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Abstract

Cross-modal alignment aims to build a bridge connect-
ing vision and language. It is an important multi-modal
task that efficiently learns the semantic similarities be-
tween images and texts. Traditional fine-grained alignment
methods heavily rely on pre-trained object detectors to ex-
tract region features for subsequent region-word alignment,
thereby incurring substantial computational costs for re-
gion detection and error propagation issues for two-stage
training. In this paper, we focus on the mainstream vision
transformer, incorporating patch features for patch-word
alignment, while addressing the resultant issue of visual
patch redundancy and patch ambiguity for semantic align-
ment. We propose a novel Linguistic-Aware Patch Slim-
ming (LAPS) framework for fine-grained alignment, which
explicitly identifies redundant visual patches with language
supervision and rectifies their semantic and spatial infor-
mation to facilitate more effective and consistent patch-
word alignment. Extensive experiments on various evalu-
ation benchmarks and model backbones show LAPS out-
performs the state-of-the-art fine-grained alignment meth-
ods by 5%-15% rSum. Our code is available at https:
//github.com/CrossmodalGroup/LAPS.

1. Introduction
Cross-modal alignment aims to bridge the semantic gap
between different modalities, such as visual and linguistic
ones. It is a fundamental technology for many multi-modal
tasks, including image-text retrieval [14], visual question
answering [15], image captioning [27]. The critical chal-
lenge of cross-modal alignment lies in efficiently measur-
ing the semantic similarities between images and texts to
achieve a high-quality alignment.

In general, existing cross-modal alignments can be clas-
sified into two paradigms. The first coarse-grained align-
ment [9, 14, 26] separately encodes the whole images and
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Figure 1. The motivation of our framework. (a) The vanilla
transformer-based fine-grained alignment uses vision transformer
[8, 31] to divide images into tiny patches and extract patch fea-
tures, then bridge an interaction between visual patches and textual
words to learn a cumulative alignment score. (b) A large part of
visual patches are redundant to textual content. These redundant
patches will overshadow crucial patches and accumulate inaccu-
rate alignments. (c) Visual patches are disjoint fragments of an
image and associated with many patches during training. These
patches will obtain the average semantics of various objects and
lack structure information, causing patches to have ambiguous se-
mantics and always get moderate alignment scores with distinct
texts, hence visual patches easily get the mismatching in local re-
gions and inconsistent alignment with negative textual samples.

texts into a unified embedding space, then directly com-
putes the similarity of global embeddings. The second fine-
grained alignment [7, 21, 35] applies cross-modal interac-
tion between visual and textual local features, then aggre-
gates local alignments to learn a cumulative similarity. Pre-
vious fine-grained methods adhered to the detector-based
roadmap, which entails a two-step process: first extracting
region features through a pre-trained object detector, e.g.,
Faster-RCNN [38], then compute region-word alignments
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(a) Patch Attention with image itself (b) Patch Attention with image-text alignment
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Figure 2. The visualization of patch attention for the vanilla vision
transformer, where red colors represent high semantic responses
and significant areas in images and blue indicates unimportant.
It shows that significant areas in images are highly relevant to
the (a) visual saliency (e.g., ‘dog’ or ‘woman’ areas are high-
lighted), or (b) textual contents with image-text alignment (e.g.,
‘beach’ or ‘computer’ areas are highlighted), while these individ-
ual patches lack semantic integrity and spatial structure informa-
tion. (c) Therefore, the adjacent areas will get high responses with
different language words (e.g., the partial visual areas of the dog
are highlighted by the textual ‘lion’ or ‘fox’, and partial areas of
the woman are highlighted by the textual ‘man’ or ‘tablecloth’).

between visual regions and textual words. These frame-
works heavily rely on the capability of detectors and bring
expensive computation [24, 25]. Recent works adopt pure
transformer architectures, e.g., vision transformer [8], to di-
vide images into non-overlapping patches and encode patch
features to construct patch-word alignments [23, 25]. The
transformer-based method is a flexible end-to-end training
framework, efficient for feature extraction, owns scalable
performances compared to the detector-based, and has be-
come mainstream.

However, the vanilla transformer-based patch-word
framework has inherent defects, i.e., the patch redundancy
and patch ambiguity problems for semantic alignment. The
vision transformer [8] divides images into minute patches
(at 224 and 284 image resolutions, it generates 14×14=196
and 24×24=576 patches) as Fig. 1, a substantial propor-
tion of them proves to be redundant, e.g., non-salient back-
grounds or text-irrelevant areas as Fig. 2(a)(b). The massive
redundant patches will overshadow crucial visual patches,
and accumulate unbearable misalignment during the patch-
word interaction, ultimately bringing inaccurate cumulative
alignments. More importantly, these fragmented patches
are tiny components of an image. Tiny patches lack seman-
tic integrity compared to complete visual regions. It will
lead to ambiguous semantic expressions. Visual patches al-
ways get moderate alignment scores for distinct language
concepts as Fig. 2(c), which brings inconsistent patch-word
alignment in local regions with negative image-text pairs.

Consequently, how to ensure the semantic integrity of vi-

sual patches to establish accurate alignment, is a core issue
for transformer-based cross-modal frameworks. To address
these problems, we introduce a Linguistic-Aware Patch
Slimming (LAPS) framework, which effectively eliminates
extensive redundant patches through linguistic supervision,
and calibrates the semantic and structural information for
significant patches to transform an average semantic ex-
pression into an optimal semantic for a certain image. To
the best of our knowledge, LAPS is the first to explicitly
explore visual patch selection and patch calibration with
language contexts to facilitate patch-word alignment. As
illustrated in Fig. 3, we first effectively estimate the se-
mantic significance of visual patches using the Language-
Context Patch Selection (LPS) module to pick out signifi-
cant patches with differentiable sampling. Next, we adap-
tively rectify the semantic and structural information for
significant patches through the Semantic-Spatial Patch Cal-
ibration (SPC) module to obtain distinct semantic expres-
sions. Finally, we employ the Sparse Patch-Word Align-
ment (SPA) module to facilitate the fine-grained interaction
between visual patches and textual words. Therefore, LAPS
extends the vanilla transformer-based framework to achieve
more accurate and consistent patch-word alignments. The
contributions of this paper are as follows:

• We propose a Linguistic-Aware Patch Slimming (LAPS)
framework for cross-modal alignment. To the best of our
knowledge, this is the first work explicitly studying patch-
word alignment with patch selection and calibration.

• We estimate the patch significance scores to identify re-
dundant visual patches through linguistic supervision and
select significant ones using differentiable sampling.

• We rectify significant visual patches with semantic and
spatial relationships to obtain semantic integrity and
structural information comparable to linguistic texts.

• We evaluate LAPS with existing fine-grained methods on
diverse model backbones. LAPS outperforms state-of-
the-art methods for image-text retrieval on two bench-
marks, Flickr30K and MS-COCO, by 5%-15% rSum.

2. Related Work

2.1. Cross-Modal Alignment

According to the implementation of cross-modal interac-
tion, cross-modal alignment methods can be broadly cat-
egorized into two types: coarse-grained and fine-grained
alignment. Coarse-grained methods encode images and
sentences into a shared embedding space [11–13], and se-
mantic similarity is computed via the cosine similarity of
cross-modal embeddings. Previous methods [4, 43] typi-
cally boost extracted local features and aggregate them to
learn global embeddings, e.g, VSE++ [9] utilizes average
pooling on region features to learn the unified embeddings.
Fine-grained methods explicitly perform cross-modal inter-
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Figure 3. (a) Overview of our Linguistic-Aware Patch Slimming (LAPS) Framework for fine-grained cross-modal alignment. Given an
image-text pair (I, T ), we first tokenize them and then use pure Transformer encoders to extract visual patch features and textual word
features. Then, we propose the Language-Context Patch Selection (LPS) module to identify text-relevant patches by language supervision.
Next, we propose the Semantic-Spatial Patch Calibration (SPC) module to rectify the semantic and spatial information for significant
patches, then obtain distinct semantic expressions. Finally, we propose the Sparse Patch-Word Alignment (SPA) module to compute the
sparse patch-word alignment score S(I, T ). (b)(c)(d) The detailed architecture of proposed LPS, SPC, and SPA modules, respectively.

action between local features of two modalities and then
calculate a cumulative similarity score. [3, 7, 21, 47]. Pre-
vious works typically emphasize the semantic alignment be-
tween image regions and text words. For example, SCAN
[21] introduces an attention mechanism to focus on salient
alignments while suppressing misalignments. SGR [7] ex-
tends the SCAN framework by a similarity reasoning net-
work to refine region-word attention. SHAN [35] combines
the hard coding assignment with SCAN to achieve efficient
region-word alignments.

However, current fine-grained methods [7, 21, 35, 47]
heavily rely on object detectors as visual encoders to ac-
quire region features. The exploration of transformer-based
architectures on image patches has been relatively limited.
We focus on visual patches and tackle the issues of patch
redundancy and ambiguity for semantic alignments.

2.2. Efficient Vision Transformer

Vision Transformer (ViT) [8] is the mainstream visual
architecture, which divides the whole image into non-
overlapping patches based on spatial distribution and feeds
patches into a pure Transformer [41] encoder as visual to-
ken sequences. Vanilla transformers have high compu-
tational and memory costs because the self-attention has
quadratic computational complexity concerning the num-
ber of tokens [31, 42]. Recently, token pruning approaches
[28, 34, 37, 44] are proposed to accelerate ViTs by reduc-
ing the number of tokens at the inference stage. Some work

[20, 34, 37] introduces pre-defined prediction networks to
score visual tokens and drop unimportant tokens according
to the scores. Others [10, 28, 44] use the attention of class
tokens to evaluate the token importance and aggregate re-
dundant tokens. However, the above methods only focus on
vision tasks with the single modality, and are unsuitable for
our cross-modal alignment, since they directly prune image
tokens without considering the textual contexts.

2.3. Vision-Language Pre-training

The early vision language pre-training (VLP) models ad-
hered to detector-based roadmap [5, 22], which entails a
two-step process: First, it extracts visual features through
a pre-trained object detector. Then, it integrates textual and
visual features into a multi-modal encoder for pre-training.
Although this approach has yielded strong performances
across various downstream tasks, it also brings the chal-
lenges of expensive computation and unstable training on
detection. Recently, ViT-based methods [16, 19, 24] employ
pure transformer architectures to encode images, eliminat-
ing the requirement of object detectors and enabling end-to-
end VLP framework. However, they struggle with lengthy
visual token sequences and lack fine-grained cross-modal
alignment information. These long visual sequences also
increase computation costs and introduce noise visual in-
formation for cross-modal fusion. Some work [17, 18] pro-
poses patch fusion approaches to learn a concise summary
of visual token sequences and enhance cross-modal fusion.
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3. Methodology
The overview of our LAPS is illustrated in Fig. 3. We first
introduce token feature extraction in Sec. 3.1. Then, we
introduce the Language-Context Patch Selection in Sec. 3.2
and Semantic-Spatial Patch Calibration in Sec. 3.3. Lastly,
we describe the Sparse Patch-Word Alignment in Sec. 3.4.

3.1. Token Feature Extraction

First, we employ the pure transformer architectures [41] as
the feature encoders for image and text inputs, to extract the
visual and textual token sequences, respectively.

Visual Patch Tokens. For an image I , we take the vi-
sion transformers [8, 31] as the visual encoder. The image
is partitioned into N non-overlapping patches based on the
spatial distribution. Subsequently, we feed these patches as
a visual token sequence into the vision transformer, which
consists of multiple self-attention layers. We can obtain
a set of visual patch features V = {vcls,v1, · · · ,vN} ∈
R(N+1)×d. vcls is the [CLS] token in the image, and d is
the feature dimension.

Textual Word Tokens. For a sentence T , we utilize the
standard sequence transformer, BERT [6] as the textual en-
coder. Similarly, the sentence undergoes tokenization into
linguistic words and is fed to the encoder. We get a set of
textual word features T = {t1, · · · , tM} ∈ RM×d, and M
is the number of words in the sentence.

3.2. Language-Context Patch Selection

After getting visual patch features and textual word features
obtained by Sec. 3.1, we would like to pick out significant
visual patches for images, as shown in Fig. 3(b).

3.2.1 Significance Score Estimation

Similar to token pruning [28, 44] of ViT, we treat the patch
selection as a discriminative task, that estimates a signifi-
cance score for each patch and then determines the selection
according to the scores. We first introduce spatial informa-
tion from images into patch features, and use a Score-Aware
Prediction Network to learn significant scores. The network
consists of a two-layer MLP and a Sigmoid function.

api = Sigmoid (MLP (vi)) , i ∈ {1, . . . , N} (1)

where api ∈ [0, 1] is the significance score for the i-th patch.
A higher value of api indicates a more significant patch vi.
However, relying solely on a score network to predict sig-
nificant patches without textual supervision is insufficient
[34, 37] for cross-modal alignment. Therefore, we calculate
attentive scores between visual patches and textual words to
introduce linguistic contexts.

We propose two distinct attention scores: First, we com-
pute the cross-attention between visual patches and textual

representations, resulting in text-relevant attentive scores
ar. Secondly, we compute the self-attention within visual
patches, yielding image-salient attentive scores as.

ari = Norm
(
vT
i · tglo/d

)
, asi = Norm

(
vT
i · vglo/d

)
(2)

where Norm represents the normalization of attentive
scores into a 0-1 range, ensuring consistency with predic-
tive scores api . And vglo, tglo is the visual/textual global
embeddings, the average pooling of patch/word features,
We integrate the aforementioned scores to derive the final
significance score, with β serving as a weight parameter.

ai = (1− β)api +
β

2
(asi + ari ) (3)

3.2.2 Differentiable Decision Matrix

The challenge of selecting significant patches lies in trans-
ferring significance scores a = [a1, a2, ..., aN ] ∈ RN into a
binary decision matrix {0, 1}N , which determines whether
to select each patch or not. The naive sampling, such as
selecting the top-K patches based on the values of signifi-
cance scores, is non-differentiable and thus hinders the fea-
sibility of end-to-end optimization. To overcome this chal-
lenge, we employ the Gumbel-Softmax technique [33] to
provide a smooth and differentiable sampling process. The
Gumbel-Softmax matrix is derived as:

Mi,l =
exp (log (mi,l +Gi,l) /τ)∑L

j=1 exp (log (mi,j +Gi,j) /τ)
(4)

where M ∈ RN×L and L is the total number of categories
(L = 2 for the binary decision, mi,1 = ai, mi,2 = 1 − ai).
Gi = − log (− log (Ui)) is the Gumbel distribution, Ui is
the uniform distribution (0, 1), and τ controls the smooth-
ness of M . Finally, we sample from the M with arg-max
operation to get the differentiable decision matrix D.

D = Sampling(M)∗,1 ∈ {0, 1}N , (5)

where D is obtained as the first column of sampled M ,
which is a one-hot matrix by arg-max operation. Hence,
D signifies the outcomes of patch selection: ‘1’ indicates a
significant patch, and ‘0’ is a redundant patch. At the train-
ing stage, the gradients can be back-propagated to the score
prediction network via the differentiable decision matrix.

3.3. Semantic-Spatial Patch Calibration

After selecting significant visual patches with language su-
pervision by Sec. 3.2, we would like to enhance the seman-
tic expression of significant patches, as shown in Fig. 3(c).

We mark the selected significant patches as Vs =
{v1, ...,vNs

} ∈ RNs×d, Ns is the number of significant
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patches. We use an aggregation network [48] to learn the
multiple aggregation weights, and aggregate Ns significant
patches to generate Nc informative patches.

v̂j =

Ns∑
i=1

(W )ij · vi, j = [1, ..., Nc] (6)

where (W )ij is the elements of the normalized weight ma-
trix W ∈ RNs×Nc . Nc is the number of aggregated patches
(Nc < Ns), and we have

∑Ns

i=1(W )ij = 1. The weight
matrix is W learned by an MLP and softmax function with
significant patches as input: W = Softmax (MLP (Vs)).
Especially, we would regard the decision matrix D as the
mask matrix to select the significant patch features Vs, be-
fore computing the softmax function. The aggregation net-
work can adaptively aggregate patches with similar seman-
tics and is differentiable for end-to-end training.

Although the redundant patches can be dropped directly,
they may contain valuable visual semantics for cross-modal
alignment, hence we fuse redundant patches into one patch.

v̂f =
∑
i∈N

âi · vi, âi =
exp (ai)Di∑N
i=1 exp (ai)Di

, (7)

where N is the index set for redundant patches, âi is the
normalized weights based on significance scores ai. Fi-
nally, we obtain the set of slimmed visual patches V̂ =
{vcls, v̂1, · · · , v̂Nc

, v̂f}, the [CLS] token always is kept.

3.4. Sparse Patch-Word Alignment

As shown in Fig. 3(d), we compute the fine-grained align-
ment by the set of slimmed visual patches V̂ and initial tex-
tual words T . For convenience, we approximate that |V̂ | =
Nc, |T | = M . We first calculate the token-wise similarity
to generate the patch-word similarity matrix A ∈ RNc×M ,
where (A)ij =

(v̂i)
T tj

∥v̂i∥∥tj∥ represents the alignment score be-
tween the i-th visual patch and the j-th textual word.

Next, we employ a maximum-correspondence interac-
tion to aggregate the alignment: We first pick up the most
aligned textual word (or visual patch) for each patch (or
each word). We then calculate the average of these aligned
scores to represent the overall alignment score between the
image I and the sentence T , denoted S(I, T ).

S(I, T ) =
1

Nc

Nc∑
i=1

max
j

(A)ij︸ ︷︷ ︸
patch-to-word alignment

+
1

M

M∑
j=1

max
i

(A)ij︸ ︷︷ ︸
word-to-patch alignment

, (8)

Following previous methods, we use the bi-direction
triplet loss with hard negative mining [9].

Lalign =
∑
(I,T )

[α− S(I, T ) + S(I, T̂ )]+

+ [α− S(I, T ) + S(Î , T )]+,

(9)

where α represents a margin parameter, [x]+ = max(x, 0),
and (I, T ) is a positive image-text pair in the mini-
batch. We represent T̂ = argmaxj ̸=T S(I, j) and Î =
argmaxi ̸=I S(i, I) as the hardest negative text and image
examples within a mini-batch, respectively.

Furthermore, we constrain the ratio of the selected
patches to a predefined value ρ for stable training [37], using
a mean squared error loss to supervise the process. Finally,
we combine the cross-modal alignment loss Lalign Eq. (9)
with ratio constraint loss Lratio.

L = Lalign +Lratio, Lratio = (ρ− 1

N

N∑
i=1

Di)
2, (10)

At the inference stage, instead of using the Gumbel-
Softmax sampling, we directly select constant Ns patches
according to the values of significance scores. Ns is de-
termined by the selection ratio ρ, Ns = ρN . We use the
selected Ns patches to execute the following process with-
out the decision matrix to reduce computations. We also
pre-define the aggregation ratio λ, Nc = λNs = (λ · ρ)N .

4. Experiments
4.1. Datasets & Metrics

Following the previous works [7, 9, 21], we choose the typ-
ical Flickr30K [45] and MS-COCO [29] datasets to train
the model, where each image is associated with five texts.
Flickr30K contains 29,000, 1,000, and 1,014 training, test-
ing, and validation images. MS-COCO contains 82,738,
5,000, and 5,000 training, testing, and validation images,
whose results are tested on averaging over 5-fold of 1K test
images and on the full 5K test images. The evaluation met-
rics are the recall R@K (the percentage of ground truth in
the retrieved top-K lists, K=1,5,10) and rSum (sum of mul-
tiple R@K in both image-to-text and text-to-image).

4.2. Implementation Details

We use the Vision Transformer (ViT) [8] (a patch is 16×16
pixels), and Swin Transformer (Swin) [31] (a patch is
32×32 pixels) as the visual encoder, then use the BERT
[6] as textual encoders. All encoders are the base version.
The image resolutions are 224×224 or 384×384, which
get 14×14 and 24×24 patches for ViT (7×7 and 12×12
patches for Swin). Besides, we introduce an additional lin-
ear layer on the top of encoders to unify the feature di-
mension as d = 512. The whole framework is trained for
30 epochs with AdamW [32] optimizer, and the margin of
triplet loss is α = 0.2. The weight parameter β = 0.8, the
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Table 1. Comparisons of image-text retrieval performances on Flickr30K and MS-COCO test-set. We list the details of feature encoders,
image resolution, and the number of obtained regions/patches by visual encoders (e.g., ‘ViT-Base-224’ represents the base–version of
Vision Transformer [8] with 224×224 image resolution input, regarding 16×16 pixels as one patch, and getting 14×14 visual patches for
one image). FG indicates whether it is the fine-grained cross-modal alignment. The best results are marked bold.

Method FG
Flickr30K 1K MS-COCO 1K MS-COCO 5K

Image-to-Text Text-to-Image rSum Image-to-Text Text-to-Image rSum Image-to-Text Text-to-Image rSumR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
Faster R-CNN + BERT–Base, 36 pre-computed regions
HREM [14] ✗ 83.3 96.0 98.1 63.5 87.1 92.4 520.4 81.1 96.6 98.9 66.1 91.6 96.5 530.7 62.3 87.6 93.4 43.9 73.6 83.3 444.1
TGDT [30] ✓ 61.3 86.0 91.4 76.8 93.2 96.4 505.1 65.4 91.8 96.5 78.5 96.4 98.9 527.5 43.3 73.5 83.3 57.5 84.8 91.6 434.0
CHAN [35] ✓ 80.6 96.1 97.8 63.9 87.5 92.6 518.5 81.4 96.9 98.9 66.5 92.1 96.7 532.6 59.8 87.2 93.3 44.9 74.5 84.2 443.9
ViT-Base-224 + BERT–base, 14×14 patches
VSE++ [9] ✗ 71.8 92.8 96.5 59.4 84.7 90.9 496.1 75.0 94.6 98.0 62.7 89.4 94.9 514.6 52.4 80.3 88.8 40.6 70.4 81.1 413.4
SCAN [21] ✓ 69.5 90.9 95.6 56.4 83.1 90.0 485.6 76.0 95.4 98.1 64.5 90.8 95.8 520.6 53.9 81.8 90.0 42.9 72.3 82.5 423.5
SGR [7] ✓ 69.7 90.8 95.2 59.1 84.1 89.9 488.7 77.2 95.0 98.0 65.1 90.7 95.8 521.8 54.9 82.8 90.5 42.8 72.2 82.5 425.8
CHAN [35] ✓ 69.2 91.8 95.0 58.4 84.9 90.6 489.9 77.1 95.1 98.1 65.0 91.0 96.0 522.2 56.3 83.2 90.1 43.0 72.6 82.8 428.0
LAPS ✓ 74.0 93.4 97.4 62.5 87.3 92.7 507.3 78.7 95.5 98.3 66.2 91.3 96.2 526.3 57.5 84.0 90.8 44.5 74.0 83.6 434.4
ViT-Base-384 + BERT–base, 24×24 patches
VSE++ [9] ✗ 77.1 95.7 97.5 65.8 90.2 94.3 520.5 77.0 95.7 98.4 64.6 91.1 96.2 523.0 54.9 82.8 90.4 42.4 72.4 82.8 425.8
SCAN [21] ✓ 75.4 94.4 96.9 63.6 88.6 93.5 512.5 76.1 95.5 98.5 65.1 91.6 96.3 523.1 53.3 81.8 90.0 42.6 72.6 82.9 423.1
SGR [7] ✓ 76.9 94.9 98.1 64.2 88.4 93.3 515.8 75.8 95.7 98.6 65.6 92.0 96.5 524.2 53.3 81.0 89.6 42.9 73.1 83.7 423.6
CHAN [35] ✓ 75.4 94.5 97.6 63.2 88.6 93.1 512.4 78.1 95.8 98.6 66.1 92.1 96.6 527.3 55.6 83.8 91.2 43.4 73.6 83.5 431.1
LAPS ✓ 79.0 96.0 98.1 67.3 90.5 94.5 525.4 78.6 96.3 98.9 68.0 92.4 96.8 531.0 57.4 84.9 92.5 46.4 75.8 85.2 442.2
Swin-Base-224 + BERT–base, 7×7 patches
VSE++ [9] ✗ 82.5 96.5 98.9 70.0 91.4 95.1 534.4 83.3 97.5 99.3 71.0 93.0 96.7 540.9 64.0 88.2 94.2 49.9 78.0 86.6 460.9
SCAN [21] ✓ 79.0 95.9 98.2 67.7 90.6 94.9 526.3 80.9 97.0 99.1 69.7 93.1 97.1 536.9 60.7 86.6 93.2 48.1 77.1 86.1 451.8
SGR [7] ✓ 80.4 97.0 98.7 66.9 90.2 94.5 527.6 81.2 97.1 99.1 69.9 93.2 97.2 537.7 61.0 86.7 93.2 48.6 77.2 86.3 453.1
CHAN [35] ✓ 81.4 97.0 98.6 68.5 90.6 94.5 530.6 81.6 97.2 99.3 70.6 93.7 97.6 539.8 64.1 87.9 93.5 49.1 77.3 86.1 458.0
LAPS ✓ 82.4 97.4 99.5 70.0 91.7 95.4 536.3 84.0 97.6 99.3 72.1 93.7 97.3 544.1 64.5 89.2 94.4 51.6 78.9 87.2 465.8
Swin-Base-384 + BERT–base, 12×12 patches
VSE++ [9] ✗ 83.3 97.5 99.2 71.1 93.2 96.2 540.6 82.9 97.7 99.4 71.3 93.5 97.3 542.1 63.0 88.5 94.3 50.1 78.9 87.4 462.2
SCAN [21] ✓ 81.9 96.9 98.9 70.0 92.7 95.8 536.1 81.6 96.8 99.1 69.1 92.7 96.7 536.1 61.1 87.3 93.3 47.8 76.9 85.9 452.4
SGR [7] ✓ 80.7 96.8 99.0 69.9 91.7 95.3 533.4 81.9 96.7 99.1 69.3 92.8 96.7 536.6 62.8 87.0 92.9 48.1 77.0 86.0 453.8
CHAN [35] ✓ 81.2 96.7 98.8 70.3 92.2 95.9 535.0 83.1 97.3 99.2 70.4 93.1 97.1 540.2 63.4 88.4 94.1 49.2 77.9 86.6 459.5
LAPS ✓ 85.1 97.7 99.2 74.0 93.0 96.3 545.3 84.1 97.4 99.2 72.1 93.9 97.4 544.1 67.1 88.6 94.3 53.0 79.5 87.6 470.1

Table 2. The comparisons of image-text retrieval for Vision-
Language Pre-training (VLP) Models. FG indicates whether it
is the fine-grained alignment. # represents the zero-shot learning.

Method FG
Flickr30K 1K MS-COCO 5K

Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

UNITER [5] ✓ 87.3 98.0 75.6 94.1 65.7 88.6 52.9 79.9
VILT [19] ✓ 83.5 96.7 64.4 88.7 61.5 86.3 42.7 72.9
SOHO [16] ✓ 86.5 98.1 72.5 92.7 66.4 88.2 50.6 78.0
ALBEF [24] ✓ 95.9 99.8 85.6 97.5 77.6 94.3 60.7 84.3
BLIP [25] ✓ 96.6 99.8 87.2 97.5 80.6 95.2 63.1 85.3
CLIP-ViT-Base-224 + CLIP-BERT–Base, 14×14 patches
CLIP# [36] ✗ 81.4 96.2 61.1 85.4 52.3 76.2 33.3 58.2
VSE++ [9] ✗ 92.2 99.1 80.5 95.6 66.8 88.2 53.6 79.7
SCAN [21] ✓ 88.2 98.1 75.3 93.1 65.4 88.0 50.7 77.6
LAPS ✓ 92.9 99.3 80.6 95.5 69.8 90.4 54.3 80.0
CLIP-ViT-Large-224 + CLIP-BERT–Large, 16×16 patches
CLIP# [36] ✗ 85.0 97.7 64.3 87.0 55.9 79.1 35.9 60.9
VSE++ [9] ✗ 94.0 99.5 83.4 96.4 68.5 89.4 56.7 81.9
SCAN [21] ✓ 90.0 98.5 81.0 95.9 68.0 90.4 53.2 80.7
LAPS ✓ 94.6 99.9 84.9 97.3 72.9 91.7 57.1 81.3

selection ratio ρ = 0.5 and aggregation ratio λ = 0.4 for
ViT backbones (ρ = 0.8 and λ = 0.6 for Swin backbones).

4.3. Comparison with State-of-the-art Methods

Following the standard protocols [9, 47] on two bench-
marks, we list the details of feature encoders and cross-
modal alignment types for all compared methods. We in-
troduce four typical cross-modal alignment methods [7, 9,
21, 35], and implement them with their official codes:

• VSE++ [9], the basic coarse-grained alignment method,

Table 3. The zero-shot evaluation on visual grounding task. All
models are trained by CLIP backbones of ViT-B/16 in Flickr
dataset (Vanilla is untrained). Following ReCLIP [40], we apply
the Grad-GAM [39] to select the bounding box from proposals.

Models RefCOCO RefCOCO+ RefCOCOg
Val TestA TestB Val TestA TestB Val Test

Vanilla CLIP [36] 39.3 45.3 34.2 41.2 47.0 36.8 45.0 45.9
VSE++ [9] 40.7 46.3 33.6 43.2 49.0 35.6 44.2 43.9
SCAN [21] 41.8 47.3 44.4 43.2 49.3 36.8 45.2 46.0
SGR [7] 41.4 48.0 34.2 44.1 49.7 36.7 45.5 46.3
LAPS 44.2 49.9 38.4 46.7 52.3 41.6 51.3 51.2

learns a common embedding space for images and texts,
then computes the cosine similarity between embeddings.

• SCAN [21], the basic fine-grained alignment method,
computes the bi-directional cross-attention between vi-
sual regions and textual words to aggregate similarities.

• SGR [7], uses a similarity reason module on the SCAN
[21] by graph attention network to learn a similarity score,
and compute the single text-to-image alignment.

• CHAN [35], applies the hard coding on the SCAN [21],
which selects the max-alignment attention scores.
As shown in Tab. 1, we present quantitative results on

Flickr30K and MS-COCO datasets. LAPS outperforms all
state-of-the-art methods by an impressive margin. It’s worth
noting that for different transformer-based visual encoders,
previous fine-grained methods [7, 21, 35] get inferior re-
sults compared to simple coarse-grained methods [9], espe-
cially on more number of visual patches (e.g., ViT [8] with
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door on an old 

rustic building.

Selection Ratio 𝜌

Figure 4. The visualization of selected patches with associated texts under different selection ratios ρ on Flickr30K. Our framework can
gradually focus on more salient and text-relevant areas in images as selection ratios decrease and have better interpretability.

Original image Language-Context Patch Selection

Some animals that are 

around the grass together
A giraffe is standing 

on an animal park

Some zebras in a grassy 

field with cars on the road

Two dogs and a cat laying

on a bed with a book

There are some books

scattered on the bed

A yellow dog and a blown 

dog are sleeping together

Some boats are 

parked by the river

Old buildings in European 

style stands side by side
The riverbank is blooming 

with colorful flowers

Figure 5. The visualization of selected patches with the different
language contexts and supervision. The texts below the images de-
scribe the semantic contents of images with various perspectives.

384 image resolution) These results diverge from previous
observations on detector-based frameworks (e.g., Faster-
RCNN [38]). It shows traditional fine-grained alignments
are incompatible with patch features, whereas LAPS can
address the problem and boost performances.

Besides, we extend our framework to the classical VLP
model, CLIP [36] in Tab. 2. We also compare with current
state-of-the-art VLP models [5, 19, 24]. The previous fine-
grained alignment methods [21] still struggle to achieve sat-
isfactory results even with VLP backbones. LAPS brings
large improvements and exhibits competitive performances
compared to the mainstream VLP models.

LAPS can be seen as a foundation model to solve the
widespread problem of visual redundancy and ambiguity in
fine-grained semantic alignment. It works well on cross-
modal retrieval but also adapts to more fine-grained recog-
nition tasks. Following previous work [40], we evaluate the
cross-modal alignment capability on the visual grounding
task in Tab. 3. It shows LAPS significantly outperforms

A man holding stick in field of green grass

Two people raise their arms on a snowy hill in the mountains.

A young child playing with his toy train

Original Patch Selection

Aggregation Ratio 𝜆

0.05 0.50.30.1

Figure 6. The visualization of aggregated patches with the differ-
ent aggregation ratios λ. The patches are merged into complete
regions with clear semantics and have better interpretability.

existing methods on all visual grounding benchmarks.

4.4. Ablation Study

We conduct extensive ablation studies and robustness anal-
yses to examine the effectiveness of LAPS. By default, we
perform experiments on Vision Transformer with 224 im-
age resolution (ViT-Base-224 + BERT-base).

Selection & Aggregation Ratio. We show the impact
of selection ratios ρ and aggregation ratios λ on different
visual encoders in Fig. 7. Our framework can effectively
slim visual patches to enhance cross-modal alignment. The
excessive patch selection and aggregation with small ratios
also will hurt the performances, especially on Swin [31] en-
coders, employing local attention within a small window.

Module Gain. To better verify the effectiveness of our
LAPS, we provide a comprehensive ablation study in Tab.
4. It shows that the patch selection and patch calibration
modules play important roles in semantic alignments. Lan-
guage supervision is significant for selecting text-relevant
visual patches and aggregating redundant patches is help-
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Figure 7. The comparison of different selection ratios ρ and ag-
gregation ratios λ with various visual encoders on Flick30K.

a woman adjust her sunglasses

“A woman adjust her sunglasses.”

“A brown dog with a blue bandanna is jumping over grass.”

dog with bandanna jumping grass

person climbing rock holding rope

“a person is climbing a rock while holding onto a white rope.”

Figure 8. The visualization of fine-grained patch-word alignment
with each linguistic word. We show the alignment maps by the
gradient-weighted attention [1, 2] on original images.

ful. We find using a clustering algorithm like DPC-KNN
[46] to aggregate patches will drop performances, which
also has low efficiency. The sparse mechanism is suitable
for patch-word alignment, and the bi-directional alignment
is optimal. Besides, LAPS is an independent framework for
the alignment methods and can be combined with them in
a plug-and-play fashion. When replacing the sparse align-
ment with SCAN [21], the models also get improved per-
formances (69.5/56.4 → 71.3/60.8 on R@1 for SCAN).

Word Slimming. Our framework tries to address the
problems of visual redundancy and ambiguity. And the
challenges are equally important for textual modality. As
shown in Tab. 4, we introduce the word slimming process
(including the selection and aggregation) to our framework.
We find the complementary word slimming will hinder the
semantic alignment and drop the performance, since tex-
tual tokens usually have high information density [6]. First,
texts consist of discrete words created by humans. Com-
pared to pixel images, texts have higher semantic character-
istics in nature. Hence textual redundancy is weaker than
images. Besides, the text lengths of typical datasets are
short (an average of 10 words in COCO/Flickr). The ca-
pability of LAPS can not be released in existing datasets.

4.5. Visualization

Patch Selection. We present the visualization results un-
der various selection ratios ρ as Fig. 4. It is evident that

Table 4. Comparison of different module ablations for our frame-
work on Flickr30K. We also show the results of the word slimming
(selection + aggregation) of textual modality for our framework.

Modules Different Settings IMG → TEXT TEXT → IMG
R@1 R@5 R@1 R@5

LPS
without patch selection process 69.2 91.9 58.5 84.9

without language-context 71.1 92.2 59.4 85.5
only attentive scores 73.5 93.1 61.9 86.8

SPC
without patch calibration process 70.4 91.3 58.9 85.3

without redundant fusion 73.5 93.2 61.1 87.2
use the clustering algorithm [46] 68.4 88.5 57.0 82.6

SPA
replace with SCAN alignment [21] 71.3 91.4 60.8 85.6

only patch-to-word alignment 70.9 90.8 58.9 85.1
only word-to-patch alignment 72.7 92.5 60.3 86.4

introduce word selection 70.1 90.3 57.5 82.7
introduce word aggregation 71.3 91.6 58.8 84.3

introduce word selection & aggregation 67.7 88.2 55.1 80.5
Complete LAPS 74.0 93.4 62.5 87.3

our framework can effectively identify significant visual
patches based on textual contexts. Besides, we show visual-
izations under different textual contexts for the same image
in Fig. 5. Our patch slimming is highly relevant to lan-
guage supervision, and can adaptively eliminate redundant
patches according to different linguistic descriptions.

Patch Calibration. We present the aggregation visual-
ization of significant patches with various aggregation ratios
λ as Fig. 6. For a better view, we give each patch a unique
label based on the maximum aggregation weights to repre-
sent the aggregated results. Our framework can effectively
merge patches with different semantic granularity.

Patch-Word Alignment. We show the visualization of
the alignment scores between visual patches and textual
words as Fig. 8. It shows our framework exhibits a rea-
sonable and interpretable patch-word semantic alignment.
The distinct word-to-patch alignments are centralized and
precise on the corresponding visual areas in images.

5. Conclusion

In this paper, we introduce a novel Linguistic-Aware Patch
Slimming framework (LAPS) for cross-modal alignment,
which is the first work that explicitly focuses on patch-word
alignment on pure transformer-based architectures to solve
patch redundancy and ambiguity problems. LAPS iden-
tifies significant visual patches with language supervision
and then rectifies the semantic and structural information
to construct more accurate and consistent alignment. Ex-
tensive experiments on various benchmarks and visual en-
coders demonstrate the superiority of our framework.
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