam-
ple for xi):

zi,r = zi + εδi,r . (1)

Its label yi,r is yi (the label of xi) and ε is a positive number.
Interesting properties exist in our virtual examples:

• Hypersphere for different training examples can overlap,
so long as they belong to the same class (cf . Fig. 1).

• We require the virtual examples to be correctly classi-
fied, or, the original training examples are discarded.

• The virtual examples lie around the shell, not the in-
terior of the hypersphere. According to the Gaussian
Annulus Theorem [4], almost all the probability of a
high-dimensional spherical Gaussian with unit variance
is concentrated in a thin annulus of width O(1) with ra-
dius
√
d when d is large. Since d is indeed large (e.g.,

d = 2048), the virtual examples reside around the shell.
Hence, if we maximize the radius parameter ε but require
that the virtual examples are correctly classified, as Fig. 1
shows, we in essence achieve margin maximization in an
instance-based manner.

Hence, the proposed method is named Instance-based Max-
margin, abbreviated as IbM2.

4.2. Ellipsoidal Noise Generation

One issue with the above isotropic noise sampling is that
it ignores the structural property of the training examples.
For instance, if the ranges for two feature dimensions are
[−1, 1] and [−100, 100], respectively, isotropic sampling is
clearly unsuitable.

To overcome this drawback, we calculate a range vector
s = (s1, s2, . . . , sd) using all the original training examples
regardless of the class label, where si is the sample standard
deviation for the i-th dimension. Then, the IbM2 virtual
examples are generated as (replacing Eq. 1)

zi,r = zi + ε(s� δi,r) , (2)

where � is element-wise multiplication. The final virtual
example generation process is illustrated in Fig. 2. Note
that estimating s is dramatically easier than estimating the
underlying distribution of every novel class.

It is worth noting that this ellipsoidal noise generation is
unsupervised, which distinguishes itself from Distribution
calibration (DC) [40]. DC samples virtual examples based

Sampling

Sampling

Sampling

Sampling

Sampling

Sampling

Figure 2. Virtual example generation. Original input images pass
through the pre-trained model M to get feature vectors (solid rect-
angles). Then, every feature vector i.i.d. samples R virtual exam-
ples (R = 2 here) using Eq. 2.

on an estimated covariance structure, which is estimated
from the few novel class training examples in a sample-
wise manner and calibrated using the base set. As afore-
mentioned, we argue that it makes sense to get rid of the
dependency on a base set, then DC is not applicable.

More importantly, the reliability of this estimation of a
dense covariance matrix is understandably much lower than
our estimation of the range indicator vector s—we estimate
d values using k ×N examples, while DC estimates d × d
values using only 1 example and the base set. The base set
calibration will help DC, but clearly its estimation is still
unreliable, as shown by experiments in [40, 44]

4.3. Binary Search to Find the Largest Possible ε

Obviously we want ε to be as large as possible to achieve
max-margin, under the condition that virtual examples are
classified correctly. Hence, we design a simple binary
search to find the optimal value for ε.

For any given ε value, we can generate kNR virtual ex-
amples (xi,r, yi,r) (1 ≤ i ≤ kN , 1 ≤ r ≤ R) using Eq. 2.
We denote the virtual training set for this particular value of
ε as Dε. Then, we train a linear classifier with parameters
W to classify Dε and obtain the training accuracy. If the
training accuracy is too high (larger than a threshold T ), ε
is enlarged; otherwise ε is shrunk. The binary search main-
tains a search range, when the search range is tight enough
(when the range is less than 0.05 in Algorithm 1), the search
terminates, and we have found the optimal value ε̂.

We have a few notes for finding ε̂:
• Unlike DC [40], we do not need a validation set.
• The threshold T does not need to be 1 (100%). In SVM

learning, the slack variable trick allows some support
vectors not to have max-margin. Similarly, we just need
T to be close to 1 (0.9 in our experiments).

• Different from classic augmentation techniques [26, 28],
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Algorithm 1 Pseudo code for searching ε

# Inputs:
# x : training features of a few-shot task
# y : training labels of a few-shot task
# R : sampling times for an instance
# T : accuracy threshold for searching
# Outputs:
# eps : epsilon for sampling

left = 0.0
right = a large value
eps = right / 2

W = init_classifier
while True:

acc = train_and_eval(W, x, y, eps, R)
if acc > T:

left = eps # increase epsilon
else:

right = eps # decrease epsilon
eps = (left + right) / 2.0
if right - left < 0.05:

break

which introduce minor disturbance into input features,
the distribution of Dε̂ is drastically different from D be-
cause of a large ε̂ (empirically 1.24 on average).
Finally, the IbM2 pipeline is simple: First, use Algo-

rithm 1 to find ε̂. Second, generate the virtual dataset Dε̂.
And third, learn a linear classifier W . Note that the pre-
trained modelM is frozen and will not be updated.

5. Experimental Results
We evaluate our IbM2 method on both setups: the proposed
pFSL in many-way few-shot scenario, and also comparing
IbM2 under the traditional FSL few-way setting with state-
of-the-art FSL methods to further validate its effectiveness.

5.1. Implementation Details

For both the searching and training stages of IbM2, all fea-
tures extracted by the backbone M were L2-normalized
first. When learning the classification head (both dur-
ing the binary search and after ε̂ was determined), we
used Adam as the optimizer and the label smoothed cross-
entropy loss [34] as the learning objective. The pre-trained
model was trained using various self-supervised learning
methods on the ImageNet-1K [30] training set.

During the binary search, for all the experiments we will
report, we always set R as 200, T as 0.9 in pFSL and 0.999
in the traditional FSL setting, except when we carried out
ablation experiments on these hyperparameters.

Full implementation details are included in the appendix.

5.2. Experiments in the pFSL Setting

Datasets and Evaluation Setup. We explored two com-
mon many-way classification datasets, ImageNet-1K [30]
and CUB-200-2011 (CUB) [38]. ImageNet-1K contains
about 1.28 million training images from 1,000 classes and

50,000 images for evaluation. CUB is a fine-grained recog-
nition dataset composed of 11,788 images belonging to 200
classes of birds, 5,994 for training and 5,794 for evaluation.

For both datasets, we randomly sampled the training sets
for pFSL by selecting k images from every class (i.e., k-
shot) and using all the classes (1000 and 200, respectively)
to form the novel set. k is chosen from {1, 2, 3, 4, 5, 8, 16}.
The evaluation was carried out on the full validation (for
ImageNet) or test (for CUB) set.

Utilizing various self-supervised backbone network M
pre-trained on ImageNet, we compare two sets of results:
one in which the linear classifier was obtained by using the
original training set, the other by using IbM2’s virtual ex-
amples. We report the top-1 accuracy and its standard devi-
ation computed over 3 randomly sampled novel sets.

Main Results. As the results in Table 1 suggest, we
evaluated on two types of backbones: Vision Transformer
(ViT) [13] and ResNet50 [18]. The pre-training methods
included DINO [6], MoCov3 [10], MSN [2], SimCLR [8]
and BYOL [17]. Table 1 shows that in almost all cases,
IbM2 benefited the few-shot learning process and improved
the top-1 accuracy.

When the number of shots (k) is very small (≤ 2), the
improvement of IbM2 over the baseline is roughly 1% on
average. However, as the number of training shots goes
larger, it is clear that the level of accuracy improvement in-
creases gradually from ∼ 1% to ∼ 2%, even > 3% in some
cases.

A useful observation from these results is that in pFSL,
both the baseline and IbM2 have small standard deviations,
that is, more robust in evaluation. Hence, we do not need
500 episodes in pFSL any longer—3 is enough.

Semi-supervised learning. In the self-supervised learn-
ing literature, it is a common practice to use ImageNet-1K
training images to learn a backbone in the unsupervised
manner, then use a small portion (e.g., 1%) of the train-
ing data now with labels to train a classifier. This semi-
supervised learning task can also be viewed as our pFSL
setting. Hence, we also report the 1% ImageNet-1K semi-
supervised learning (on average 12 labeled training images
per class) results in Table 2. IbM2 consistently improved
various self-supervised models and backbone architectures
in all cases, with 0.8% to 2.9% top-1 accuracy increase.

5.3. Experiments in the Traditional FSL Setting

Datasets and Evaluation Setup. We evaluated IbM2 in the
traditional FSL setup, too. We conducted experiments on
two standard benchmark datasets, mini-ImageNet [37] and
CIFAR-FS [3]. mini-ImageNet consists of 100 categories
selected from ImageNet-1K, which are further split into
64 base, 16 val and 20 novel categories according to [29].
CIFAR-FS is created by randomly shuffling the 100 cate-
gories of CIFAR-100 [24] into 64 base, 16 val, 20 novel
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Dataset Pre-training
Method Backbone IbM2 Shot per Class

1 2 3 4 5 8 16

ImageNet-1K

DINO ViT-S/16 39.2 ± 0.3 49.2 ± 0.2 54.1 ± 0.4 56.7 ± 0.2 58.0 ± 0.1 60.4 ± 0.1 62.7 ± 0.1
X 39.2 ± 0.3 49.4 ± 0.3 54.6 ± 0.4 57.6 ± 0.1 59.3 ± 0.1 62.4 ± 0.2 65.8 ± 0.1

MoCov3 ViT-S/16 32.7 ± 0.6 42.0 ± 0.2 46.9 ± 0.3 49.6 ± 0.4 51.0 ± 0.1 53.8 ± 0.1 56.6 ± 0.2
X 33.9 ± 0.6 43.2 ± 0.2 48.4 ± 0.3 51.3 ± 0.3 52.8 ± 0.2 56.1 ± 0.1 59.8 ± 0.2

MSN

ViT-S/16 47.9 ± 0.1 56.2 ± 0.4 59.8 ± 0.3 61.6 ± 0.1 62.4 ± 0.2 64.4 ± 0.3 66.1 ± 0.1
X 47.8 ± 0.2 56.4 ± 0.4 60.5 ± 0.2 62.5 ± 0.2 63.6 ± 0.2 66.0 ± 0.2 68.4 ± 0.0

ViT-B/4 53.2 ± 0.2 64.5 ± 0.4 68.9 ± 0.2 70.9 ± 0.2 72.0 ± 0.3 73.8 ± 0.1 75.0 ± 0.2
X 54.0 ± 0.1 64.9 ± 0.5 69.4 ± 0.2 71.4 ± 0.1 72.7 ± 0.4 74.7 ± 0.0 76.4 ± 0.2

ViT-L/7 57.3 ± 0.4 66.5 ± 0.4 69.8 ± 0.5 71.6 ± 0.4 72.2 ± 0.2 73.8 ± 0.1 75.1 ± 0.1
X 57.7 ± 0.4 66.6 ± 0.5 70.1 ± 0.6 71.8 ± 0.4 72.6 ± 0.2 74.3 ± 0.1 76.0 ± 0.0

SimCLR ResNet50 21.4 ± 0.4 30.3 ± 0.1 36.1 ± 0.3 39.8 ± 0.2 42.0 ± 0.1 46.8 ± 0.1 51.9 ± 0.0
X 23.6 ± 0.4 33.4 ± 0.2 39.0 ± 0.4 42.0 ± 0.3 44.2 ± 0.1 48.0 ± 0.0 52.7 ± 0.0

BYOL ResNet50 26.5 ± 0.3 35.7 ± 0.2 41.5 ± 0.4 45.1 ± 0.2 47.2 ± 0.1 51.8 ± 0.1 57.1 ± 0.1
X 27.5 ± 0.3 37.5 ± 0.1 43.3 ± 0.4 46.8 ± 0.2 49.1 ± 0.1 53.2 ± 0.1 58.0 ± 0.1

CUB

DINO ViT-S/16 35.4 ± 1.2 49.0 ± 0.5 56.8 ± 0.8 60.8 ± 0.7 65.2 ± 0.9 70.6 ± 0.9 75.9 ± 0.3
X 36.2 ± 1.4 49.6 ± 0.6 57.4 ± 1.0 62.0 ± 0.6 66.4 ± 0.8 72.5 ± 0.8 79.0 ± 0.2

MSN
ViT-S/16 32.1 ± 1.6 45.0 ± 0.6 53.1 ± 0.6 56.7 ± 0.1 61.4 ± 0.5 67.3 ± 0.0 73.6 ± 0.4

X 33.0 ± 1.4 45.8 ± 0.7 53.2 ± 0.9 57.1 ± 0.4 62.0 ± 1.0 68.4 ± 0.1 75.7 ± 0.2

ViT-L/7 34.9 ± 1.3 49.4 ± 0.4 58.8 ± 0.8 62.7 ± 0.9 67.2 ± 0.3 73.8 ± 0.8 80.4 ± 0.2
X 37.5 ± 1.2 50.1 ± 0.5 59.0 ± 0.8 62.6 ± 0.5 67.5 ± 0.6 73.9 ± 0.4 81.0 ± 0.1

Table 1. Average of top-1 accuracy (%) with standard deviation across 3 random subsets on ImageNet-1K and CUB. A X in the column
IbM2 denotes the proposed IbM2 method, or the baseline method if it is blank. Those IbM2 results that are at least 0.5% higher than the
baseline are shown in boldface.

Pre-training
Method

Backbone IbM2 Top 1

DINO ViT-S/16
62.5

X 65.0

MoCov3 ViT-S/16
56.0

X 58.9

MSN

ViT-S/16
65.9

X 67.9

ViT-B/4
74.9

X 76.1

ViT-L/7
74.8

X 75.6

SimCLR ResNet50
50.5

X 51.3

BYOL ResNet50
55.7

X 56.8

Table 2. Top-1 accuracy (%) of 1% ImageNet-1K semi-supervised
learning. The training set contains on average 12 labeled training
samples per category.

categories. Note that in order to perform traditional few-
shot learning, only the novel split of these two datasets is
required to sample many 5-way 1/5-shot episodes. We re-
port the metrics mentioned in [16]: the average (ACCm),
worst-case (ACC1), average of worst 10 (ACC10), average
of worst 100 (ACC100) episodes’ accuracy, and the stan-
dard deviation (σ) over 500 episodes for comprehensive
evaluation. To make the results more reliable, we aver-
age the value of each metric from 5 runs with different

random seeds. We adopted PMF [22], S2M2R [27] and
Meta-Baseline [11] as the pre-training or meta-training ap-
proaches to obtain the backbone weights out of the base set.

Main Results. As shown in Table 3, by plugging IbM2
in during classifier learning, the proposed IbM2 improved
the average accuracy ACCm in all cases except only 1 re-
sult. And, the standard deviation σ was reduced by IbM2 or
remain unchanged in all cases. As [16] advocated, smaller
σ means the learning process is more stable.

[16] also advocates the worst-case episode’s accuracy
is more important than the average accuracy among all
episodes. Table 3 shows that IbM2 almost always leads
to higher worst-case (ACC1) or near-worst-case (ACC10,
ACC100) accuracy. Furthermore, the average gain of ACCm
is 0.4%, which is far less than that of ACC1 (1.3%). As
for ACC10 and ACC100, their gains are very similar, both
around 0.5%. These observations demonstrate that IbM2
can boost the recognition accuracy of few-shot learning in
almost every scenario, especially the worst case one.

At last, by comparing the numbers in Tables 1 and 3,
pFSL is more challenging than traditional FSL, which leads
to more open questions to solve.

5.4. Ablation Studies

We performed ablation studies for IbM2 in the pFSL setting
on ImageNet-1K.

Instance-based vs. class-based max-margin. IbM2
seeks max-margin through an instance-based manner. In
this study, we compare this instance-based max-margin
with the well-known support vector machine (SVM), which
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Dataset Pre-training &
Meta-training Backbone IbM2 1-shot 5-shot

ACCm σ ACC1 ACC10 ACC100 ACCm σ ACC1 ACC10 ACC100

mini-ImageNet

PMF

ViT-S/16 93.4 6.1 61.3 72.4 83.4 98.4 1.8 87.7 91.4 95.6
X 94.4 5.6 63.2 74.7 85.1 98.6 1.8 86.1 91.3 95.9

ViT-B/16 94.9 5.4 66.9 75.5 86.0 98.8 1.6 89.1 92.9 96.3
X 95.6 5.1 69.6 77.6 87.1 98.9 1.6 89.3 93.0 96.3

ResNet50 94.9 5.3 67.2 75.2 86.3 98.5 1.7 89.3 91.9 95.8
X 95.3 5.2 66.1 74.6 86.9 98.8 1.6 89.3 92.7 96.3

S2M2R WRN-28-10 65.4 10.0 32.0 39.3 50.7 82.3 7.1 52.0 62.5 71.8
X 65.8 10.0 32.5 40.5 51.1 82.9 7.0 53.3 63.3 72.3

Meta-Baseline ResNet12 62.9 10.4 26.7 34.3 47.4 79.0 7.5 54.7 58.0 67.9
X 63.0 10.2 32.3 35.6 47.9 79.5 7.3 54.9 58.5 68.7

CIFAR-FS

PMF

ViT-S/16 87.9 8.3 51.7 61.7 74.8 95.5 4.2 74.7 81.8 88.5
X 89.0 8.1 59.2 64.1 75.9 95.7 4.2 73.3 81.7 88.7

ViT-B/16 89.8 8.1 55.2 64.8 76.8 96.0 4.1 73.1 82.2 89.2
X 90.3 8.0 58.9 65.5 77.4 96.0 4.1 74.1 81.8 89.2

ResNet50 81.7 10.4 35.2 51.6 65.8 91.3 5.5 71.2 75.1 82.7
X 82.3 10.3 36.3 51.1 66.5 91.6 5.3 73.3 76.0 83.2

S2M2R WRN-28-10 75.2 10.8 44.0 46.7 59.2 87.7 7.1 54.7 67.9 76.8
X 75.5 10.8 42.4 45.5 59.2 87.7 7.0 54.9 68.1 77.0

Meta-Baseline ResNet12 72.7 11.6 32.0 42.9 56.1 84.8 7.5 54.7 65.1 73.6
X 72.3 11.5 32.8 42.3 55.7 85.1 7.5 56.3 65.4 74.1

Table 3. Results of 5-way classification on mini-ImageNet and CIFAR-FS in the traditional few-shot learning setting. For the baseline
methods, we obtain the results from their respective official implementations.

achieves max-margin in a class-based manner. We exper-
imented with SVM using the linear kernel function in the
LIBSVM [7] software package. By iterating the value
of SVM’s regularization hyperparameter C from the set
{0.1, 1, 10, 100, 1000}, we found the best accuracy among
them to compare with our IbM2 method.

As shown in Table 4, the proposed IbM2 method outper-
forms SVM with the best C by a significant margin in all
cases. Specifically, the recognition accuracy improves∼2%
on average, and even up to ∼4% in the extremely scarce
1-shot case. These results demonstrate that our instance-
based margin generated by IbM2 helps more to learn a ro-
bust classification boundary, especially when the training
distribution is drastically shifted.

Sensitivity of R. As described in Sec. 4, one origi-
nal training example is turned into R virtual examples to
form the training set Dε̂. In this part, we study the effect
of the hyperparameter R. As shown in Table 5, when the
training shots are highly limited, increasing R significantly
improves recognition accuracy. As the number of training
shots gets larger, the accuracy difference between a large R
(R = 400) and a small one (R = 1) gradually decreases
from 1.6% to 0.2%.

When training samples are extremely scarce, it is diffi-
cult to model the correct Gaussian distribution with a few
samples in a high-dimensional space. Therefore, increasing
R is necessary for a good estimation. When more training
shots are available, the need for a large value of sampling
times is reduced, hence the accuracy difference between dif-
ferent R becomes smaller, too. Based on these results, we
let R = 200 in all our experiments.

Method
Shot per Class

1 2 3 4 5 8 16
SVM 54.8 64.8 68.2 70.0 70.8 72.8 74.7
IbM2 58.2 66.9 70.2 71.9 72.7 74.3 76.1

Table 4. Top-1 accuracy (%) with different margin-based methods
on ImageNet-1K classification with ViT-L/7 from MSN as the pre-
trained backbone.

R
Shot per Class

1 2 3 4 5 8 16
1 32.9 42.7 47.8 50.8 52.5 55.9 60.1
10 33.7 43.6 48.5 51.4 52.9 56.2 60.3
50 33.8 43.7 48.6 51.5 53.0 56.2 60.3

200 34.4 43.8 48.7 51.5 53.0 56.2 60.3
400 34.5 43.8 48.6 51.5 53.0 56.2 60.3

Table 5. Top-1 accuracy (%) of classification with different R
on ImageNet-1K with ViT-S/16 from MoCov3 as the pre-trained
backbone.

Sampling
Schema

Shot per Class
1 2 3 4 5 8 16

- 33.1 42.4 47.2 49.8 51.6 55.2 59.2
Spherical 33.0 42.1 47.1 50.2 51.8 55.3 59.8

Ellipsoidal 34.4 43.8 48.7 51.5 53.0 56.2 60.3

Table 6. Top-1 accuracy (%) of classification with different sam-
pling schemas on ImageNet-1K with ViT-S/16 from MoCov3 as
the pre-trained backbone. ’-’ denotes the simple baseline using
only the original training examples.
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Ellipsoidal vs. isotropic sampling. We have described
two noise sampling strategies to generate virtual examples.
The ellipsoidal one is preferred over the isotropic one, and
is used in IbM2. In this part, we evaluate the effectiveness
of this sampling schema by experimentally comparing these
two sampling strategies. The isotropic sampling strategy is
denoted as Spherical in Table 6.

As shown in Table 6, the accuracy in the ellipsoidal
sampling schema is consistently better than its spherical
counterpart or the baseline. Moreover, in low-shot cases
(≤ 3), sampling with spherical Gaussian slightly degraded
the recognition accuracy. The reason may be that the stan-
dard deviation of different channels calculated from train-
ing features varied a lot, thus simply regarding all chan-
nels as independent and identically distributed might make
the sampled points significantly shifted from the underlying
distribution. However, as the number of training samples
increases, both isotropic and ellipsoidal sampling outper-
formed the baseline.

Based on these observations, we chose to adopt the ellip-
soidal noise sampling (Eq. 2) in IbM2.

On what classes can IbM2 help? Finally, we study
what classes will benefit from IbM2—will most or only a
small portion of classes be improved by IbM2? After the
training of the baseline and IbM2 finished, we calculated the
class-wise validation accuracy for every class on ImageNet-
1K, as

ACCk =
Nk
cor

Nk
cls

, (3)

where ACCk is the per-class accuracy (i.e., recall) of the
k-th class, Nk

cls is the number of test samples class k con-
tains (Nk

cls = 50 in ImageNet-1K) and Nk
cor is the number

of correctly classified samples of class k. For every class,
we obtain the difference of per-class accuracy (that of IbM2
minus that of the baseline). A positive difference is an ac-
curacy gain and a negative gain is in fact an accuracy loss.

We then sort the baseline’s per-class accuracy in the as-
cending order. Following this order, we rearrange the per-
class accuracy gains. The 1000 accuracy gains are divided
into 10 histogram bins in the rearranged order, and inside
each bin the 100 per-class accuracy gains are averaged to
obtain the accuracy gain of that bin. Fig. 3 plots the average
accuracy gain in each bin.

We find that IbM2 improves average per-class accuracy
in almost every histogram bin (i.e., is above the “0.0” hori-
zon in the y-axis). More detailed numbers reveal that the
recognition accuracy of more than 65% categories out of
1000 is improved in all shots. Furthermore, Fig. 3 shows
a trend: the more accurate a class is, the higher gains IbM2
can achieve over the baseline. That is, when the task is too
difficult for the baseline, IbM2 can help but its usefulness
is restricted. But, when the baseline is already accurate
enough (categorical subset 9 and later), the room for IbM2’s

Figure 3. Categorical accuracy gain (%) of IbM2 compared to
baseline with ViT-S/16 pre-trained by MoCov3 [10] as the back-
bone.

further improvement is small again. It is the middle range
that IbM2 is the most useful.

6. Conclusions and Limitations
In this paper, we advocated pFSL, a new practical few-shot
learning setting. We also proposed IbM2, an instance-based
max-margin method to improve few-shot learning. With the
technological advancements, it is time to upgrade the tradi-
tional FSL settings. We need a simpler, easier-to-evaluate,
more challenging and more practical FSL setting, and the
proposed pFSL task satisfies these requirements.

To address the challenges associated with the scarcity of
training examples, we introduced IbM2. Instead of maxi-
mizing the class-level margin, IbM2 is instance-based mar-
gin maximization. It achieved significant improvements
in both pFSL and the traditional FSL settings consistently.
IbM2 is simple and reliable. It introduces only 2 hyper-
parameters, and the default values of them worked well in
experiments across different architectures and tasks.

As the experiments indicated, IbM2 works the best for
the middle range in terms of task difficulty. In a k-shot task
when k is extremely small, there is still considerable room
for improvement in the pFSL setting. Furthermore, IbM2
freezes the backbone and only learns the linear classifier.
In the future, we plan to improve the very small shot cases
(e.g., k = 1) and better tune the backbone in few-shot learn-
ing to push the current limits further.

7. Acknowledgments
This research received substantial support from Jianxin Wu,
who wrote IbM2’s first working code and whose generous
assistance and invaluable guidance were sincerely appre-
ciated throughout our research process. Additionally, we
acknowledge the funding provided by the National Natu-
ral Science Foundation of China under Grant 62276123 and
Grant 61921006.

28681



References
[1] Arman Afrasiyabi, Hugo Larochelle, Jean-François Lalonde,

and Christian Gagné. Matching feature sets for few-shot im-
age classification. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9004–9014, 2022.

[2] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bo-
janowski, Florian Bordes, Pascal Vincent, Armand Joulin,
Mike Rabbat, and Nicolas Ballas. Masked Siamese Net-
works for label-efficient learning. In European Conference
on Computer Vision, page 456–473. Springer, 2022.

[3] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Represen-
tations, pages 1–15, 2019.

[4] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foun-
dations of Data Science. Cambridge University Press, 2020.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
Advances in Neural Information Processing Systems, pages
9912–9924, 2020.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou,
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