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Abstract

This paper addresses the critical challenges of sparsity
and occlusion in LiDAR-based 3D object detection. Current
methods often rely on supplementary modules or specific
architectural designs, potentially limiting their applicabil-
ity to new and evolving architectures. To our knowledge, we
are the first to propose a versatile technique that seamlessly
integrates into any existing framework for 3D Object Detec-
tion, marking the first instance of Weak-to-Strong general-
ization in 3D computer vision. We introduce a novel frame-
work, X-Ray Distillation with Object-Complete Frames,
suitable for both supervised and semi-supervised settings,
that leverages the temporal aspect of point cloud sequences.
This method extracts crucial information from both previous
and subsequent LiDAR frames, creating Object-Complete
frames that represent objects from multiple viewpoints, thus
addressing occlusion and sparsity. Given the limitation of
not being able to generate Object-Complete frames during
online inference, we utilize Knowledge Distillation within
a Teacher-Student framework. This technique encourages
the strong Student model to emulate the behavior of the
weaker Teacher, which processes simple and informative
Object-Complete frames, effectively offering a comprehen-
sive view of objects as if seen through X-ray vision. Our pro-
posed methods surpass state-of-the-art in semi-supervised
learning by 1-1.5 mAP and enhance the performance of
five established supervised models by 1-2 mAP on stan-
dard autonomous driving datasets, even with default hy-
perparameters. Code for Object-Complete frames is avail-
able here: https://github.com/sakharok13/X-Ray-Teacher-
Patching-Tools.
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Figure 1. 3D object detection directly from sparse LiDAR data
(top left) provides noisy predictions (bottom left). Adding ob-
ject completion stage (top right) helps to train 3D object detec-
tion X- Ray Teacher, which is robust and can be distilled to base-
line model. Red, Yellow and Blue colors of bounding boxes are
related to classical LiDAR-based object detection, Our model on
Object-Complete frames predictions and Ground Truth labels, re-
spectively.

You’re just not thinking fourth dimensionally... the
bridge will exist.

Dr. Emmett Brown, Back to the Future

1. Introduction
3D object detection is a fundamental task in the field of
computer vision and autonomous systems, playing a key
role in the advancement of self-driving technology [1] and
contributing significantly to the robotics industry [38, 51].
Currently, LiDAR-based 3D object detection [6, 17, 36]
demonstrates superior performance compared to camera-
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based [19, 39, 40, 45] and radar-based [3, 8, 22, 25] ap-
proaches. Furthermore, LiDAR point clouds are the key
ingredient of multimodal fusion-based approaches [14, 21,
37], so LiDAR-based 3D detection continues to be a strong
focus of the research community.

The point cloud-based 3D object detection challenges
the following issues: sparsity, occlusions, and the complex-
ity of 3D data annotation. Sparsity: large point clouds are
sparse due to the LiDAR sensing process’s inherent char-
acteristics that leads to an imprecise representation of the
captured scene. Additionally, there is an imbalance in point
density. In particular, the point cloud is sparser in the far
range and contains less spatial information affecting fea-
ture representation and box prediction. Occlusions: an-
other problem arises from the frequent occurrence of par-
tial occlusion in LiDAR frames. This primarily happens
due to the fact that the frames are acquired from a single
fixed point of view, making them essentially 2.5D. To de-
tect and accurately locate a highly occluded object, a de-
tector must recognize the hidden shapes of the object even
when a significant portion of its parts is missing. Since the
absence of certain shapes inevitably affects object percep-
tion, this becomes a critical detection challenge. Our pre-
vious approaches focused on depth completion [23], depth
inpainting [30] or self-supervised depth pretraining [15, 16]
could not address occlusion problems. Data annotation:
finally, data annotation is a formidable challenge in 3D ob-
ject detection due to the complexity of annotating objects
in three-dimensional space. For example, a skilled anno-
tator can spend weeks annotating just one hour of LiDAR
data [9, 24]. This problem is partially addressed by semi-
supervised learning approaches in a teacher-student frame-
work [33, 35, 46, 48]. However, the quality of pseudo labels
and the performance of these methods are limited due to the
aforementioned sparsity and occlusion problems. There-
fore, overcoming these inherent challenges is essential to
improve the accuracy and reliability of 3D detection sys-
tems.

The challenges posed by sparsity and occlusion have led
to the formulation of several methodologies. Some of them
[42] are aimed at improving the computational efficiency
of processing sparse data without improving the quality
of the predictions. Others, including our work, focus on
improving detection performance on sparse occluded data
[18, 20, 26, 41]. Li et al. [18] enforce shape constraints
to improve object localization with explicit shape priors ob-
tained from a database of CAD models. Najibi et al. [26]
and Li et al. [20] do the same by implicitly introducing
priors with novel modules pretrained for point cloud com-
pletion and SDF approximation. Xu et al. [41] propose a
Shape Occupancy Probability estimation module to refine
predicted bounding boxes for occluded objects. However,
all of these mentioned approaches utilize new modules and

adapt the model architecture to take advantage of them. As
a result, these methods have limited applicability to new ar-
chitectures that will emerge as the field evolves.

In this work, we address all three major challenges in
3D object detection with our novel framework called X-
Ray Distillation with Object-Complete Frames that is eas-
ily plugged in existing approaches and new architectures. It
is designed for universal application to any LiDAR-based
detector, improving performance on sparse and occluded
objects. Our approach exploits the properties of existing
large-scale autonomous driving datasets, which consist of
sequences of LiDAR frames. Such property makes it pos-
sible to reconstruct complete shapes for occluded objects
using other occurrences of these objects in the sequence,
ensuring that all objects are equipped with points from all
available viewpoints in a scene. We then use this com-
pleted data in the Teacher-Student framework for both semi-
supervised learning and knowledge distillation in a super-
vised setting. We train our Teacher on extremely infor-
mative Object-Complete frames thus making it a weaker
model [4]. Then, we use it to extract features from such
simple Object-Complete frames and distills this knowledge
to a stronger Student, which operates with the original data,
to guide him on how to extract rich features from occluded
objects. To generate Object-Complete frames, we leverage
ground truth object tracking labels. Since there are no la-
bels for the majority of data in the semi-supervised setting,
we propose an Objects Temporal Fusion block to detect,
track, and use point cloud registration techniques to con-
struct Object-Complete frames.

We validate the proposed X-Ray Teacher framework on
nuScenes [5] and Waymo Open Dataset [32] 3D object de-
tection benchmarks for SECOND [42], CenterPoint [47],
and DSVT [36] models in a supervised learning paradigm.
Experiments show a steady improvement by 1-2 mAP with
minimal or no impact on time and computational resources
during the inference stage. For semi-supervised perfor-
mance evaluation, we use ONCE [24] benchmark.

Applying these novel ideas for 3D object detection, we
provide the following contributions:

1. We propose the X-Ray Teacher framework for semi-
supervised learning, which achieves state-of-the-art per-
formance on the ONCE benchmark.

2. We show that our approach improves the quality of four
supervised learning models, including the current state-
of-the-art model, and demonstrates the potential to im-
prove the performance of any supervised model trained
on sequential data.

3. We suggest the Objects Temporal Fusion block to gen-
erate Object-Complete frames for data that lacks ground
truth tracking labels.
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2. Related work
2.1. Object Detection for point clouds

Modern 3D detectors predominantly use point clouds, voxel
representations, or a combination of both. The pioneer-
ing PointNet model family [28, 29] provided a significant
step forward in 3D recognition. However, direct process-
ing of point clouds poses several challenges: it requires
point sampling, grouping, and computation of point-wise
features, which can be computationally intensive. To in-
tegrate insights from 2D computer vision, a transition to
a pixel equivalent, namely voxels, is required. Methods
such as [41, 43, 47, 49] first convert point clouds to voxels,
followed by the use of 3D sparse convolutions [12]. Re-
cent advances also include the integration of modified self-
attention layers, achieving state-of-the-art results [36].

2.2. Semi-supervised 3D detection

Although Semi-supervised 3D object detection is not as ex-
tensively researched as 2D detection, it has seen some sig-
nificant contributions. Among these, SESS [48] stands out
for using the general Mean Teacher approach with data aug-
mentations and consistency loss. Similarly, 3DIoUMatch
[35] is notable for its unique localization strategies and 3D
IoU-guided techniques for box filtering. Proficient Teach-
ers [46] is notable for its box voting and contrastive losses.
We do not propose yet another standalone method for Semi-
supervised 3D Object Detection; rather, our emphasis is on
creating a plug-in technique designed to augment and en-
hance the performance of existing methods.

2.3. Knowledge Distillation

The concept of Knowledge Distillation (KD) was first in-
troduced by Hinton et al. [10]. KD describes a learning ap-
proach where a larger teacher network guides the training of
a smaller student network for various tasks [13]. Broadly,
KD methodologies are categorized into two types: log-
its/regression distillation and feature map distillation. Our
focus is on a hybrid approach, combining these methods:
matching feature maps, regression, and classification heads
with pseudo labels generated by the teacher model.

In 3D object detection, Knowledge Distillation is mainly
utilized to minimize parameters and FLOPS while aiming
to preserve box prediction quality [7, 44]. Yet, methods
that aim to outperform state-of-the-art models are uncom-
mon. In contrast to this trend, our X-Ray Teacher model
challenges the norm by providing the quality improvement.

3. Methodology
3.1. Overview of X-Ray Teacher

We introduce a novel training framework to address the
challenges of sparsity and occlusion in 3D Object Detec-

tion based on LiDAR data. This framework is not limited to
any specific object detection model and has the potential for
applications across various deep learning architectures. Our
method is designed to process the LiDAR data structured as
a sequence of frames.

The two core elements of our approach are Object Com-
plete Frames Generation and Teacher-Student Knowledge
Distillation. Our approach for 3D object detection can be
applied in both, supervised and semi-supervised settings,
with minor differences in the elements implementation.

Object Complete Frames Generation. In this step, we
reconstruct the complete shapes of objects presented in the
scene by utilizing information from the other frames within
the same sequence. Given that autonomous driving datasets
are composed of sequential data, we can efficiently leverage
their temporal nature: we add points from both the future
and the past when objects are observed from different view-
points. It allows us to reconstruct the complete shapes of
objects without shape databases or reconstruction modules.

In order to verify the validity of our approach, we trained
a CenterPoint [47] model on both, the original and object-
complete NuScenes [5] datasets, and then evaluated their
performance on the respective validation sets. The mod-
els trained on the original and the object-complete frames
achieved mAP scores of 59.2% and 79.5%, respectively.
This difference of 20 mAP suggests that 1) it would be
beneficial to transform unlabeled original point clouds into
Object-Complete ones and to annotate them with a cor-
responding X-Ray Teacher pretrained on such informative
frames 2) the features extracted by a weaker X-Ray Teacher
might be distilled to a stronger student to share the knowl-
edge of complete shapes.

Teacher-Student Knowledge Distillation. The neces-
sity for this step arises because we cannot generate Object
Complete Frames during the online inference stage, as it is
not possible to access future data. Therefore, we need to en-
courage the model to behave as if it were observing shape-
complete objects, even when dealing with occluded ones. A
well-known method for enabling a deep learning model to
imitate another model’s behavior involves using Knowledge
Distillation within a Teacher-Student framework. However,
for conventional Knowledge Distillation, both the Teacher
and Student models typically process data of the same com-
plexity (the only difference may lie in the complexity of
augmentations [31]). In contrast to the standard knowledge
distillation, we enrich the data for training Teacher, which
significantly improves its performance in 3D object detec-
tion. Then, we teach the Student to extract important infor-
mation from less detailed data by distilling knowledge from
the Teacher model.

Instead of simplifying the Student model, as it is usually
done in standard Knowledge Distillation, we take an oppo-
site approach and design the Student to be more complex
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Figure 2. Overall X-Ray Knowledge Distillation for Supervised Learning. X-Ray Teacher is frozen and pretrained on Object-Complete
frames which are taken as input. The Student is guided to mimic the Teacher’s behaviour through Knowledge Distillation losses: Lfeat for
intermediate embeddings matching, Lreg for bounding box regression, Ldet for basic detection, and Lcls for classification.

than the Teacher. It helps to extract high-quality informa-
tion from more intricate and ambiguous data and demand a
Student model to be more robust and to have a more com-
plex receptive field capacity.

In what follows, we provide detailed descriptions of how
we implement Object Complete Frames Generation and
Teacher-Student Knowledge Distillation steps in both su-
pervised and semi-supervised settings.

3.2. Supervised X-Ray Teacher

In the supervised setting of 3D Object Detection, models
are trained and evaluated using datasets that provide la-
beled data, including precise bounding boxes and instance
IDs. Object-Complete Frame Generation for labeled data
involves aggregating objects based on their instance IDs and
merging different views into a unified point cloud (see Sec-
tion 4.2.2 for details).

For the distillation process (see Figure 2), we train
Teacher model on Object-Complete frames and then freeze
it. Then, we train baseline model (playing Student role)
to directly minimize Knowledge Distillation losses inspired
by [44]. The distillation is done by matching Teacher and
Student backbone encoders’ embeddings, output labels for
bounding box regression, classes distribution for classifica-
tion task (objects like pedestrians, cars, cyclists, etc.), and
intermediate features obtained from the outputs of regres-
sion and classification heads before postprocessing (assign-
ing labels). Specifically, we define the following losses:

LKD
heads = α1LKD

reg + α2LKD
cls (1)

= α1DKL(Scls∥Tcls) + α2MSE(Sreg, Treg) (2)

LKD
feat = MSE(Tback, ϕ(ω(Sback))) (3)

LKD
det = Ldetection(Spreds, T̃boxes) (4)

T and S are the outputs of our Teacher and Student mod-
els, respectively. The Student takes the original frame F

as input, while the Teacher receives the Object-Complete
Frame F̃ , so F ⊂ F̃ . Sback and Tback are referred to the
output of the backbone module and Sreg, Treg, Scls, Tcls

are the outputs of regression and classifications heads.
T̃boxes are the X-Ray Teacher’s predicted boxes after post-
processing. Spreds is an overall Student’s output; α1, α2 are
non-negative hyper-parameters. Ldetection is a basic detec-
tion loss that is used for training 3D object detection mod-
els. ϕ is a 1x1 Convolution to better match the Teacher’s
feature maps. ω refers to some extra convolutions to make
the Student more flexible. We discovered that X-Ray Dis-
tillation does not need extra convolutions in the case of the
NuScenes dataset, so their usage for encoder feature adjust-
ment is also a hyperparameter of the model. By MSE, we
mean Mean Squared Error.

Finally, the training objective can be written as follows:

L = λ1LKD
heads + λ2LKD

feat + λ3LKD
det (5)

where λ1, λ2, λ3 are non-negative hyper-parameters bal-
ancing the contribution of each term.

3.3. Semi-supervised X-Ray Teacher

Semi-supervised learning is characterized by the availabil-
ity of a small amount of labeled data and a larger pool of un-
labeled data, making the use of the Object Complete Frame
generation approach proposed for supervised settings infea-
sible.

In order to overcome this limitation, we introduce the
Objects Temporal Fusion block (as shown in Figure 3),
which is designed to enable Object Complete Frame gen-
eration in situations where ground truth labeling is missing.
This block leverages a model pretrained on labeled data to
detect and track objects across unlabeled sequences. Sub-
sequently, it employs Point Cloud Registration (PCR) to
merge objects points from different views for all detected
objects.
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Figure 3. Object-Complete Frame generation process for semi-
supervised setting. It consists of tracking and Point Cloud Regis-
tration. We track objects across all frames in the whole sequence,
then we use Point Cloud Registration to merge points that repre-
sent the same object from different views, and finally we replace
the original object with the new, complete one.

The provided steps outline a precise and detailed proce-
dure for Objects Temporal Fusion:
1. to label all LiDAR frames using a pretrained model;
2. to greedily track objects across all frames in each se-

quence using predicted bounding boxes; assign unique
IDs to every object instance to facilitate the identifica-
tion of recurring objects within the scene and to organize
them in a sequential manner;

3. for each object within each sequence, to merge differ-
ent views of the same object by applying a deep learning
model for Point Cloud Registration; this process gener-
ates a complete point cloud for each object, which is then
used to replace the occluded one in each frame;

4. to fine-tune the base model on Object-Complete labeled
frames; this refined model forms our X-Ray Teacher.
More details for greedy tracking and Point Cloud Regis-

tration models can be found in Section 4.2.2.
The Knowledge Distillation step presented in Figure 4

can be integrated with any semi-supervised 3D Object De-
tection approach that uses pseudo labeling as a form of self-
distillation. All methods in the domain usually follow this
paradigm, which underlines the high universality of our ap-
proach. From this perspective, the use of Object-Complete
frames for pseudo label prediction refines the 3D bounding
boxes and improves the quality of self-distillation. The sole
limitation is that existing semi-supervised methods [33, 46]
typically update the Teacher model’s weights using the ex-
ponential moving average of the Student’s weights. We re-
frain from this practice because our Teacher is finetuned
on Object-Complete frames and thus predicts higher-quality
labels (see proofs in Section 4.3).

4. Experiments
This section covers the datasets, implementation details, ex-
periment results, and a detailed analysis of the different
components that affect performance. It starts with Section
4.1, which defines the datasets and metrics used to prove
the validity of our ideas. Section 4.2 delves into the net-
work architectures and training parameters, while Section
4.4 analyzes the obtained metric values. Finally, Section 4.3
examines various parts of our approach and their influence

on the overall performance.

4.1. Data

To evaluate our models, we use three large-scale au-
tonomous driving datasets: NuScenes and Waymo Open
Dataset for the supervised setting and ONCE for the semi-
supervised setting.

NuScenes [5] is a popular outdoor dataset with diverse
annotations for different tasks. It has 40,157 annotated sam-
ples. For 3D object detection, we provide NuScenes Detec-
tion Score (NDS) and mean Average Precision (mAP).

Waymo Open [32] is also one of the most popular out-
door 3D perception datasets. It contains 1150 point cloud
sequences and has more than 200K total frames. All results
are evaluated with 3D mean Average Precision (mAP) and
its weighted variant (mAPH)

ONCE [24] is a large-scale dataset with 1 million pout
cloud samples from LiDAR and only 15K annotated frames
that are divided into train, val, and test with 5k, 3k, and
8k samples, respectively. This dataset is designed ex-
actly for semi-supervised learning tasks and simulates real
life: annotations are expensive and time-consuming. All
not labeled frames are divided into Small (70 sequences),
Medium (321 sequences), and Large (560 sequences) parts.
We follow the ONCE Benchmark and use mAP over all
classes with the 3D IoU thresholds 0.7, 0. 3, and 0.5 for
classes ”Vehicle”, ”Pedestrian”, and ”Cyclist”, respectively.

4.2. Implementation Details

4.2.1 Network architectures

For supervised setting, we use SECOND [50], Center-
PointVoxel [47], CBGS [50], DSVT [36] within our frame-
work. The implementations of these models are based on
the OpenPCDet [34] library, and we adhere to the default
configurations suggested by this library for both training
and inference. In addition, we present scaled versions of
these models, which are essentially the original networks
augmented with five additional convolutional layers stacked
on top of the BEVEncoder with the following parameters
1x Conv(512, 128), 3x Conv(128, 128), and 1x Conv(128,
512) with Batch Normalizations and ReLU activations after
each convolution. With the help of light Grid Search, we
choose the following distillation hyperparameters: α1 = 2,
α2 = 1, λ1 = 0.7, λ2 = 0.3, λ3 = 1.

For semi-supervised setting, we follow the previous
works [35, 46] and use SECOND and CenterPointVoxel
models from OpenPCDet for validation of comparison. For
training and inference, we use recently proposed refined
configurations from work [11]. X-Ray Teacher model is
fine-tuned on object-complete frames with the same hyper-
parameters for 10 epochs.

For computations, we use 4x A100 40GB GPU and
AMD EPYC 7702 CPU.
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Figure 4. Semi-supervised X-Ray Teacher pipeline for 3D object detection task. Unlabeled sequences are processed by the Objects
Temporal Fusion block to create more complete object representations by aggregating information over time. The Student model learns
from both pseudo-labeled predictions and actual labeled data with ground truth annotations.

Table 1. Evaluation of the impact of teacher fine-tuning on Object-
Complete frames in semi-supervised setting. The results indicate
that teacher fine-tuning is essential.

Method mAP
X-Ray MT SECOND 60.12
X-Ray PT SECOND 61.48
X-Ray MT SECOND* (ours) 65.26
X-Ray PT SECOND* (ours) 68.43
X-Ray MT CenterPoint 59.35
X-Ray PT CenterPoint 62.17
X-Ray MT CenterPoint* (ours) 67.60
X-Ray PT CenterPoint* (ours) 70.55

4.2.2 Object-Complete Frame Generation

The key concept of this paper - Object-Complete Frame
Generation - combines diverse ideas to achieve optimal Ob-
ject Completion, encompassing facets such as detection,
tracking, and the registration of point clouds.

The detection phase is construed as an elective stage,
exclusively implemented on unlabeled data. Within this
stage discerned instances are encapsulated into generated
3D bounding boxes. E.g., a substantial proportion of in-
stances within the ONCE dataset lacks accompanying la-
bels.

Subsequently, the greedy tracking procedure traverses
the entire set of frames, associating the appearance of in-
stances at the i-th frame with potential candidate appear-
ances in the following frame. The list of candidate in-
stances is built by including all instances from the suc-
ceeding frame that fall within a prescribed radius, defined

as twice the maximum dimension across their respective
bounding boxes. The nearest instance is selected from the
list, while the remaining instances are discarded. The series
of matches made using this algorithm are combined into a
single sequence, called track. When there are no more po-
tential matches in the next frame, the track is considered as
terminated. For the given instance in some specific frame
there is the only corresponding track across the entire scene.

Those prepared instances are then used for Object Com-
pletion, a process executed through several sequential steps:
1. Point clouds associated with instances are extracted from

their respective frames, they are translated back to the
zero-point of the global basis. The rotation of the in-
stances are also reset to identity.

2. The point clouds corresponding to instances within a
common track undergo a merging process, constituting
the Point Cloud Registration phase, wherein diverse set
of merging approaches is used to glue them into a larger,
densely populated point cloud.

3. Later on the corresponding point clouds are replaced
with their respective densely populated point cloud from
the previous step, restoring their original translation and
rotation in a specific frame.

Table 2. Comparison of three distillation strategies: using only
classification and regression heads matching, BEV features and
heads matching, and the final pipeline that is the SECOND-Scaled
model; experiment performed using Waymo Validation set.

Technique mAP/mAPH L1 mAP/mAPH L2
Heads match 67.5/63.4 61.1/57.2
BEV & Heads 67.8/63.5 61.6/57.4
Full Pipeline (ours) 68.3/64.3 61.9/58.0
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Various merging strategies were empirically tested in
generating Object-Complete point clouds:
1. Geometry: assumes the objects (with boxes) are best

aligned by the detected bounding box, performs both
inverse translation and rotation to clear their geometric
transformations and then merges intact point clouds.

2. GeDi: uses GeDi Point Cloud Registration method [27].
3. Greedy Grid: uses Greedy Grid implementation [2].
Object-Complete frames have the potential to become ex-
ceedingly large, so we employ a point subsampling strategy.

Table 3. Registration methods comparison for Object Complete
Frame Generation on the ONCE Small split. We trained our best
SECOND model in the semi-supervised setting with X-Ray Pro-
ficient Teacher on three different types of preprocessed data and
compared results on ONCE validation set.

Method mAP
Box Geometry 67.88
Greedy Grid [2] 68.17
GeDi [27] 68.43

Table 4. Comparison for supervised 3D Object Detection task on
Waymo Open Dataset. We compare baseline models, their scaled
versions and X-Ray distillation with default hyperparameters.

Model mAP/mAPH L1 mAP/mAPH L2 #params

SECOND X-Ray Teacher* 85.1/70.3 75.1/64.7 5.3m

SECOND 67.2/63.1 61.0/57.2 5.3m
X-Ray SECOND 67.0/62.8 60.4/56.7 5.3m
SECOND-Scaled 66.8/62.7 59.4/56.1 6.2m
X-Ray SECOND-Scaled 68.3/64.3 61.9/58.0 6.2m

CenterPoint X-Ray Teacher* 88.3/78.6 76.4/72.9 8.3m

CenterPoint 74.4/71.7 68.2/65.8 8.3m
X-Ray CenterPoint 73.2/69.7 67.1/64.5 8.3m
CenterPoint-Scaled 74.1/71.5 67.9/65.3 9.2m
X-Ray CenterPoint-Scaled 75.2 /72.1 68.9/66.3 9.2m

DSVT Pillar X-Ray Teacher* 89.3/79.7 79.1/73.4 8.6m

DSVT Pillar 79.5/77.1 73.2/71.0 8.6m
X-Ray DSVT Pillar 79.2/76.7 72.6/70.3 8.6m
DSVT Pillar-Scaled 79.6/77.2 73.3/71.2 9.5m
X-Ray DSVT Pillar-Scaled 80.1/77.9 73.7/71.4 9.5m

4.3. Ablation Studies

In this section, we provide the comparison of different com-
ponents of our approach and show how they affect the per-
formance. Specifically, we prove the usefulness of teacher
fine-tuning and compare Point Cloud Registration and dis-
tillation methods. We also analyse if dealing with sparsity
and incomplete shapes really improves the performance.

First, we performed a detailed comparison of the semi-
supervised performance of our X-Ray method, both with
and without teacher fine-tuning using Object-Complete
frames. We use Mean Teacher and Proficient Teacher with

Baseline Model Predictions X-Ray Teacher Predictions

Figure 5. Visual comparison between noisy and poor baseline
(original) 3D detector SECOND (left column) and our X-Ray
Teacher that perceives Object-Complete frames. We compare two
identical timestamps and view angles. The Baseline model fails
to detect some objects while X-Ray Teacher does not. This ex-
plains why knowledge distillation is indeed beneficial and should
improve models.

SECOND and CenterPointVoxel models trained on ONCE
Small split. Table 1 illustrates the substantial impact of
teacher fine-tuning on performance, showing that neglect-
ing this step results in a noticeable performance decline.

As we noted before, the reconstructed objects will not
be perfect in the semi-supervised setting, which is precisely
why we included Table 3. PCR models trained on domain
objects like cars, pedestrians, cyclists, etc., should improve
our method even more.

As we mentioned earlier, we combine several techniques
for the knowledge distillation: BEV features matching,
heads output matching with simple regression and KL di-
vergence and detection loss on the teachers predictions. We
also compare partial solutions on the Waymo validation set
with a SECOND model in Table 2

Table 5. Comparison on NuScenes dataset. Our method improves
baselines without scaling models due to the fact that NuScene’s
object-complete frames are less informative compared to Waymo.

Model mAP NDS
X-Ray Teacher* CBGS 77.1 72.4
CBGS 50.0 59.2
X-Ray CBGS (ours) 50.8 60.4
X-Ray Teacher* CenterPoint-Voxel 79.5 77.1
CenterPoint-Voxel 53.4 61.3
X-Ray CenterPoint-Voxel (ours) 54.3 62.9
X-Ray Teacher* Transfusion-L 81.3 78.2
Transfusion-L 56.1 66.3
X-Ray Transfusion-L (ours) 56.8 66.9
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Table 6. Performance of X-Ray-powered Mean Teacher and
Proficient Teacher methods in the semi-supervised setting using
SECOND and CenterPoint baselines, ONCE validation set. Our
approach consistently outperforms the state-of-the-art for Semi-
Supervised 3D Object Detection in terms of mAP across all splits.

Method SECOND CenterPoint
Train (5k labeled samples)

Pretraining 63.22 64.41
Small (5k labeled + 100k unlabeled samples)

Mean Teacher 64.31 66.47
X-Ray MT (ours) 65.26 (+0.95) 67.60 (+1.13)
Proficient Teacher 67.06 67.72
X-Ray PT (ours) 68.43 (+1.37) 68.76 (+1.04)

Medium (5k labeled + 500k unlabeled samples)
Mean Teacher 64.73 66.87
X-Ray MT (ours) 65.62 (+0.89) 67.78 (+0.91)
Proficient Teacher 67.49 68.54
X-Ray PT (ours) 68.75 (+1.26) 69.96 (+1.42)

Large (5k labeled + 1M unlabeled samples)
Mean Teacher 65.03 67.45
X-Ray MT (ours) 65.97 (+0.94) 68.17 (+0.72)
Proficient Teacher 67.89 69.68
X-Ray PT (ours) 69.10 (+1.21) 70.55 (+0.87)

We evaluate various Point Cloud Registration (PCR)
methods used in the Object Complete Frame Generation
process. This analysis, detailed in Table 3, is conducted on
a ONCE Small split. The results indicate that superior PCR
leads to the creation of less noisy objects, which in turn con-
tributes to improved overall quality. However, it’s important
to note that methods, such as the Greedy Grid method [2]
and GeDi [27], are computationally more expensive. This
introduces a trade-off between computational efficiency and
the quality of the results, highlighting the need for a bal-
anced approach in the selection of PCR methods.

4.4. Model comparison

4.4.1 Supervised Learning

We perform model comparisons using SECOND [42],
CenterPoint-Voxel [47], and DSVT Pillar [36] on the
Waymo dataset, and CBGS [50] and CenterPoint-Voxel on
the NuScenes dataset. Additionally, we train scaled ver-
sions of these models without the X-Ray Teacher to show
that the improvements in detection quality are due to the
effectiveness of our method, not just an increase in the
number of parameters. We scale Waymo students because
of the extremely dense and complete point clouds, un-
like NuScenes (see supplementary materials), where sim-
pler data requires fewer parameters to learn meaningful fea-
ture representations. The results, presented in Tables 4 and
5, demonstrate that our approach consistently outperforms

baseline models by 1-2 mAP.

Table 7. Student performance on ONCE validation small split with
different tracking methods used in Objects Temporal Fusion

Tracking method SECOND CenterPoint
Greedy 68.43 68.76
Kalman Filter + IoU 68.57 68.91
ReID + Kalman Filter 68.79 69.12

4.4.2 Semi-Supervised Learning

To validate the effectiveness of our method in the context of
pseudo-label-based semi-supervised learning, we perform a
comparative analysis with the Mean Teacher [33] and Pro-
ficient Teacher [46] methods, which use the SECOND and
CenterPointVoxel models. We compare the results obtained
with and without the use of the X-Ray Teacher, as detailed
in Table 6. Our results show that the application of our ap-
proach consistently improves performance, yielding an im-
provement of 0.8-1.4 mAP.

5. Conclusion
In our research, we proposed the innovative X-Ray Teacher
framework, tailored to improve 3D Object Detection mod-
els in supervised and semi-supervised settings. Our exten-
sive results have shown that this approach not only achieves
state-of-the-art performance in the semi-supervised setting
on the ONCE benchmark, but also consistently improves
the quality of supervised models on NuScenes and Waymo
Open Dataset. The main contributions of our work include
the design of the X-Ray Teacher framework, the develop-
ment of the Objects Temporal Fusion block for generat-
ing Object-Complete frames for data lacking ground truth
tracking labels, and the demonstration of the potential of
our method to improve the performance of any supervised
model trained on sequential data. Future work will focus
on optimizing the Objects Temporal Fusion block for more
complex environments and exploring the integration of our
framework with a broader range of model architectures and
applications.
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