
SignGraph: A Sign Sequence is Worth Graphs of Nodes

Shiwei Gan† Yafeng Yin†* Zhiwei Jiang† Hongkai Wen‡ Lei Xie† Sanglu Lu†

† State Key Laboratory for Novel Software Technology, Nanjing University, China
‡ Department of Computer Science, The University of Warwick, UK

sw@smail.nju.edu.cn {yafeng,jzw,lxie,sanglu}@nju.edu.cn hongkai.wen@warwick.ac.uk

Abstract

Despite the recent success of sign language research, the
widely adopted CNN-based backbones are mainly migrated
from other computer vision tasks, in which the contours and
texture of objects are crucial for identifying objects. They
usually treat sign frames as grids and may fail to capture
effective cross-region features. In fact, sign language tasks
need to focus on the correlation of different regions in one
frame and the interaction of different regions among adja-
cent frames for identifying a sign sequence. In this paper,
we propose to represent a sign sequence as graphs and in-
troduce a simple yet effective graph-based sign language
processing architecture named SignGraph, to extract cross-
region features at the graph level. SignGraph consists of
two basic modules: Local Sign Graph (LSG) module for
learning the correlation of intra-frame cross-region fea-
tures in one frame and Temporal Sign Graph (TSG) mod-
ule for tracking the interaction of inter-frame cross-region
features among adjacent frames. With LSG and TSG, we
build our model in a multiscale manner to ensure that the
representation of nodes can capture cross-region features
at different granularities. Extensive experiments on cur-
rent public sign language datasets demonstrate the supe-
riority of our SignGraph model. Our model achieves very
competitive performances with the SOTA model, while not
using any extra cues. Code and models are available at:
https://github.com/gswycf/SignGraph.

1. Introduction
Computer vision technology and natural language process-
ing technology have greatly advanced sign language (SL)
research, including Sign Language Recognition (SLR) and
Sign Language Translation (SLT). The former task aims at
recognizing an isolated sign/continuous signs as a corre-
sponding gloss or gloss sequence, while the latter task aims
at translating continuous signs into spoken language [3]. In
the modern sign language processing models (SLR models
and SLT models), one of the key points of these deep learn-

*Yafeng Yin is the corresponding author.

Figure 1. Comparison of feature extraction between convolutional
network and our graph convolutional network.

ing based methods is to learn sign-related features through
training with extensive sign video data. As a matter of
course, 2D CNNs and 3D CNNs are used to be the de-
facto standard visual backbones [7, 10] for extracting lo-
cal sign frame features, while 1D CNN, LSTM and Trans-
former [3, 11, 37] are used as the temporal module to cap-
ture dynamic changes of sign frames.

However, as shown in Figure 1, the widely-used CNN-
based backbones that are mainly migrated from image
recognition and object detection tasks, treat the sign
frame/sign clips as grids and adopt ‘kernels’ to extract lo-
cal features by sliding across sign frames. These CNNs are
good at capturing contour-based representation and texture-
based representation [12], but they may fail to capture the
explicit collaboration of signs in different regions. In fact,
sign language tasks need to focus on manual and non-
manual features, especially the collaboration of these cues
in different regions [35]. Besides, temporal modules like
LSTM and Transformer layer usually regard a sign frame
as a whole region and learn the overall variance of whole
frames, while ignoring the interaction of subregions in ad-
jacent frames. Other temporal methods like 1D CNN can
only focus on the same regions in adjacent frames, which
may fail to track dynamic motions across different regions.
In fact, the dynamic movements in the body, hands, and
face which are reflected in the same/different regions be-
tween adjacent frames, are primary elements of identifying
a sign for sign language tasks.

In order to make up for the shortcomings of typical CNN
backbones explicitly or implicitly and allow the model to
learn robust sign-related features, exiting work committed
to designing various CNN-based backbones by injecting do-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13470

main knowledge i.e., skeleton [11], depth images [30] or lo-
cal areas [37]. Besides, some work trained their backbones
with more training samples by back translation [36], cross
modality augmentation [28] and pre-training models [6],
while others added extra constraints on backbones by using
knowledge distillation [16], contrastive learning [10].

Different from previous work, we build a simple yet ef-
fective sign graph neural network (SignGraph for short)
for continuous sign language recognition (CSLR) task, in
which we take sign frames as graphs of nodes and build dy-
namic graphs to learn cross-region features. The main intu-
itions are: (1) Sign-related features involve the correlation
of different regions in one frame, such as face region and
hand regions. Thus, we propose a local sign graph LSG
module by dynamically building graphs based on nodes in
each frame, to learn intra-frame cross-region features. (2)
The dynamic movements in the body, hands, and face are
reflected in different regions among adjacent frames. Thus
we propose a temporal sign graph TSG module by dynam-
ically connecting sign-related regions based on nodes in ad-
jacent frames, to learn inter-frame cross-region features. (3)
Considering that patches with a single size may not cap-
ture local features effectively, we build our SignGraph in
a multiscale manner by merging small patches into larger-
size patches, and use different-size patches to capture cross-
region features at different granularities. We make the fol-
lowing contributions:

• Different from CNN-based SL models, we propose a
graph-based CSLR model (SignGraph), which processes
sign frames as a set of nodes and dynamically builds
graphs from one frame and adjacent frames to capture
cross-region features related to signs, thus can aggregate
sign-related features from different regions for better fea-
ture representation.

• We propose a new local sign graph module LSG that dy-
namically builds edges based on node features to learn the
correlation of cross-region features in one frame, and a
new temporal sign graph module TSG that dynamically
connects sign-related regions to learn the interaction of
cross-region features among adjacent frames.

• We build our model in a multiscale manner with different
patch sizes to ensure that the representation of nodes can
capture cross-region features at different granularities.

• The extensive experiments on CSLR task demonstrate the
superiority of our SignGraph model. Our model achieves
very competitive performances with the SOTA model,
while not using any extra cues.

2. Related Work

We mainly review CSLR technologies and graph convolu-
tional networks in sign language.

Continuous Sign Language Recognition. The goal of
CSLR is to interpret the continuous sign sequence as cor-
responding gloss sequence [24], thus the core of current
CSLR tasks is to identify signs. The widely adopted CNN-
based backbones in CSLR which are migrated from the im-
age recognition task, are good at capturing the texture and
contours of objects [12]. However, identifying a sign needs
to focus on the correlation of different regions (e.g., hand
regions and face region) in one frame and the interaction
of the same or different regions (e.g., hand motions, facial
expression changes) among adjacent frames. As a matter
of course, to extract robust sign-related features with CNN-
based backbones, some sign language models introduced
prior knowledge (or expert knowledge) to guide the model
to focus on sign-related features. For example, extra in-
formation like local areas [2, 4], skeletons [4, 7, 38] and
depth images [30] was manually injected into model. How-
ever, in these models, on the one hand, to obtain such ex-
tra knowledge, additional algorithms need to be introduced,
which will cause additional computational overhead. On
the other hand, integrating such knowledge will lead to a
complex network structure. Besides, some work turned its
attention to obtaining more sign language samples by back
translation [36], cross modality augmentation [28], and pre-
training with other sign language related datasets [6, 7].
While others were dedicated to designing complex back-
bones with attention mechanism [18] or adding extra con-
straints on CNN backbones by adopting knowledge distilla-
tion [16, 26], contrastive learning [10].

Graph Convolutional Network. Compared with se-
quences and grids, graphs are more flexible data struc-
tures that model the relationships of a set of objects with
nodes and edges. In order to learn representation from the
graph, graph convolutional network (GCN) [22] was pro-
posed, and it has been widely applied in action recogni-
tion tasks [34] and has also been extended to sign language
tasks [11, 17, 21]. To apply GCN to SL tasks, the existing
models often relied on extracted skeleton, whose connec-
tions between joints make skeleton data naturally fit GCN.
Specifically, some work utilized GCN to guide CNN-based
backbones to extract skeleton-related features [11, 27].
While others ignored RGB features and applied GCN to ex-
plore sign features directly with skeleton [20, 21]. Recently,
in addition to applying GCN with skeletons, the usage of
applying GCN on images emerged. Specifically, VIG [15]
represented an image as a graph structure to capture irregu-
lar and complex objects, and demonstrated the effectiveness
of graph representation of images. Inspired by VIG, we
find that cross-region features are important for identifying
a sign and can be captured by graphs. Thus unlike the pre-
vious work which adopted CNN-based backbones or relied
on skeletons to apply GCN, we directly treat sign frames as
graphs of nodes and design a simple GCN-based framework

13471

… PS Linear
projection

Local
graph

building

Graph
Conv

Linear
projection

Linear
projection

Temporal
graph

building

Graph
Conv

Linear
projection

Global
Feature
Module

CTC

Local Sign Graph Module Temporal Sign Graph Module
Frames

PS: Patchify Stem PM: Patch Merging

PM

Local Graph Temporal Graph

N ×

Figure 2. The proposed SignGraph architecture.

for learning sign-related features.

3. Method
In this section, we first give an overview of the proposed
graph-based sign language processing architecture. Then
we describe the proposed Local Sign Graph LSG module
for capturing intra-frame cross-region features and Tem-
poral Sign Graph TSG module for capturing inter-frame
cross-region features. Finally, with LSG and TSG, we de-
scribe our multiscale SignGraph for CSLR.

3.1. Overall Framework

For a sign language video f={fi}θi=1 with θ frames, the
target of CSLR model is to get a recognized gloss sequence
g = {gi}ϑi=1 with ϑ glosses based on input f .

As shown in Figure 2, our SignGraph model consists
of two key modules, i.e. Local Sign Graph LSG module
and Temporal Sign Graph TSG module. First, we convert
each frame fi into N patches with a patchify stem. Then
each frame fi is represented by a set of patches (i.e., nodes)
vi = {vij}Nj=1. Second, by learning the correlation between
each node and connecting K nearest neighbors for each
node, we build a dynamic local graph Gl

i for each frame fi.
Then a local graph convolutional layer is leveraged to cap-
ture cross-region features within each frame. Third, by con-
necting sign-related regions between two adjacent frames,
we build a dynamic temporal graph Gt

i for adjacent frames
fi and fi+1. Then, a temporal graph convolutional layer
is adopted to track the interaction of cross-region features
among adjacent frames.

Further, we merge patches into larger size patches by
downsampling frames with a factor of 2, then each frame
fi can be represented by another set of patches (nodes)
{v̄ij}N/4

j=1 . Following that, we repeatedly adopt LSG mod-
ule and TSG module to learn cross-region features with
different-size patches. After that, following previous sign
language models [10, 26], we adopt a global feature module

to learn global changes of whole frames. Finally, a classifier
and a widely-used CTC loss [13] are adopted to predict the
probability p(g|f) of target gloss sequence.

3.2. Sign Graph Learning

Patchify Stem. In order to build graphs based on sign
frames instead of skeleton data, we need to convert RGB
data into nodes. Following previous work [9, 32], for each
frame fi ∈ R[H×W×3] with height H and width W , we first
convert it into a number of patches (or nodes) vi = {vij}Nj=1

with a patchify stem PS .

µi = {µij}Nj=1 = PS(fi) (1)

Here, vij represents the jth node in the i-th frame fi,
µij ∈ RD denotes node features of vij , D is the feature
dimension, N = HW/P 2 is the number of patches, and P
is the patch size.

Local Sign Graph Learning. For a single frame in the sign
video, sign language models should focus on the correlation
of different regions, such as face region and hand regions. In
order to learn intra-frame cross-region features, we need to
build a graph for frame fi, in which regions with correlation
(e.g., hand regions and face region) should be connected.

As shown in Figure 3, for a set of nodes vi, we first adopt
a linear projection layer with learnable weights W l

1 to map
node features µi to the space where the distance function is
applied: µ′

i = µiW
l
1. Then we adopt K-Nearest Neighbors

(KNN) algorithm to find top Kl nearest neighbors NKl
(vij)

for each node based on distance function DIS [15].

DIS(vij , vik) =
√∑

(µ′
ij − µ′

ik)
2 (2)

NKl
(vij) = {vik|vik ∈ TopK({DIS(vij , vik)}Nk=1)}

(3)
Here, TopK function outputs the top K nearest neigh-
bors for vij based on node distances. For each node vij ,

13472

Distances K-Nearest Neighbors Local Sign GraphNodes

Figure 3. Graph construction in local sign graph module.

we add an edge e(vij , vik) between vik and vij , where
vik ∈ NKl

(vij). Thus, for frame fi, we can get the edge
set eli = {e(vij , vik), |j ∈ [1, N], vik ∈ NKl

(vij)}, and
build a local graph Gl

i = {vi, eli}. After that, we adopt
a graph convolutional layer GCN l and a linear projection
layer with learnable weights W l

2 to aggregate features from
cross regions for each frame.

µi = µi + GCN l(µ
′
i, e

l
i)W

l
2 (4)

The LSG module contains one graph convolutional
layer and two linear projection layers. We do not add extra
modules (e.g., feed-forward network) since we aim to keep
our model simple, and we show that our model can achieve
a convincing performance even with the simple design.

Temporal Sign Graph Learning. The dynamic move-
ments in body, hands, and face are essential elements to
identify a sign, which are often reflected in different re-
gions among adjacent frames. Hence, we design a temporal
graph module, which can dynamically build edges between
regions in two adjacent frames and learn inter-frame cross-
region features.

For two adjacent frames fi and fi+1, we have 2N nodes
{vij}Nj=1 and {v(i+1)k}Nk=1. Similarly, we first adopt a
linear projection layer with weights W t

1 to map node fea-
tures µi to the space where the distance function is ap-
plied: µ′′

i =µiW
t
1 . Then we compute distances between

vij and v(i+1)k, thus we have a N×N distance matrix
M , where {M [j, k]=DIS(vij , v(i+1)k)|j ∈ [1, N], k ∈
[1, N]}. When building the temporal graph, unlike the LSG
module where we build edges for each node vij (i.e., build-
ing a dense graph), we only choose top Kt node pairs be-
tween two adjacent frames and connect them (i.e., build-
ing a sparse graph). To avoid establishing edges between
meaningless node pairs, we set a threshold of 0.05 on nor-
malized distance matrix M to filter out patch pairs in the
background, since these pairs often have a high and constant
similarity (i.e., M [j, k]<0.05). Then we get the temporal
edge set eti between frame fi and fi+1 and temporal graph
Gt

i = {(vi, vi+1), e
t
i}.

eti = {e(vij , v(i+1)k)|DIS(vij , v(i+1)k) ∈ TopK(M)}
(5)

After that, we adopt a temporal graph convolutional layer
GCN t and another linear projection W t

2 to aggregate cross-
region features from adjacent frames, as follows.

Distances K-Nearest Pairs

Temporal Sign GraphNodes

Figure 4. Graph construction in temporal sign graph module.

{µi}θi=1 = {µi}θi=1 + GCN t

(
{µ′′

i }θi=1, {eti}θ−1
i=1

)
W t

2

(6)
The intuition of building the sparse graph for TSG mod-

ule rather than building the dense graph like LSG module is
to avoid the over-smoothing phenomenon [19], which may
decrease the distinctiveness of node features.

3.3. Multiscale Sign Graph Convolutional Network

Patches with a fixed window may not capture sign features
in one region effectively (e.g., hand regions may be split
by patches). Thus, similar to Swin Transformer [25], we
propose a multiscale SignGraph, which builds our model
in multiscale manners to ensure that the representation of
nodes can capture cross-region features at different granu-
larities.

Patch Merging. To produce a multiscale representation,
we further design a patch merging module to reduce the
number of patches (nodes) and expand the receptive field of
patches. Specifically, for N patches (or nodes) with the size
of 16 × 16 in frame fi, the patch merging module applies
convolutional layers to downsample frames by a factor of
2. Then we get a set of nodes {v̄ij}N/4

j=1 for frame i, and its

corresponding node features {µ̄ij}N/4
j=1 where µ̄ij ∈ R2D.

Multiscale Sign Graph Learning. After getting the set of
nodes {v̄ij}N/4

j=1 with a larger size for frame i by patch merg-
ing, we adopt the another LSG module with Kl edges for
each node in one frame and TSG module with Kt edges
for two adjacent frames. For convenience, we name the ith
LSG , TSG module as LSGi, TSGi, and the correspond-
ing hyperparameters as Ki

l , K
i
t. According to experimental

results in Section 4.3, we adopt two LSG, TSG modules in
our baseline settings.

4. Experiments
4.1. Datasets

Following the previous work [16, 36], we evaluate our
model on three publicly available SL datasets. (1)
PHOENIX14 [23] is a widely used German SL dataset
for CSLR with a vocabulary of 1295 glosses from 9 sign-
ers. It contains 5672, 540, and 629 weather forecast sam-

13473

ples for training, validation, and testing respectively. (2)
PHOENIX14T [3] is another German SL dataset with both
gloss annotations and translation annotations. It contains
7096, 519, and 642 samples from 9 signers for training, val-
idation, and testing respectively, and it has a vocabulary of
1066 different signs for CSLR. (3) CSL-Daily is a Chinese
SL dataset, which contains 18401, 1077, and 1176 labeled
videos from 10 signers for training, validation, and testing
respectively, and it has gloss annotations with a vocabulary
of 2000 glosses for CSLR.

4.2. Experimental Setting

Here, we describe the baseline settings for our architecture.

Data Preprocessing. For data preprocessing, we follow
the existing work [18, 26] and apply data augmentation dur-
ing training, including: resizing frames to 256×256 pixels,
random cropping frames to 224×224 pixels, random hor-
izontal flipping with a probability of 0.5, random tempo-
ral scaling (± 20%). During testing, we resize frames to
256×256 pixels and use center cropping to get frames with
224×224 pixels.

Architecture Setting. Our architecture is implemented by
PyTorch 1.11. (1) Patchify stem: Considering that sign
frames have a strong 2D local structure, i.e., spatially neigh-
boring pixels are usually highly correlated, we do not adopt
non-overlapping patches, which are obtained by linear pro-
jection [9] and lack modeling power for 2D local spatial
context [32, 33]. Instead, we obtain initial patches (nodes)
embedding by using convolutional-based patchify stem.
Specifically, we adopt the first four stages of ResNet18 as
our patchify stem. The dimension of initial patches D is
set to 512. (2) Patch merging: Similar to the patchify stem,
we adopt two convolutional blocks with kernel size 3 × 3
to downsample frames and get different-size patches after
LSG and TSG modules. (3) Sign Graph learning: There
are two LSG and TSG modules in our baseline settings,
and the initial K1

l , K2
l in LSG modules are set to 4 and ini-

tial K1
t , K2

t in TSG modules are set to 49 (49 is the number
of nodes in TSG2). We adopt the implementation of GCN-
Conv [22] as initial graph convolutional layer (GCN layer).
(4) Distance function: We adopt Euclidean distance to mea-
sure the distance between two nodes in the baseline setting.
(5) Global feature module: The Global feature module is
the combination of two 1D convolution blocks, 2-layer BiL-
STM with hidden size 1024 for global feature modeling,
and a fully connected layer for final prediction.

Training Setting. For a fair comparison, we adopt the
same training settings as in previous work [26]. We adopt
the Adam optimizer with a weight decay of 0.0001 to train
our model for 40 epochs on 1 GeForce RTX 3090 GPU. The
initial learning rate is 0.0001 with a decay factor of 0.5 at
epoch 20 and 30, and the batch size is set to 4. CTC loss

LSG1 TSG1 LSG2 TSG2
Dev Test

WER Del/Ins WER Del/ins

% % % % 22.3 8.4/2.5 22.2 8.1/2.7
! 19.2 5.6/2.2 21.0 4.8/2.3

! 19.6 5.6/2.1 21.5 5.1/2.5
! 19.3 5.3/2.1 20.8 5.8/2.0

! 19.5 6.6/1.7 21.2 5.4/2.4
! ! 18.4 5.4/1.6 20.1 5.1/2.1

! ! 19.1 5.6/1.8 20.8 4.8/2.2
! ! 18.7 5.1 /2.3 20.6 5.2/1.7

! ! 18.6 4.3 /1.8 20.2 5.5/1.7
! ! ! ! 18.1 5.4/1.4 20.1 6.1/1.8

Table 1. Ablation study on Phoenix14T dataset.

is applied after both 1D convolution blocks and the fully
connected layer as loss functions.

Evaluation setting. To evaluate our model, we adopt the
Word Error Rate (WER) as CSLR performance metric,

WER =
#S +#I +#D

#N
(7)

where #S, #I , #D denote the minimum number of substi-
tution, insertion and deletion operations needed to convert
a predicted gloss sequence to the ground truth. #N is the
number of glosses in ground truth.

4.3. Ablation study

Following the previous work [3], we perform ablation stud-
ies on Phoenix14T dataset to verify the effectiveness of the
proposed SignGraph.

Effects of Proposed Sign Graph Module. As shown in
Table 1, results demonstrate that both the proposed LSG
and TSG modules contribute to higher performance for
CSLR. Specifically, our baseline with ResNet18 as back-
bone achieves 22.3% WER on Phoenix14T dev set. When
we replace backbone with the designed local sign graph
module LSG1, LSG2, WER on dev set decreases by 3.1%
and 3.0% respectively. When we replace backbone with de-
signed temporal sign graph module TSG1, TSG2, WER
decreases by 2.7% and 2.8% respectively, which verifies
that both intra-frame cross-region features and inter-frame
cross-region features are crucial for learning sign-related
features.

Then we combine LSG and TSG modules, WER
decreases by 3.9% when applying LSG1 and TSG1,
3.2% when applying LSG2 and TSG2 respectively, which
demonstrates that combination of cross-region features in
one frame and those among adjacent frames are benefi-
cial for identifying signs. When adopting two stages of
LSG and TSG, performance can achieve further improve-
ment (i.e., WER decreases by 4.2%/2.1% on dev/test set).

13474

LSG1 TSG1
Dev Test

WER Del/Ins WER Del/ins
Dense Sparse 18.4 5.4/1.6 20.1 5.1/2.1
Dense Dense 20.2 4.9 /2.9 21.8 5.5/2.6
Sparse Sparse 19.1 5.0 /1.9 21.7 5.3/2.7
Sparse Dense 20.9 5.4 /2.4 21.9 6.1/2.5

Table 2. Ablation study on graph types.

It shows that leveraging multiscale representation of nodes
can capture cross-region features at different granularities.

Effect of Graph Type. In SignGraph, we adopt dense
graphs (i.e., connecting top K neighbors for each node) in
the LSG module, while adopting sparse graphs (only con-
necting top K node pairs) in the TSG module. To verify the
effectiveness of our design, we test the effect of different
combinations of graph types in LSG and TSG modules.
For convenience, we only adopt one LSG module and one
TSG module. As shown in Table 2, when we adopt the
dense graph in TSG module or adopt the sparse graph in
LSG module, there is a noticeable performance drop (i.e.,
WER on dev set rises by 1.8% or 0.7%). Our module with
dense graph in LSG and sparse graph in TSG achieves the
best recognition performance, which demonstrates the ef-
fectiveness of our model.

Effects of Hyperparameters K. In the proposed multi-
scale SignGraph, there are four hyperparameters, i.e., K1

l

K2
l in LSG modules and K1

t , K2
t in TSG modules. Here, to

set proper hyperparameters K for our model, we test recog-
nition performance under different Kl ranging ranging from
2 to 9 and under different Kt ranging from 7 to 91. Since
there are many combinations of these hyperparameters, it is
impossible to enumerate all possbile values to find the glob-
ally optimal setting, thus we fix the other 3 parameters and
adjust one to obtain suitable parameter settings. According
to Figure 5, we set K1

l , K2
l , K1

t , K2
t to 3, 4, 49, 49 respec-

tively based on WER performance on DEV set.

Effects of Different Backbones. To verify the effective-
ness of the proposed SignGraph model, we replace our
backbone with other patch-based networks (i.e., CvT [33],
Swin transformer [25] and VIG [15]). According to Ta-
ble 3a, simply adopting the current patch-based SOTA back-
bones will not gain appealing performance on CSLR task,
while our proposed SignGraph backbone achieves satisfac-
tory performance by effectively capturing intra-frame cross-
region features and inter-frame cross-region features.

Effects of Distance Function. In the SignGraph, we adopt
KNN algorithm to find the nearest neighbors based on the
distance of two nodes. Here, we show performances with
commonly used distance functions including Cosine dis-
tance, Chebyshev distance and Euclidean distance in Ta-
ble 3b. There are subtle performance gaps between different

Figure 5. Effects of Kl and Kt.

distance functions and we adopt Euclidean distance in our
model for better performances.

Effects of GCN Layer. We also test the representative
variants of graph convolution, including GATv2Conv [1],
SAGEConv [14], GCNConv [22] and EdgeConv [31]. From
Table 3c, we can see that our model can achieve excel-
lent performances with different GCN layer, indicating
the flexibility of SignGraph model. Among them, Edge-
Conv achieves the best recognition performance (i.e., 17.8%
WER). In the rest of the experiments, we use EdgeConv
layer in our module by default unless specifically stated.

Effect of Patch Sizes. Patches with different sizes can cap-
ture different local features and further affect model per-
formance. To test the effect of patch sizes, we adopt only
one LSG module and one TSG module. As shown in Ta-
ble 3d, model with a smaller patch size (i.e., 8×8) achieves
the worst performance, while model with too large patch
size may also degenerate local features.

Effect of Multiscale SignGraph. To leverage the scale-
invariant property of images [15], PyVIG adopts pyramid
architecture that gradually increases patch size from 4 to
32, by gradually shrinking the spatial size of feature maps.
Similarly, we also gradually add LSG and TSG modules
in the early stage of the patchify stem and add patch merg-
ing module at the end of each TSG module for downsam-
pling. In regard to the added LSG and TSG modules in each
stage, we also choose appropriate hyperparamters Kl,Kt for
them through extensive experiments. As shown in Table 3e,
adding more LSG and TSG modules does not always bring
more performance gain, thus we adopt two LSG and TSG
modules that increase patch size from 16 to 32 in our model.

Effect of DropEdge. DropEdge [29] tackles over-
smoothing and over-fitting problems for dense graph by
randomly removing a certain number of edges from the
input graph at each training epoch. Considering that we

13475

BackBone WER Del Ins
CvT [32] 39.2 15.3 0.9

SwinT [25] 45.4 16.3 1.3
PyVIG [15] 35.4 12.1 1.3

Ours 17.9 5.1 1.5

(a) Backbone. Comparison of different back-
bones.

Distance WER Del Ins
Cosine 18.0 5.0 1.5

Chebyshev 18.2 4.8 1.6
Euclidean 17.9 5.1 1.5

(b) Distance function. Comparison of dis-
tance functions.

GraphConv WER Del Ins
GATv2Conv [1] 18.6 5.2 1.8
SAGEConv [14] 18.0 4.8 1.7
GCNConv [22] 17.9 5.1 1.5
EdgeConv [31] 17.8 5.0 1.6

(c) Graph Convolution Effect of different
GCN layers.

PatchSize WER Del Ins
8 19.1 4.8 2.6

16 18.4 5.4 1.6
32 18.7 5.7 1.7

(d) Patch size. Comparison of different patch
sizes with one LSG and TSG modules.

Stages WER Del Del
16→32 17.8 5.0 1.6

8→16→32 18.4 5.3 1.7
4→8→16→32 18.1 4.7 1.9

(e) Multiscale SignGraph. Effect of the num-
ber of stages in multiscale SignGraph.

DropRate WER Del Ins
0 17.8 5.0 1.6

15% 19.2 6.7 1.3
30% 21.3 5.9 1.7

(f) Drop edge. Adding DropEdge [29] in the
local graph does not improve performance.

Table 3. Ablation experiments of SignGraph on Phoenix14T dev set.

…

…

Figure 6. Visualization of graph construction of LSG1 and TSG1 in the first row, LSG2 and TSG2 in the second row.The graph in
LSG module is shown in yellow, and the graph in TSG is shown in blue. We also show some ‘unimportant’ edges between nodes in the
background with red color.

build dense graphs for LSG module, we also add DropE-
dge with different drop rates to LSG module and show
the recognition performance in Table 3f. However, adding
DropEdge does not improve our model performance, which
means that our model can achieve excellent performance
without relying on external modules, and can handle
over-smoothing and over-fitting problems well.

Visualization of SignGraph. To verify whether our model
can effectively capture sign-related features, we select a
sign video from Phoenix14T test set and visualize the con-
structed graph structure of LSG and TSG modules in both
two stages. In Figure 6, we show the graphs of two stages
and we only show part of the edges for a better display. In
the LSG module, our model can link the nodes with simi-
lar content and semantic representation (e.g., hand regions
and face regions) for extracting better intra-frame cross-
region features. In the TSG module, edges can be built
for tracking dynamic changes in gestures and facial expres-

sions, thus can better identify a sign with inter-frame cross-
region features. We also show some ‘unimportant’ edges
between nodes in the background with red color. As can
be seen, background nodes in LSG are naturally connected
to their neighboring nodes, and there are still a few back-
ground nodes connected in TSG. Fortunately, nodes in the
background will not ‘disturb’ nodes in sign-related regions,
which demonstrates the effectiveness of our model.

4.4. Comparisons

Evaluation on Phoenix14T dataset. As shown in Table 4,
we compare our model with existing models on CSLR per-
formance, and we provide both the performances on the val-
idation set (i.e., ‘DEV’) and test set (i.e., ‘TEST’). Most of
the current models adopt existing CNN-based backbones,
and achieve convincing performances by injecting extra
cues [7, 35, 38], adding extra constraints [10, 16, 26] or
introducing attention mechanism [18]. The GCN-based

13476

Model Backbone
Extra cues Phoenix PhoenixT

DEV TEST DEV TEST
F/M H S P WER del/ins WER del/ins WER WER

STMC [35] (AAAI’20) VGG11 ✓ ✓ ✓ 21.1 7.7/3.4 20.7 7.4/2.6 19.6 21.0
C2SLR [38](CVPR’22) ResNet18 ✓ 20.5 -/- 20.4 -/- 20.2 20.4
TwoStream [7](NeurIPS’22) S3D ✓ ✓ ✓ ✓∗ 18.4 -/- 18.8 -/- 17.7 19.3
SLT [5] (CVPR’20) GooleNet ✓ - - - - 24.6 24.5
TwoStream [7] (NeurIPS’22) S3D ✓∗ 22.4 -/- 23.3 -/- 21.1 22.4
VAC [26] (ICCV’21) ResNet18 ✓ 21.2 7.9/2.5 22.3 8.4/2.6 - -
SMKD [16] (ICCV’21) ResNet18 ✓ 20.8 6.8/2.5 21.0 6.3/2.3 20.8 22.4
CorrNet [18] (CVPR’23) ResNet18 ✓ 18.8 5.6/2.8 19.4 5.7/2.3 18.9 20.5
FCN [8] (ECCV’20) customed 23.7 -/- 23.9 -/-
Contrastive [10] (IJCAI’23) ResNet18 19.6 5.1/2.7 19.8 5.8/3.0 20.0 20.1
HST-GNN [21] (WACV’22) Customized(CNN+GCN) ✓ ✓ ✓ ✓ 19.5 -/- 19.8 -/- 19.5 19.8
CoSign [20] (ICCV’23) ST-GCN(GCN) ✓ ✓ ✓ 19.7 -/- 20.1 -/- 19.5 20.1
SignGraph Customized(GCN) ✓ 18.4 5.6/1.8 20.1 5.4/2.1 18.3 20.0
MultiSignGraph Customized(GCN) ✓ 18.2 4.9/2.0 19.1 5.3/1.9 17.8 19.1

Table 4. Comparison of CSLR performance on Phoenix14 and Phoenix14T datasets. (F: face, M: mouth, H: hands, S: skeleton, P:
pretraining backbone with ImageNet, ✓∗: pretraining on other SL-related datasets.)

Model Backbone
Extra cues DEV TEST
S P WER del/ins WER del/ins

SLT [5](CVPR’20) GoogleNet ✓ 33.1 10.3/4.4 32.0 9.6/4.1
TwoStream [7](NeurIPS’22) S3D ✓ ✓∗ 25.4 -/- 25.3 -/-
TwoStream [7](NeurIPS’22) S3D ✓∗ 28.9 -/- 28.5 -/-
BN-TIN [36](CVPR21) GoogLeNet ✓ 33.6 13.9/3.4 33.1 13.5/3.0
CorrNet [18] (CVPR’23) ResNet18 ✓ 30.6 -/- 30.1 -/-
CoSign [20] (ICCV’23) ST-GCN(GCN) ✓ 28.1 -/- 27.2 -/-
SignGraph customized(GCN) ✓ 28.4 8.8/2.4 27.4 8.2/2.1
MultiSignGraph customized(GCN) ✓ 27.3 7.9/2.3 26.4 7.8/2.1

Table 5. Comparison of CSLR performance on CSL-daily dataset.

model CoSign [20] mainly relies on pre-processed fine-
grained skeleton data, and achieves 19.5%, 20.1% WER on
dev, test set. While HST-GCN [21] adopts both CNN-based
backbone and GCN-based backbone to extract RGB fea-
tures and skeleton features respectively, achieving 19.5%,
19.8% WER on dev, test set. It is worth mentioning that
the state-of-the-art (SOTA) model TwoStream utilizes both
RGB features and fine-grained skeleton features (i.e., key-
points in hands, body and face), and pretrains its backbone
on other SL-related datasets, achieving 17.7%, 19.3% WER
on dev, test set respectively. Without using any extract cues,
our best model still achieves comparable performance with
TwoStream on dev set. While on test set, our model even
outperforms TwoStream model by 0.2% WER.

Evaluation on Phoenix14 dataset. We also compare our
model with existing models of CSLR performance on
Phoenix14 dataset. As shown in Table 4, with the simple yet
powerful multiscale SignGraph, our model can achieve the
best performance (i.e., 18.2% WER) on dev set and a com-
parable performance with SOTA model on test set, which
demonstrates the effectiveness of our model.

Evaluation on CSL-daily dataset. We also provide CSLR
performance comparisons with other methods on CSL-daily
dataset. As shown in Table 5, the WER of our model on dev
and test set is 27.3% and 26.4%, respectively. Our model

outperforms most existing models, and achieves a compa-
rable performance with TwoStream model.

5. Conclusion

In this paper, we propose a simple yet effective SignGraph
architecture, which represents a sign sequence as a graph
structure to extract sign-related features at the graph level.
Specifically, to learn the correlation of cross-region features
in one frame, we propose a Local Sign Graph LSG mod-
ule, which dynamically builds edges between nodes in one
frame and aggregates intra-frame cross-region features. To
track the interaction of cross-region features among adja-
cent frames, we propose a Temporal Sign Graph TSG mod-
ule, which dynamically builds edges between nodes among
adjacent frames and captures inter-frame cross-region fea-
tures. Besides, we also build our model in multiscale man-
ners with different patch sizes to ensure that the represen-
tation of nodes can capture cross-region features at dif-
ferent granularities. The extensive experiments on public
datasets demonstrate the superiority of the proposed Sign-
Graph, which achieves comparable performances with the
SOTA model without using any extra cues.

6. Acknowledgments

This work is supported by National Key Research
and Development Program of China under Grant No.
2022YFB3303900; Jiangsu Provincial Key Research and
Development Program under Grant BE2020001-4; National
Natural Science Foundation of China under Grant Nos.
62172208, 62272216. This work is partially supported by
Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization.

13477

References
[1] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are

graph attention networks? arXiv preprint arXiv:2105.14491,
2021. 6, 7

[2] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, and
Richard Bowden. Subunets: End-to-end hand shape and con-
tinuous sign language recognition. In ICCV, pages 3075–
3084. IEEE, 2017. 2

[3] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Her-
mann Ney, and Richard Bowden. Neural sign language trans-
lation. In CVPR, pages 7784–7793, 2018. 1, 5

[4] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and
Richard Bowden. Multi-channel transformers for multi-
articulatory sign language translation. In ECCV, pages 301–
319. Springer, 2020. 2

[5] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and
Richard Bowden. Sign language transformers: Joint end-
to-end sign language recognition and translation. In CVPR,
pages 10023–10033, 2020. 8

[6] Yutong Chen, Fangyun Wei, Xiao Sun, Zhirong Wu, and
Stephen Lin. A simple multi-modality transfer learning base-
line for sign language translation. In CVPR, pages 5120–
5130, 2022. 2

[7] Yutong Chen, Ronglai Zuo, Fangyun Wei, Yu Wu, Shujie
Liu, and Brian Mak. Two-stream network for sign language
recognition and translation. Advances in Neural Information
Processing Systems, 35:17043–17056, 2022. 1, 2, 7, 8

[8] Ka Leong Cheng, Zhaoyang Yang, Qifeng Chen, and Yu-
Wing Tai. Fully convolutional networks for continuous sign
language recognition. In ECCV. Springer, 2020. 8

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020. 3, 5

[10] Shiwei Gan, Yafeng Yin, Zhiwei Jiang, Kang Xia, Lei Xie,
and Sanglu Lu. Contrastive learning for sign language
recognition and translation. In Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelli-
gence, IJCAI-23, pages 763–772. 1, 2, 3, 7, 8

[11] Shiwei Gan, Yafeng Yin, Zhiwei Jiang, Lei Xie, and Sanglu
Lu. Skeleton-aware neural sign language translation. In MM,
pages 4353–4361, 2021. 1, 2

[12] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. In Interna-
tional Conference on Learning Representations, 2019. 1, 2

[13] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural
networks. In ICML, pages 369–376, 2006. 3

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30, 2017. 6, 7

[15] Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and En-
hua Wu. Vision gnn: An image is worth graph of nodes. Ad-
vances in Neural Information Processing Systems, 35:8291–
8303, 2022. 2, 3, 6, 7

[16] Aiming Hao, Yuecong Min, and Xilin Chen. Self-mutual dis-
tillation learning for continuous sign language recognition.
In ICCV, pages 11303–11312, 2021. 2, 4, 7, 8

[17] Hezhen Hu, Weichao Zhao, Wengang Zhou, and Houqiang
Li. Signbert+: Hand-model-aware self-supervised pre-
training for sign language understanding. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023. 2

[18] Lianyu Hu, Liqing Gao, Zekang Liu, and Wei Feng. Contin-
uous sign language recognition with correlation network. In
CVPR, pages 2529–2539, 2023. 2, 5, 7, 8

[19] Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and
Junzhou Huang. Tackling over-smoothing for general graph
convolutional networks. arXiv preprint arXiv:2008.09864,
2020. 4

[20] Peiqi Jiao, Yuecong Min, Yanan Li, Xiaotao Wang, Lei Lei,
and Xilin Chen. Cosign: Exploring co-occurrence signals
in skeleton-based continuous sign language recognition. In
ICCV, pages 20676–20686, 2023. 2, 8

[21] Jichao Kan, Kun Hu, Markus Hagenbuchner, Ah Chung
Tsoi, Mohammed Bennamoun, and Zhiyong Wang. Sign
language translation with hierarchical spatio-temporal graph
neural network. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
3367–3376, 2022. 2, 8

[22] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 2, 5, 6, 7

[23] Oscar Koller, Jens Forster, and Hermann Ney. Continuous
sign language recognition: Towards large vocabulary statis-
tical recognition systems handling multiple signers. CVIU,
141:108–125, 2015. 4

[24] Oscar Koller, Sepehr Zargaran, and Hermann Ney. Re-sign:
Re-aligned end-to-end sequence modelling with deep recur-
rent cnn-hmms. In CVPR, pages 4297–4305, 2017. 2

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 4, 6, 7

[26] Yuecong Min, Aiming Hao, Xiujuan Chai, and Xilin Chen.
Visual alignment constraint for continuous sign language
recognition. In ICCV, pages 11542–11551, 2021. 2, 3, 5,
7, 8

[27] Maria Parelli, Katerina Papadimitriou, Gerasimos Potami-
anos, Georgios Pavlakos, and Petros Maragos. Spatio-
temporal graph convolutional networks for continuous sign
language recognition. In ICASSP. IEEE, 2022. 2

[28] Junfu Pu, Wengang Zhou, Hezhen Hu, and Houqiang Li.
Boosting continuous sign language recognition via cross
modality augmentation. In MM, pages 1497–1505, 2020. 2

[29] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang. Dropedge: Towards deep graph convolutional net-
works on node classification. In International Conference
on Learning Representations, 2020. 6, 7

13478

[30] Shengeng Tang, Dan Guo, Richang Hong, and Meng Wang.
Graph-based multimodal sequential embedding for sign lan-
guage translation. TMM, 2021. 2

[31] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog), 38(5):1–12, 2019. 6, 7

[32] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introduc-
ing convolutions to vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 22–31, 2021. 3, 5, 7

[33] Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr
Dollár, and Ross Girshick. Early convolutions help trans-
formers see better. Advances in neural information process-
ing systems, 34:30392–30400, 2021. 5, 6

[34] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In AAAI, 2018. 2

[35] Hao Zhou, Wengang Zhou, Yun Zhou, and Houqiang Li.
Spatial-temporal multi-cue network for continuous sign lan-
guage recognition. In AAAI, 2020. 1, 7, 8

[36] Hao Zhou, Wengang Zhou, Weizhen Qi, Junfu Pu, and
Houqiang Li. Improving sign language translation with
monolingual data by sign back-translation. In CVPR, pages
1316–1325, 2021. 2, 4, 8

[37] Hao Zhou, Wengang Zhou, Yun Zhou, and Houqiang Li.
Spatial-temporal multi-cue network for sign language recog-
nition and translation. TMM, 2021. 1, 2

[38] Ronglai Zuo and Brian Mak. C2slr: Consistency-enhanced
continuous sign language recognition. In CVPR, pages
5131–5140, 2022. 2, 7, 8

13479

