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Abstract

We approach the challenge of addressing semi-
supervised domain generalization (SSDG). Specifically, our
aim is to obtain a model that learns domain-generalizable
features by leveraging a limited subset of labelled data
alongside a substantially larger pool of unlabeled data. Ex-
isting domain generalization (DG) methods which are un-
able to exploit unlabeled data perform poorly compared to
semi-supervised learning (SSL) methods under SSDG set-
ting. Nevertheless, SSL methods have considerable room
for performance improvement when compared to fully-
supervised DG training. To tackle this underexplored, yet
highly practical problem of SSDG, we make the follow-
ing core contributions. First, we propose a feature-based
conformity technique that matches the posterior distribu-
tions from the feature space with the pseudo-label from the
model’s output space. Second, we develop a semantics
alignment loss to learn semantically-compatible represen-
tations by regularizing the semantic structure in the feature
space. Our method is plug-and-play and can be readily in-
tegrated with different SSL-based SSDG baselines without
introducing any additional parameters. Extensive experi-
mental results across five challenging DG benchmarks with
four strong SSL baselines suggest that our method provides
consistent and notable gains in two different SSDG settings.
Our code is available at FBC-SA.

1. Introduction
Top-performing visual object recognition models [13, 18,
31] tend to sacrifice performance when there is a differ-
ence between the training and testing data distributions, also
termed as the domain shift problem [49, 52]. To handle
the domain shift problem, the research line of domain gen-
eralization (DG), amongst others, has been explored with
greater interest. As such, DG places fewer assumptions and
so it is potentially more widely applicable than the other
alternatives e.g., unsupervised domain adaptation (UDA)
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Figure 1. Visual illustration of Semi-supervised Domain General-
ization (SSDG) setting.

[53]. In DG, the goal is to learn a generalizable model,
relying on data from multiple source domains for training,
that is capable of performing well on data from an unseen
target domain [7, 23, 28]. In the recent past, several promis-
ing DG methods have been proposed that leverage different
feature-level constraints [28], adapt meta-learning frame-
works [4, 24], leverage proxy tasks [8, 40], or develop data
augmentation mechanisms [20, 56]. Note that almost all ex-
isting DG methods operate under fully supervised settings
i.e. the data from all source domains are completely labeled.

In many real-world use-cases, for instance, in health-
care, it is often hard, if not impossible, to acquire a suf-
ficiently large set of labeled data from all source domains
[46]. Usually, only a small subset of data is labelled, and
the remaining large fraction of data is unlabelled. There-
fore, besides, aiming to achieve cross-domain generaliza-
tion, a model should be able to rely on limited labels [48].
The topic of semi-supervised learning (SSL) is quite rel-
evant in this case [6, 22, 32, 33], which aims to leverage
abundantly available unlabeled data with a small fraction of
labeled data to achieve learning.

In our work, we aim to study the problem of semi-
supervised domain generalization (SSDG), which unifies
domain generalization and data efficiency under the same
framework [57]. SSDG is similar to DG in terms of core
objective i.e. learning a generalizable model by leverag-
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ing multiple source domains. However, DG assumes that
the data from all source domains are fully-labelled. On the
contrary, SSDG operates under SSL settings where only a
handful of labeled data is available while a relatively large
chunk of data is unlabeled [57]. Fig. 1 draws a visual illus-
tration of the SSDG setting. It is shown that the DG meth-
ods tend to perform poorly under the limited labels setting
of SSDG as they are not developed to exploit the unlabeled
data. On the other hand, SSL methods, in particular, [32],
perform relatively better than the DG methods [57], but still
their obtained performance is considerably lower than the
fully supervised training. Fig. 2 shows the comparison of
results in SSDG problem setting among the following meth-
ods: DG, DG combined with pseudo-labeling (following
[32]) and SSL. Note that, the naive combination of DG and
SSL methods also performs poorly [57].

We propose a new approach for tackling semi-supervised
domain generalization (SSDG) by observing the key limi-
tations in best-performing SSL-based baselines for SSDG.
A dominant challenge is how to achieve accurate pseudo-
labels (PLs) when the unlabeled data exhibit various do-
main shifts. It is further exacerbated by the scarcity of la-
beled data, which possibly increases the chances of model
overfitting. Towards addressing them, we resort to the fea-
ture space of the model and propose a feature-based con-
formity (FBC) module and a semantics alignment (SA)
loss. The feature-based conformity module aims at align-
ing the posteriors from the feature space with the pseudo-
labels from the model’s output space via two different con-
straints. To learn semantically harmonious features under
unlabelled data from multiple heterogeneous sources, we
present a semantics alignment loss that attempts to regular-
ize the semantic structure in the feature space by domain-
aware similarity-guided cohesion and repulsion of exam-
ples. In summary, we make the following key contributions:
• We study the relatively unexplored yet highly practi-

cal problem of semi-supervised domain generalization
(SSDG) and propose a new approach, consisting of
feature-based conformity and semantics alignment loss,
for addressing the important challenges in SSDG.

• Our approach is plug-and-play and as such it can be
seamlessly applied to different SSL-based SSDG base-
lines without adding any learnable parameters. We show
the adaptability and effectiveness of our method with four
strong baselines.

• We perform extensive experiments on five different DG
datasets: PACS [23], OfficeHome [36], DigitsDG [55],
TerraIncognita [5] and VLCS [34] with four strong base-
lines: FixMatch [32], FlexMatch [50] and FreeMatch [41]
StyleMatch[57]. Our approach delivers consistent and
visible gains across all datasets with four baselines in two
variants of SSDG settings.

Figure 2. Recognition performance comparison between different
DG, DG combined with pseudo-labeling, SSL methods and ours
in SSDG settings. Here, GD - GroupDro, FlexM - FlexMatch,
FreeM - FreeMatch, FixM - FixMatch and StyleM - StyleMatch.

2. Related Work

Domain generalization: Several studies have been con-
ducted towards improving domain generalization (DG) per-
formance. Most methods aim to learn domain-invariant fea-
tures from available source domain data [15, 28]. Empiri-
cal risk minimization (ERM) can be regarded as the ear-
liest attempt that aims to reduce the sum of errors across
data aggregated from multiple source domains [35]. Fol-
lowing DG works, utilized maximum mean discrepancy
(MMD) constraint [28], developed multi-task autoencoder
[15], achieved adversarial feature learning with MMD[25],
learned invariant predictors [2], introduced low-rank regu-
larization [23, 44] in pursuit of extracting domain-invariant
features. Another line of work adapted the meta-learning
framework to simulate domain drifts during training [24].
Furthermore, some work leveraged proxy tasks [8, 40]
to promote domain-generalizable features. Some used
domain-specific masks [10] and domain-specific normaliza-
tions [29] to strike the balance between domain-specific and
domain-invariant features. Inspired by the contrastive learn-
ing paradigm, some DG works adapted self-supervision and
different variants of ranking losses [14, 21, 27]. [9] pro-
posed stochastic weight averaging in a dense manner to
achieve flatter minima for DG. Many DG approaches pro-
posed new techniques to synthesize examples from novel
domains to increase the diversity in source domains. [30]
devised crossgrad training [30], [37] imposed a wassertein
constraint in semantic space, [56] adapted a CNN-based
generator. [20] exploited class-conditional covariance to
augment novel source domain features. [45] used mixup
for creating new images by mixing source images.

However, most of the existing DG works expect fully
labelled data from all source domains. Their performance
degrades substantially upon reducing the amount of labeled
data (see Fig. 2), which limits their applicability to several
important application domains, including medical imaging
and autonomous vehicles, where sufficiently labelled data
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Figure 3. PL accuracy in the training samples without thresholding (left) and for selected PL after thresholding (right) for the baseline
(FixMatch [32]), ours with only feature-based conformity, and ours for PACS dataset in 5 labels per class setting. Here A, C, P, and S
denote Art-painting, Cartoon, Photos, and Sketch domains, respectively.

is scarce. To this end, in this paper, we study the relatively
underexplored problem of semi-supervised domain gener-
alization (SSDG), which unifies the domain generalization
and data efficiency under a common framework, and pro-
pose a new SSDG approach based on feature-based confor-
mity and semantics alignment constraint.

Semi-Supervised Learning: The research direction of
Semi-Supervised Learning (SSL) has seen numerous meth-
ods developed in the literature, with entropy minimization
[16] consistency learning [26, 33, 42] and pseudo-labelling
[22, 32] being the most prominent approaches. Consis-
tency learning involves making predictions of a model on
two different views of the same input similar to each other
[54] by imposing a consistency loss on penultimate features
[1] or output probabilities [32]. Recently, [33] found that
using a model’s exponential moving average to generate
the target for consistency learning improves performances.
On the other hand, pseudo-labeling [22] generates either
soft or hard pseudo-labels for unlabeled data using a pre-
trained model [42] or the model under training [32]. Fur-
ther, [6, 32, 42, 43] demonstrated that inducing strong noise
such as the strong augmentation or dropout to the student
model can significantly boost performance. [11, 41, 50] fo-
cus on improving pseudo-labelling building upon [32]. To
address distribution shifts between labeled and unlabeled
data caused by sampling bias, some studies [1, 38] have
adopted ideas from domain adaptation [19] to minimize the
feature distance.

While semi-supervised domain generalization (SSDG)
and SSL both deal with unlabelled data, SSDG poses a
greater challenge as the data is collected from heteroge-
neous sources with potentially different underlying data
distributions. SSDG is a relatively underexplored prob-
lem and so very little research has been done. [47] pro-
posed active exploration, which queries labels of exam-
ples with higher ranks in class uncertainty, domain repre-
sentativeness and information diversity, and combines inter

and intra-domain knowledge with mixup [51]. [48] pro-
posed a method that relies on a generated similarity graph
and a graph Laplacian regularizer. [39] proposed a joint
domain-aware label and dual classifier framework for learn-
ing a domain-generalizable model when only one source
domain is fully labelled while the others are completely un-
labelled. Recently, Stylematch [57] extends [32] for SSDG
with stochastic modeling to reduce overfitting and multi-
view consistency learning for generalizing across domains.
Multi-view consistency operates within the confines of the
input pixel space and assumes some style variance between
the data distributions. Such an approach struggles or is
unable to improve performance when presented with dif-
ferent types of distributions such as background shifts or
corruption shifts as shown in our experiments (sec. 4). In
this work, we propose a new SSDG approach, for partially-
labelled source domains, that explores the feature space to
develop a feature-based conformity mechanism and a se-
mantics alignment constraint. Feature space provides more
flexibility compared to input pixel space for imposing var-
ious consistencies. This is beneficial towards effectively
tackling SSDG challenges as demonstrated in our results.

3. Methodology
3.1. Preliminaries

Problem Settings: We adapt some notation from [17].
Similar to multi-source DG settings, let us characterize each
domain d by d = {(xd

i , y
d
i )}ni=1, where xd

i ∈ RC×H×W

is an input image, ydi is the corresponding label, and
comprised of n* independent and identically distributed
(i.i.d) examples drawn from a joint probability distribution
P(X d,Yd) for all possible training (source) domains d ∈
{d1, ..., dtr}. X d is an input space over which the domain
d is defined and Yd is the corresponding label space. Here,
we consider the distribution shift in P(X d) while P(Yd)

*The value of n can be different for each domain.
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Figure 4. Overall architecture of our method. Fundamentally, it is a semi-supervised baseline (e.g., FixMatch [32]) with a feature extractor
and a classifier that involves pseudo-labelling and prediction consistency mechanisms. To tackle semi-supervised domain generalization,
we first propose a feature-based conformity module (sec. 3.2) that aligns the posterior from feature space with the pseudo-label from output
space. We then develop a semantics alignment loss (sec. 3.3) to regularize the semantic layout of feature space and further improve the
effectiveness of feature-based conformity.

shares the same label space Y where y ∈ Y = {1, 2, .., C}
is an associated class label.

In the SSDG setting, the number of labeled examples is
constrained i.e., each source domain d has a labeled part
dL = {(xd

i , y
d
i )} and an unlabeled part dU = {(ud

i )}. Fur-
ther, the number of examples in the unlabeled part is much
higher than in the labeled part, i.e., |dU | ≫ |dL|. Our goal is
to learn a domain-generalizable model F using the training
(source) domains d ∈ {d1, ..., dtr} to accurately predict on
an out-of-distribution data, whose examples are drawn from
P(X dte ,Ydte), where dte represents the target domain. For
our methodology, we decompose the model as F = w ◦ f ,
f : x → h is a feature encoder and w : h → y is a classifier.
F maps input images to the target label space.

SSDG pipeline: We overview FixMatch [32] which
emerged as a top-performing SSL-based SSDG baseline in
our empirical investigations (Fig. 2). So we chose it as
an example baseline to explain our method. However, as
shown in the experimental results (sec. 4), our method is
model-agnostic and can be applied to several SSL-based
SSDG baselines. FixMatch, which was originally proposed
for SSL, combines two prior SSL techniques: pseudo-
labeling, and consistency regularization. Pseudo-labeling
uses a model to generate artificial labels for unlabeled data
which are obtained from the argmax of the model’s predic-
tion probability. It retains only those artificial labels whose
largest class probability falls above a predefined threshold.
On the other hand, consistency regularization [3] leverages
unlabeled data by enforcing that the predictions for per-
turbed views of the same image should be similar.

FixMatch[32] applies a weak augmentation and a strong

augmentation to all images in a minibatch. The overall
loss function consists of a supervised loss Ls and an un-
supervised loss Lu. Ls is a standard cross entropy (CE)
loss applied on the weakly augmented labeled images. For
unlabeled images, FixMatch first computes a pseudo-label
corresponding to a weakly augmented version of the image
and then uses this to enforce the cross-entropy loss against
the model’s output for a strongly augmented version of the
same image, denoted as Lu. This introduces a form of con-
sistency regularization for the model. Overall the FixMatch
loss is formulated as: L = Ls + Lu.

Discussion: Although the SSL-based SSDG baselines show
relatively better performance in SSDG settings, there is
considerable room for further improvement across several
DG benchmarks (Fig 2). An important challenge, faced by
them, is the selection of accurate pseudo-labels in the pres-
ence of multiple domain shifts (see Fig. 3). This is further
aggravated by the scarcity of limited labels, which increases
the chances of model overfitting. To tackle the SSDG prob-
lem, we leverage the feature space and propose to enforce
the prediction consistency between the two quantities: fea-
ture space posteriors which are derived from the same and
different domains, and the pseudo-label from the model’s
output space (sec. 3.2). It implicitly facilitates the learn-
ing of more accurate pseudo-labels (see Fig. 3) by penaliz-
ing those examples whose prediction from the feature space
does not align with the corresponding pseudo-label. To-
wards further improving the model’s discriminative ability
under the SSDG setting, we develop a semantics alignment
loss (sec. 3.3) that attempts to regularize the semantic lay-
out in the feature space by domain-aware similarity-guided
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cohesion and repulsion of training examples. Fig. 4 visual-
izes the overall architecture of our method. In our method,
described next, we ignore the labels of labeled set dL and
merge it with the unlabeled set dU and so collectively we
treat all the images as unlabeled afterward following [57]
unless stated otherwise.

3.2. Feature-based Conformity

We believe that, in the presence of multiple source domains
manifesting various domain shifts, for an unlabeled exam-
ple belonging to an arbitrary domain, the posterior from the
same and different source domains in feature space, should
align with its pseudo-label produced from the model’s out-
put space. In this work, we coin this as feature-based
conformity (FBC) that implicitly facilitates the model to-
wards generating more accurate pseudo-labels. To achieve
feature-based conformity, for an unlabeled image feature,
the following key steps are designed (Fig. 4). First, we
build domain-aware class prototypes in the feature space
with the features of labeled images. Second, to compute
similarities for a given unlabeled image feature, we choose
prototypes having the same domain label (referred as same-
domain class prototypes) and also select another set of pro-
totypes having a different domain label chosen randomly
(referred as different-domain class prototypes). This yields
same-domain and different-domain similarities. Third, we
convert the same-domain and different-domain similarities
to posterior probabilities, and finally, these two probabilities
are aligned with the pseudo-labels.
Pseudo label generation: For a given image u a pseudo
label ỹ is generated by ỹ = argmax(σ (F(α(u)))) if
max(σ (F(α(u)))) ≥ τ , where σ is a softmax function,
α(.) represents the weak augmentation operation [32] and
τ is a threshold to retain the most confident predictions as
described in [32].
Domain-aware class prototypes: We want to build
domain-aware class prototypes which take into account the
domain label d and the class c. Specifically, we obtain the
class prototypes by averaging the image features of labeled
raw examples without any augmentation, from the penulti-
mate layer, corresponding to the class c and the domain d in
consideration. Thus, the domain-aware class prototype Kd

c

for class c in domain d is defined as:

Kd
c =

1

|Sd
c |

|Sd
c |∑

i=1

Sd
c [i] where Sd

c = {f(xd
i )|(yi = c)}|d

L|
i=1 .

(1)
Here xd

i is a labeled image from domain d with class la-
bel c. Our domain-aware class prototypes are dynamically
updated at the end of each epoch.
Feature similarity and alignment: Once we obtain the
domain-aware class prototypes, we leverage them to ob-
tain the same-domain and different-domain posterior prob-

abilities in the feature space for the unlabeled images.
To be more specific, for an image udi , we obtain sim-
ilarities with the same-domain class prototypes and ran-
domly chosen different-domain class prototypes. We com-
pute the similarity with same-domain class prototype as
⟨f(α(udi)),Kdi

c ⟩, where ⟨, ⟩ symbolizes the cosine simi-
larity and α is the weak-augmentation function [32]. After
computing the similarities with C same-domain class proto-
types, we get a vector of same-domain similarities, denoted
as zdi ∈ RC . We then take the softmax of zdi to obtain
the same-domain posterior probability pdi(Kdi

c |f(α(udi)).
Like-wise for obtaining similarity with the randomly chosen
different-domain class prototype, we choose a random do-
main dj (̸= di) and compute ⟨f(α(udi)),K

dj
c ⟩. After com-

puting the similarities with C different-domain class proto-
types, we get a vector of different-domain similarities, de-
noted as zdj ∈ RC . We take the softmax of zdj to obtain the
different-domain posterior probability pdj (K

dj
c |f(α(udi)).

Now, we leverage these same-domain probabilities pdi and
the different-domain probabilities pdj from feature space
and propose to align with the pseudo-label ỹ using two
cross-entropy losses:

LFBC = −
C∑
i=1

ỹilog(p
di
i )︸ ︷︷ ︸

Same domain

−
C∑
i=1

ỹilog(p
dj

i )︸ ︷︷ ︸
Random different domain

(2)

The feature-based conformity serves as a regularizer by
aligning the the same-domain and different-domain prob-
abilities from the feature space with the corresponding
pseudo-label.

3.3. Semantics Alignment Constraint

We intend to regularize the semantic structure in the fea-
ture space to capture semantically harmonious features and
therefore improve the feature discriminativeness under do-
main shifts (Fig. 5 left). To this end, we formulate a se-
mantics alignment (SA) loss that achieves domain-aware
similarity-guided cohesion and repulsion of training exam-
ples (Fig. 4). For an input feature, it attempts to maximize
the similarity to the assigned prototype class while minimis-
ing the similarity to the hard non-assigned prototypes in the
same domain. Hard non-assigned prototypes refer to the
class prototypes which are nearest neighbors to the assigned
prototype. Also, we maximize the similarity with a pro-
totype of randomly chosen different domain, whereby this
prototype is having the same class label as the assigned pro-
totype in the same domain. Formally, let ϕdi = max(zdi)
and ϕdj = zdj [argmax(zdi)] be the similarity correspond-
ing to the assigned prototype in the same domain and the
similarity indexed (with the assigned prototype) from dif-
ferent domain for an input feature corresponding to udi . We
also include the similarity to hard non-assigned prototypes
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Model PACS OH VLCS DigitsDG TerraInc.

ERM 59.8± 2.5 56.7± 0.8 68.0± 0.5 29.1± 2.9 23.5± 1.4

EntMin 64.2± 2.2 57.0± 0.8 66.2± 0.3 39.3± 2.8 26.6± 2.6
MeanTeacher 61.5± 1.4 55.9± 0.5 66.2± 0.4 38.8± 2.9 25.0± 2.8
FlexMatch 72, 7± 1.2 53.7± 0.7 56.2± 2.1 68.9± 1.2 26.4± 1.8
FreeMatch 74.0± 2.7 56.2± 0.2 61.6± 1.3 67.5± 2.4 30.1± 1.2
FixMatch 76.6± 1.2 57.8± 0.3 70.0± 2.1 66.4± 1.4 30.5± 2.2
StyleMatch 79.4± 0.9 59.7± 0.2 73.5± 0.6 65.9± 1.9 29.9± 2.8

FlexMatch + Ours 75.3± 1.2 55.8± 0.4 58.7± 1.0 73.1 ± 1.1 30.9± 1.0
FreeMatch + Ours 77.3± 1.7 58.0± 0.4 62.6± 1.3 72.2± 0.4 32.4± 2.9
FixMatch + Ours 78.2± 1.2 59.0± 0.4 72.2± 1.0 70.4± 1.4 34.7 ± 1.9
StyleMatch + Ours 80.5 ± 1.1 60.3 ± 0.6 74.2 ± 0.5 67.7± 1.7 32.5± 1.8

Table 1. SSDG accuracy (%) with 10 labels per class. (Average over 5 independent seeds is reported.)

in the same domain by first sorting same domain similari-
ties zdi (in descending order) to get vdi = Sort(zdi) and
then selecting and averaging the top-N after excluding the
highest similarity as: Φdi = 1

N−1

∑N
n=2 v

di [n]. With these
quantities, our semantics alignment loss is formulated as:

LSA = (1− ϕdi +Φdi)︸ ︷︷ ︸
Same domain

+ (1− ϕdj )︸ ︷︷ ︸
Random different domain

(3)

To reduce the loss, the ϕdi and ϕdj terms will be max-
imized while the Φdi term will be minimized. The same-
domain component of the loss tries to align the feature to
the assigned prototype and also tries to repel the hard non-
assigned prototypes in the same domain. The different-
domain component of the loss attempts to align the feature
to the assigned prototype in different-domain.

Our overall loss has four different loss terms: the super-
vised and unsupervised losses from the baseline, and the
feature-based conformity loss and semantic alignment loss
from our method, L = Ls+Lu+LFBC+LSA. We provide
the pseudo-code of our methodology in Algorithm. 1.

4. Experiments
Datasets, training and implementation details: We uti-
lize PACS [23], OfficeHome [36], Digits [55], TerraIncog-
nita [5] and VLCS [34] datasets which are widely used to
report DG performance. For a detailed description of the
datasets, refer to the supplementary materials. We conduct
experiments under two settings; 10 labels and 5 labels per
class while labeled images are selected randomly. The lat-
ter setting is more challenging due to the extreme scarcity
of labeled data. Following [57], we randomly sample 16
labeled and 16 unlabeled images from each source domain
to construct a minibatch. The labeled subset of minibatch
is used to calculate the supervised loss while the (com-
plete) minibatch, including both the labeled images (with
ground truth labels dropped) and unlabeled images, are uti-
lized to calculate all the unsupervised losses [57]. We use
ImageNet[12] pre-trained ResNet-18[18] as the backbone
architecture and a single-layer MLP head as the classifier.

Algorithm 1 Pseudo-code

1: Input: Labeled batch dL = {(xd
b , y

d
b ) : b ∈ (1, · · · , B)}

and Unlabeled batch dU = {(ud
b) : b ∈ (1, · · · , B)} ∀d ∈

d1, d2, · · · dtr , Confidence threshold τ , E is total epochs, B is
the Number of batches in an epoch, Model: F = w ◦ f

2: for epoch=1 to E do
3: # Create domain-aware prototypes from the whole labeled

images dL, for each domain and each class.

4: Sd
c = {f(xd

i )|(yi = c)}|d
L|

i=1 ▷ Set of image features from
the domain d and class c

5: Kd
c = 1

|Sd
c |

∑|Sd
c |

i=1 Sd
c [i]

6: # Compute the supervised loss
7: Ls = CE(F(α(xb), yb))
8: # Concat the labeled images to unlabeled (without labels)
9: ud = [ud, xd] ∀ di ∈ d

10: for udi ∈ ud do
11: # Generate pseudo label
12: if max(σ(F(udi))) ≥ τ then
13: ỹ = argmax(σ(F(udi)))
14: # Compute unsupervised loss
15: Lu = CE(σ(F(udi)), ỹ)
16: # Compute FBC loss
17: zdi = ⟨f(udi),Kdi

c ⟩ ; pdi = σ(zdii )

18: zdj = ⟨f(udi),K
dj
c ⟩ ; pdj = σ(zdj )

19: LFBC = CE(pdi , ỹ) + CE(pdj , ỹ) ▷ (Eq: 2)
20: # Compute SA loss
21: ϕdi = max(zdi)
22: Φdi = 1

N−1

∑N
n=2 sort(zdi)[n]

23: ϕdj = zdj [argmax(zdi)]
24: LSA = (1− ϕdi +Φdi) + 1− ϕdj ▷ (Eq: 3)
25: end if
26: return L = Ls + Lu + LFBC + LSA

27: end for
28: end for

We use SGD as the optimizer with an initial learning rate
of 0.003 for the backbone and 0.01 for the classifier, re-
spectively. Both learning rates are decayed using the cosine
annealing rule and we train all the models for 20 epochs on
all datasets except TerraIncognita (trained for 10 epochs).
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Model PACS OH VLCS DigitsDG TerraInc.

ERM 51.2± 3.0 51.7± 0.6 67.2± 1.8 22.7± 1.0 22.9± 3.0

EntMin 55.9± 4.1 52.7± 0.5 66.5± 1.0 28.7± 1.3 21.4± 3.5
MeanTeacher 53.3± 4.0 50.9± 0.7 66.4± 1.0 28.5± 1.4 20.9± 2.9
FlexMatch 65.1± 2.5 48.8± 0.3 56.0± 2.8 59.0± 2.0 24.9± 4.3
FreeMatch 72.8± 1.2 53.8± 0.7 60.3± 1.7 58.9± 1.4 23.5± 2.7
FixMatch 73.4± 1.3 55.1± 0.5 69.9± 0.6 56.0± 2.2 28.9± 2.3
StyleMatch 78.4± 1.1 56.3± 0.3 72.5± 1.5 55.7± 1.6 28.7± 2.7

FlexMatch + Ours 71.0± 1.4 51.3± 0.1 58.0± 2.1 66.2 ± 0.6 28.8± 2.6
FreeMatch + Ours 73.7± 3.6 55.0± 0.2 62.1± 1.4 65.0± 1.5 26.5± 3.2
FixMatch + Ours 77.3± 1.1 55.8± 0.2 71.3± 0.7 62.0± 1.5 33.2 ± 2.0
StyleMatch + Ours 79.3 ± 0.9 56.5 ± 0.2 72.9 ± 0.7 58.7± 1.7 30.4± 3.7

Table 2. SSDG accuracy (%) with 5 labels per class. (Average over 5 independent seeds is reported.)

We set n = ⌈ |C|
2 ⌉, from sec. 3.3, in all experiments.

Evaluation protocol: We use the leave-one-domain out
protocol for evaluation which has been used widely in do-
main generalization [17]. In this protocol, one domain is
used as the target while the remaining domains are used as
the source data to train the model. The target domain is un-
seen during the training phase and the model is evaluated
on this unseen target domain. We report top-1 accuracy av-
eraged over 5 independent trials.
Baselines: Since our method combines SSL with DG,
we select state-of-the-art methods in both paradigms. We
choose EntMin [16], MeanTeacher [33], FixMatch [32],
FlexMatch [50] and FreeMatch [41] methods in SSL.
StyleMatch[57] is selected as an SSDG baseline as it shows
promising performance under 5 and 10 labels settings. Fur-
ther, we chose ERM[35] in DG as it shows competitive per-
formance against many existing DG methods [17]. For a
detailed comparison with existing DG methods, see supple-
mentary materials.

4.1. Results

We report the performance of our method when integrated
into four different baselines: StyleMatch, FixMatch, Flex-
Match, and FreeMatch on five challenging DG datasets (Ta-
ble 1,2). PACS: Our method consistently improves the per-
formance of all four baselines in both the 10 labels and 5
labels settings. We obtain 1.6%, and 3.9% average gains
with our approach on top of the FixMatch baseline for 10
labels, and 5 labels setting respectively. Further, we attain
80.5% average accuracy on 10 class settings, when applied
with StyleMatch baseline. VLCS: Our method is capable
of delivering gain over all four baselines in both the 10 la-
bels and 5 labels per class settings. Specifically, when com-
bined with FixMatch baseline our method achieves more
than 1.8% average gain on both settings. OfficeHome: Our
approach improves the FixMatch baseline by 1.2% on aver-
age in 10 labels settings. In the same setting, our method,
in tandem with StyleMatch, achieves the best figures across
all domains with an average of 60.3%. Digits-DG: When
combined with FixMatch baseline, our approach improves

Method Average

Baseline [32] 73.4
Baseline + LFBC(same−domain) 76.0
Baseline + LFBC(different−domain) 74.9
Baseline + LFBC 76.7
Baseline + LSA 74.8
Baseline + LFBC + LSA(same−domain) 77.0
Baseline + LFBC + LSA (Ours) 77.3

Table 3. Ablation study on PACS (5 labels per class).

FixMatch by a significant gain of 4.0% in 10 label setting
and 6.0% in the 5-label setting. On average, we consistently
improve all the baselines by approximately 5% with our ap-
proach. Terra Incognita: Our method provides gain over
all four baselines on the Terra Incognita dataset which has
a number of real-world distribution shifts such as illumina-
tion shifts, blur, shifts in the size of the region of interest
(ROI), occlusions, camouflage and shifts in perspective. In
both 5 and 10 labels settings, we obtain over 4.0% gain with
our approach over the FixMatch baseline.
Note that, StyleMatch is unable to improve on its baseline
FixMatch when there are no style distributions present in
the source domains (on datasets such as Digits and Ter-
raIncognita) where our proposed method demonstrates sig-
nificant gains with over 4.0% improvement. As our ap-
proach is model agnostic, it can be seamlessly integrated
with different SSL and SSDG baselines. Further, the im-
provements over the baselines are consistent across all the
DG datasets under both 10 and 5 labels per class settings.

4.2. Ablation Study and Analysis

Impact of different components: In Table 3 we report
the performance contribution of individual components in
our approach. We note the following important trends: (1)
each component is capable of improving the performance
over the baseline, (2) the feature-based conformity compo-
nent, which is the first component of our proposed method,
provides a high gain of 3.3% while showing each same
domain and different domain feature alignment is capable
of improving the baseline’s performances individually. (3)
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Figure 5. We visualize the feature space using tSNE (left), and the cosine similarity between the means of class-wise features (right)
for PACS test domains of baseline (first row), ours with feature-based conformity only (second row), and ours with both feature-based
conformity and semantic alignment loss (third row).

Domain Shift Dataset
Method

FlexMatch FreeMatch FixMatch StyleMatch FlexMatch+Ours FreeMatch+Ours FixMatch+Ours StyleMatch+Ours

Style Shifts OH, PACS 56.9 63.3 64.1 64.25 61.2 64.4 66.6 67.9
Background Shifts VLCS, Digits 57.6 59.6 62.9 64.1 62.1 63.6 66.7 65.8
Corruption Shift Terra 24.9 23.5 28.9 28.7 28.8 26.5 33.2 30.4

Table 4. Accuracy(%) for different types of domain shifts in 5 labels per class setting. Corruption shifts include changes in illumination,
changes in perspective, changes in ROI size, camouflage, occlusions, and blur which are often present in real-world distributions.

our proposed method provides the best gain of 3.9% when
the feature-based conformity is coupled with the semantic
alignment constraint.

Performance under various domain shifts: We evaluate
the performance under various domain shifts (Table 4) in-
cluding background shifts, style shifts, and corruption shifts
which occur in real-world scenarios. Our approach provides
visible gains over baselines under various domain shifts.
Existing SSDG methods such as StyleMatch operate within
the confines of the input pixel space and under the assump-
tion that some style variations are present between source
domains. Unlike our method which harnesses the informa-
tion at feature space, such methods fail to generalize when
they encounter real-world corruption shifts such as shifts in
illumination, perspective, ROI size, blur, camouflage, and
occlusions in the source domains.

Feature visualization: We visualize the feature space for
PACS test domains with FixMatch as baseline (see Fig. 5
(left)). When FixMatch is coupled with our first component,
feature-based conformity, we observe better class-wise dis-
crimination over the baseline. When the feature-based con-
formity is supported by the semantic alignment constraint,
we can observe well-separated and well-compact class-wise

clusters in feature space that help improve the classifica-
tion performance. Also, our proposed method encourages
classes to be orthogonal in the feature space (Fig. 5(right)).

5. Conclusion and Limitations

We approach the relatively unexplored problem of semi-
supervised domain generalization (SSDG) and propose a
new method, built with feature-based conformity and se-
mantics alignment constraint modules, towards address-
ing the key challenges in SSDG. The feature-based con-
formity mechanism aligns the posterior distributions from
two views, while the semantics alignment constraint fur-
ther boosts the effectiveness of feature-based conformity
by regularizing the semantic layout of feature space.
Our approach is plug-and-play, parameter-free and model-
agnostic, so it can be seamlessly integrated into different
baselines as validated in our results. Extensive experi-
ments on different challenging DG benchmarks show that
our method delivers a consistent and notable gain over four
recent baselines. An aspect to consider is that our ap-
proach may necessitate significant adjustments to accom-
modate semi-supervised single-source DG.
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