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Abstract

Event cameras respond primarily to edges—formed by
strong gradients—and are thus particularly well-suited for
line-based motion estimation. Recent work has shown that
events generated by a single line each satisfy a polynomial
constraint which describes a manifold in the space-time
volume. Multiple such constraints can be solved simulta-
neously to recover the partial linear velocity and line pa-
rameters. In this work, we show that, with a suitable line
parametrization, this system of constraints is actually lin-
ear in the unknowns, which allows us to design a novel lin-
ear solver. Unlike existing solvers, our linear solver (i) is
fast and numerically stable since it does not rely on expen-
sive root finding, (ii) can solve both minimal and overde-
termined systems with more than 5 events (i.e. N ≥ 5),
and (iii) admits the characterization of all degenerate cases
and multiple solutions. The found line parameters are
singularity-free and have a fixed scale, which eliminates the
need for auxiliary constraints typically encountered in pre-
vious work. To recover the full linear camera velocity we
fuse observations from multiple lines with a novel velocity
averaging scheme that relies on a geometrically-motivated
residual, and thus solves the problem more efficiently than
previous schemes which minimize an algebraic residual.
Extensive experiments in synthetic and real-world settings
demonstrate that our method surpasses the previous work
in numerical stability, and operates over 600 times faster.

Project page: https://mgaoling.github.io/eventail/

1. Introduction
Man-made scenes contain a multitude of straight lines, and
exploiting these lines for motion estimation is an impor-
tant feature of modern mobile vision systems like AR/VR
devices and robotic systems [17, 23, 25, 42]. However,
computer vision algorithms aimed at leveraging these line
features still suffer from fundamental limitations when us-
ing standard frame-based sensing: During high-speed mo-
tion and challenging illumination conditions, these sensors

*indicates equal contribution

suffer from motion blur and saturation effects, which have
deleterious effects on line feature extraction. Event cam-
eras [10] are biologically inspired sensors that address the
limitation of frame-based sensors by instead only measur-
ing the changes in intensity at a per-pixel level, and they do
this with high dynamic range, low motion blur, high tempo-
ral resolution, and high spatial data-sparsity.

Due to their working principle, event cameras respond
primarily to edges—formed by strong gradients—and are
thus particularly well-suited for line-based motion estima-
tion. A recent breakthrough [12] in event-based motion
estimation introduced an incidence relation that enforces
the intersection of bearing vectors emitted by events and
a corresponding line that generates those events. Using
this relation, a 5-point minimal solver was designed that
recovers the parameters of a minimal two-point-two-plane
parametrization of the line and two velocity ratios in the
plane perpendicular to the line, using the Gröbner basis
method and polynomial elimination theory. However, this
solver suffers from several limitations: First, it relies on a
non-minimal line representation using four degrees of free-
dom (DoF) that (i) fails to realize that, in the absence of
scale, only three DoF are needed, and (ii) encounters sin-
gularities when describing lines parallel to the two planes.
Secondly, to solve for the motion and line parameters, previ-
ous work employs a polynomial solver, which (i) is by def-
inition minimal and thus incapable of incorporating more
than five events, and (ii) relies on root finding algorithms
that are expensive to run and suffer from instabilities that
are not easily detected.

This work addresses these limitations with two important
innovations: First, it introduces a new line representation
based on the angle-axis representation of a rotation matrix,
which is singularity-free and only depends on three DoF and
thus implicitly enforces scale ambiguity. Second, in formu-
lating the incidence relation with this new parametrization,
we derive a simple algorithm for determining motion and
line parameters that only relies on solving a linear system
and simple vector operations and is thus orders of magni-
tude faster than the polynomial solver in [12]. This linear
system is easily extended to N > 5 events, with a mini-
mal increase in complexity, which enables solution refine-
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ment with inliers when employing random sample consen-
sus (RANSAC) schemes.

The proposed solver sheds light on all possible cases of
degenerate solutions, how they arise, and all additional so-
lutions that arise from symmetries in the incidence relation.
Finally, expressing the incidence relation in terms of our
new line parametrization allows us to fully characterize and
visualize the types of manifolds circumscribed by events
generated by a single line. Our contributions are:
• A minimal, three DoF representation of lines based on

the angle-axis representation of a rotation matrix. This
representation encodes a reference frame centered at the
3D line, and enforces a unit distance to the closest point.

• A linear algorithm for determining line and motion pa-
rameters from a set of events triggered by a line. This
algorithm is fast, and extensible to multiple events, and
sheds light on degenerate and multiplicitous solutions.

• A simpler and faster scheme for fusing partial linear
velocity measurements from multiple lines, based on
geometrically-motivated constraints, instead of solving
algebraic equations.

We validate our method extensively in simulated and real-
world settings. In particular, our solver is on average 600
times faster, taking only 3.25 µs for five events, compared
to 2046 µs for [12], while achieving a similar performance.

2. Related Work
Ego-motion estimation is crucial for intelligent mobile de-
vices and thus has been the subject of extensive research
over the past few decades. The sub-class of vision-based so-
lutions comprises single-camera, stereo-camera, and multi-
camera solutions that are potentially supported by an iner-
tial measurement unit. A review would go beyond the scope
of the present paper, and the reader is kindly referred to re-
cent reviews such as the one by Cadena et al. [4]. This paper
focuses on motion estimation with event cameras.

The latter is a challenging problem that is initially often
addressed for constrained scenarios such as 2D motion [39],
known depth or 3D structure [3, 5–7, 27, 40, 46], pure ro-
tation [8], and homographic warping [9, 20, 24, 31, 34].
The community has furthermore explored the combination
with other sensors such as standard cameras [16, 20, 38],
inertial units [38, 45], or a second event camera [44]. In
turn, the present paper considers motion in 3D with a sin-
gle event camera and in arbitrary environments. Different
optimization-based [21, 28, 32], filter-based [19, 45] and
learning-based [13, 26] solutions have already been pre-
sented. Of particular interest to the present work are meth-
ods that rely on line features [21, 43].

In the spirit of original works on monocular visual odom-
etry [29], the present work addresses the relatively unex-
plored topic of geometric incidence relationships for lo-
cal relative motion calculation with an event camera. Ge-

ometric solutions remain important to date owing to their
ability to find solutions with optimality guarantees, and
potentially certificates, under known assumptions, unlike
optimization-, filter- or learning-based solvers, which of-
ten lack these guarantees. Given that events are primarily
triggered by high-gradient appearance boundaries, the dom-
inant feature for event-based motion estimation is given by
lines. Weng et al. [41] and Hartley et al. [15] have pro-
posed closed-form solutions for frame-based cameras. Tri-
focal tensor geometry inspired the first closed-form solu-
tion for event cameras [30]. An important characteristic of
this solver is that it relies on a local constant velocity mo-
tion model and makes use of the first-order dynamics of the
camera. This is important as it permits the inclusion of the
time-stamped, asynchronous measurements produced by an
event camera. Nonetheless, the method by Peng et al. [30]
is not general as it still depends on approximate event-based
line-feature extractors [2, 36, 37] rather than events, only.

The most related works to ours are the works by
Ieng et al. [18], Seok and Lim [33], and Gao et al. [12], who
propose model-based fitting of the manifold locations of the
events generated by the observation of a line under motion.
In particular, Gao et al. [12] introduces an exact incidence
relation that all such events must obey under constant linear
velocity. It depends on observable camera motion and 3D
line parameters, and thus serves as a basis for joint manifold
fitting and motion estimation. Based on this foundation, the
present work develops the first linear N -point solution to
this problem, which not only unlocks unprecedented effi-
ciency, but also a simplified understanding of degenerate
geometric conditions.

3. Methodology
Assume a calibrated event camera undergoing an arbitrary
six DoF motion, while observing a set of M lines {Li}Mi=1.
Each line generates a set of Ni events Ei = {eij}Ni

j=1 where
each event eij = (xij , tij , pij) is characterized by its pixel
coordinate xij in the image plane, timestamp tij (with µs
resolution), and polarity pij .

For a small time window [ts −∆t, ts +∆t], centered at
reference time ts, such that the camera motion can be ap-
proximated by linear dynamics, the events generated by a
single line circumscribe a manifold termed eventail [12].
In Sec. 3.1, we describe the geometric incidence rela-
tion [12] which needs to be satisfied by events on this man-
ifold and depends on the observable components of the ve-
locity v and the line Li for which we introduce a mini-
mal parametrization. Then, in Sec. 3.2 we will introduce
a solver that recovers the line parameters, and observable
linear velocity parameters from a set of Ni ≥ 5 events that
lie on the manifold. Finally, in Sec. 3.6, we will explore
how to recover the full linear velocity from a set of M ≥ 2
partial velocity observations.
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3.1. Incidence Relationship

We reiterate here briefly the incidence relation introduced
in [12] and use Fig. 1 for illustration purposes. For sim-
plicity, we will first consider the case of one line, and thus
drop the index i from the variables. We furthermore ex-
press all quantities in the camera frame centered at time ts.
The incidence relation enforces that events are triggered by
points on the line, such that the line Lj = [d⊺

j m
⊺
j ]

⊺ (in
Plücker coordinates) emanating from an individual event ej
triggered at time tj (orange line in Fig. 1) intersects the line
L = [d⊺ m⊺]⊺ (blue line in Fig. 1). The condition for inter-
section of two non-parallel lines is

d⊺mj +m⊺dj = 0 . (1)

Plücker line coordinates comprise the line direction d ∈ R3

and moment m = P × d, with P ∈ R3 being an arbitrary
point on the line. As [12] for the event ray j we use the
camera position C[tj ] = Pj at time tj , and the event bear-
ing vector f ′j = dj rotated into the reference frame at time
ts. Under first order dynamics, these are C[tj ] = t′jv and
f ′j = R[tj ]fj with t′j = tj − ts. As [12], we assume R[tj ]
given and computed by integrating angular rate measure-
ments ω from an available inertial measurement unit (IMU)
with R[tj ] = exp([ω]×t

′
j). Here exp(·) denotes the matrix

exponential and [ω]× denotes the skew-symmetric matrix
associated with the angular rate ω ∈ R3. The Plücker co-
ordinates are thus Lj = [f ′⊺j (C[tj ]× f ′j)

⊺]⊺ and the inci-
dence relation becomes

d⊺
(
C [tj ]× f ′j

)
+m⊺f ′j = 0. (2)

The above equation relates measurements fj and tj to our
unknowns d,m and v, but is still not in a minimal form.
This is because, firstly Plücker coordinates are not mini-
mal, and indeed true minimal line representations only have
four DoF. Second, in a monocular setup, there is scale am-
biguity, and this dictates that the absolute scale of v and
L is unobservable. Finally, the velocity component along
the line direction is unobservable due to the aperture prob-
lem. To encapsulate these constraints, in the next part, we
will introduce a line representation based on the angle-axis
representation of rotation matrices. This rotation matrix si-
multaneously spans a coordinate frame in which we will
express our camera velocity, and the aperture problem can
be enforced succinctly.

3.2. Transition into a Minimal Form

The transition into minimal form consists of two steps. We
first derive the angle-axis-based line representation by suc-
cessively eliminating internal constraints in the Plücker line
coordinate representation, and then proceed with finding the
minimal camera velocity representation. We start by ob-
serving that scaling both d and m yields the same line, and

Figure 1. Incidence relationship between the line L, and the bear-
ing vector f ′j of event. We parameterize the line with the rotation
matrix Rℓ = [eℓ

1 e
ℓ
2 e

ℓ
3]. Since scale is unobservable, we select

the point −eℓ
3 at unit depth to lie on the line, and eℓ

1 to indicate its
direction. Due to the aperture problem, we can only observe the
projected camera velocity v̂ with components uℓ

y and uℓ
z in the eℓ

2

and eℓ
3 direction respectively.

thus we may choose to fix the scale of d to be unity. Next,
we observe that m = P×d is by definition perpendicular to
d. Moreover, we see that any P on the same line results in
the same moment, and thus we may choose to select it clos-
est to the origin, such that it is perpendicular to d. Since
the scale is unobservable, we may furthermore fix the dis-
tance from P to the origin to be unity. Summarizing these
observations, we conclude that we may select P and d to be
perpendicular unit vectors, and in particular we will select
P = −eℓ3 and d = eℓ1, such that the resulting moment is
m = −eℓ2. We visualize the three unit vectors in Fig. 1, and
observe that they span a line-dependent coordinate frame
via the rotation matrix Rℓ = [eℓ1 e

ℓ
2 e

ℓ
3]. Rotation matrices

belong to SO(3), and thus it becomes apparent that this line
representation can be further compressed via the matrix log-
arithm θℓ = (log (Rℓ))

∨ = [θℓx θ
ℓ
y θ

ℓ
z], to yield only three

DoF, which is a minimal line representation in the absence
of scale. Here (·)∨ maps the skew-symmetric matrix in the
argument to the associated vector.

Note that compared to the two-point-two-plane
parametrization [14] in [12], this representation is (i)
minimal, relying on three instead of four DoF, and (ii) more
flexible, since it does need a reparametrization step for
lines that are almost parallel to the yz-plane.

We now address the camera velocity parametrization,
which we express in the line-dependent coordinate frame.

v = Rℓuℓ , (3)

introduces the camera velocity uℓ = [uℓ
x u

ℓ
y u

ℓ
z] expressed

in the line coordinate frame. Using these new parametriza-
tions, the incidence relation Eq. 2 becomes

t′je
ℓ
1

⊺
((Rℓuℓ)× f ′j)− f ′j

⊺
eℓ2 = 0 . (4)
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Cycling through the triple product in the first summand,
i.e. a⊺(b× c) = c⊺(a× b), we arrive at

t′jf
′
j
⊺
(eℓ1 × (Rℓuℓ))− f ′j

⊺
eℓ2 = 0 , (5)

which can be expanded and further simplified to

t′jf
′
j
⊺
(uℓ

ze
ℓ
2 − uℓ

ye
ℓ
3) + f ′j

⊺
eℓ2 = 0 . (6)

Note that due to the cross product with eℓ1, the camera ve-
locity uℓ

x becomes unobservable within this incidence rela-
tion, i.e. changing it does not affect the residual. This con-
firms our intuition that the aperture problem should make
velocities along the line direction unobservable. As a re-
sult, we focus on only solving for uℓ

y and uℓ
z . Furthermore,

observe that these equations are in terms of eℓ2 and eℓ3 in-
stead of the minimal parameters θℓ. In what follows we de-
sign the solver around recovering eℓ2 and eℓ3 since it yields
a simpler algorithm, yet it should be remembered that the
minimal representation can always be recovered using the
matrix logarithm of Rℓ. We now discuss how to recover the
unknowns from a set of incidence relations from multiple
events, which is summarized in Alg. 1.

3.3. Five-point Minimal Solver

The incidence relationship in Eq. 6 has five unknowns, three
from θℓ = [θℓx θ

ℓ
y θ

ℓ
z] and two from uℓ = [0uℓ

y u
ℓ
z], and

thus can be solved by stacking a minimum of five such con-
straints. Since each such constraint originates from a single
event, this means that five events are the minimum number
to solve this system. This stack of equations is

t′1f
′
1
⊺
(uℓ

ze
ℓ
2 − uℓ

ye
ℓ
3) + f ′1

⊺
eℓ2 = 0

t′2f
′
2
⊺
(uℓ

ze
ℓ
2 − uℓ

ye
ℓ
3) + f ′2

⊺
eℓ2 = 0

...

t′5f
′
5
⊺
(uℓ

ze
ℓ
2 − uℓ

ye
ℓ
3) + f ′5

⊺
eℓ2 = 0 .

This system of equations is linear in the unknowns and can
be rewritten as a single matrix equationt

′
1f

′
1
⊺

f ′1
⊺

...
...

t′5f
′
5
⊺

f ′5
⊺


︸ ︷︷ ︸

.
=A∈R5×6

[
uℓ
ze

ℓ
2 − uℓ

ye
ℓ
3

eℓ2

]
︸ ︷︷ ︸

.
=x∈R6×1

= 0 . (7)

Note that this formulation successfully groups the terms
from the events in A and unknowns in x. We can thus solve
for x, and then reconstruct the unknowns from the found
solution. Solving Eq. 7 can be done with a singular value
decomposition of A and then selecting the last column of
V corresponding to the smallest singular value of A. Let
us denote this solution with x̂. Note that x̂ is normalized,

and, due to the homogeneous nature of Eq. 7, only known
up to parity, i.e. both ±x̂ are solutions. Note also that this
procedure is not limited to using only five events, but can be
applied to N ≥ 5, however in this case the solution will no
longer be exact, and instead approximate but with a glob-
ally minimal squared residual equal to the smallest singular
value of A. The ability to process more than five events sets
this method apart from the solver in [12] which uses a fixed
elimination template tailored to only five events. Next, we
discuss how to recover the unknowns from a solution x̂.

3.4. Recovering the Unknowns from x̂

For simplicity, we will only treat the case with +x̂, but will
state that the ambiguity in the parity of the solution to Eq. 7
gives rise to the solution pairs S0, S1, and S2, S3. Remem-
bering the definition of x we write that

x̂ =

[
λx̂1:3

λx̂4:6

]
=

[
uℓ
ze

ℓ
2 − uℓ

ye
ℓ
3

eℓ2

]
. (8)

Here λ is an unknown scaling factor. However, since the last
three entries of x̂ correspond to the unit vector eℓ2, we can
simply normalize x̂ by the length of x̂4:6. In what follows
we assume that this normalization is done beforehand, and
thus ignore this scaling factor by setting λ = 1. Straightfor-
ward manipulation yields

eℓ2 = x̂4:6 (9a)

uℓ
z = x̂⊺

1:3x̂4:6 (9b)

uℓ
ye

ℓ
1 = x̂1:3 × x̂4:6 . (9c)

From the last equation we can recover uℓ
y and eℓ1 by taking

the norm, and normalized vector

uℓ
y = ∥x̂1:3 × x̂4:6∥ and eℓ1 =

x̂1:3 × x̂4:6

∥x̂1:3 × x̂4:6∥
. (10)

Note that this decomposition is not unique, as we may si-
multaneously flip the signs of eℓ1 and uℓ

y , resulting in the
same product. Finally, we can recover eℓ3 = eℓ1×eℓ2. While
x̂ is the globally optimal solution to the incidence relation
constraints in Eq. 7, it is not immediately clear that the re-
covered Rl,ul are also globally optimal with respect to this
constraint. As proved in the supplementary material it turns
out that Rl,ul are globally optimal. Next, we will comment
on verifying the correctness of the solution.

3.5. Degenerate Solutions and Solution Multiplicity

First, we state a theorem that the only degenerate cases
arise when the matrix A in Eq. 7 is rank-deficient. This
means that, if rank(A) ≥ 5, the previously discussed
decomposition always succeeds and yields four solutions.
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(a) Solution S0 (b) Solution S1 (c) Solution S2 (d) Solution S3

Figure 2. Multiplicity of solutions to the incidence relation in Eq. 6. While S0 and S3 have the line in front of the camera, S1 and S2

have the line behind the camera. The solution pairs S0, S3 and S1, S2 differ in the orientation of eℓ
1, which comes from the ambiguity of

defining the line direction. In solutions with the line behind the camera, the measured projected camera velocity, Rℓuℓ returned by the
solver is the negative of the true projected velocity v̂. However, these solutions can be discarded by enforcing the condition in Eq. 14.

Theorem 1: If rank(A) ≥ 5, with A defined in Eq. 7, the
decomposition of x̂ into uℓ and Rℓ always succeeds and
yields four distinct solutions. If rank(A) < 5 the solver
returns infinitely many solutions.

Note that this theorem also handles cases in which the
line passes through the origin. Both the proof of the above
theorem and the handling of this case are described in the
supplementary material. Rank deficiency of A occurs when
events share the same timestamp tj or motion-corrected
bearing vector f ′j . To identify this scenario, checking the
matrix rank before solving for x̂ can be done. After SVD,
the second smallest singular value should be checked for be-
ing large, since small values indicate near-rank deficiency.

Next, we discuss the multiplicity of solutions. As
previously stated, the designed solver returns four distinct
solutions if the rank of A is at least 5. Here we enumerate
these solutions (visualized in Fig. 2), stated as a theorem:

Theorem 2: Given a solution S0 = {eℓ1, eℓ2, eℓ3, uℓ
y, u

ℓ
z}

to the incidence relation in Eq. 6, then

S1 = {eℓ1,−eℓ2,−eℓ3, u
ℓ
y, u

ℓ
z} ,

S2 = {−eℓ1, e
ℓ
2,−eℓ3,−uℓ

y, u
ℓ
z} ,

S3 = {−eℓ1,−eℓ2, e
ℓ
3,−uℓ

y, u
ℓ
z}

are also solutions. For solutions S1 and S2 the closest point
−eℓ3 on the line is behind the camera, while for solutions
S2 and S3 the line direction eℓ1 is flipped, which represents
an ambiguity in the definition of direction of L.

We state the proof in the supplementary material. Note
that two configurations correspond to flipping across the xy-
plane. We eliminate these solutions by enforcing that the in-
tersection point Pj (see Fig. 1) between the line and event
ray is in front of the camera. In the supplementary material,
we use this geometric interpretation to characterize mani-
folds spanned by events in more detail.

Algorithm 1 Linear Solver for Line and Partial Motion Pa-
rameters
Input: A set of events E with rotated bearing vectors.
Output: Line parameters θℓ and projected velocities uℓ.
• Form matrix A from the set of events E by Eq. 7 and make

sure that rank(A) ≥ 5.
• Apply SVD on A and select the last column of V, de-

noted with x̂. Both ±x̂ can be selected.
• Normalize x̂ by x̂4:6, the last three elements.
• Recover eℓ2, u

ℓ
z from Eq. 9.

• Recover eℓ1, u
ℓ
y from Eq. 10. Both {eℓ1, uℓ

y} and
{−eℓ1,−uℓ

y} can be selected.
• Compile uℓ = [0uℓ

y u
ℓ
z].

• Compute eℓ3 = eℓ1 × eℓ2.
• Construct the rotation Rℓ = [eℓ1 e

ℓ
2 e

ℓ
3].

• Recover minimal line parameters θℓ = (log (Rℓ))
∨.

3.6. Velocity Averaging from Multiple Manifolds

As previously discussed, the linear solver can only recover
partial velocities perpendicular to the line generating the
events in a single cluster. We now describe how to recover
the full velocity from a set of partial observations from mul-
tiple lines Li. Each partial observation of the velocity v
is the projection v̂i = Hiv into the eℓ2ie

ℓ
3i-plane where

Hi = I − eℓ1ie
ℓ
1i

⊺, which is visualized in Fig. 3(i). The
observation is given by the two projections uℓ

yi and uℓ
zi scal-

ing the second and third basis vectors of Rℓi, respectively.
Thus, the correct velocity estimate must satisfy

v̂i = Hiv = eℓ2iu
ℓ
yi + eℓ3iu

ℓ
zi = Rℓiuℓi . (11)

Unlike the velocity averaging scheme in [12] we adopt
the following geometrically motivated, but equivalent for-
malism to solve multiple such equations: Each such con-
straint (one for each line) can be converted into a homoge-
neous linear constraint following the steps in Fig. 3(i). We
see that the 90◦ rotated velocity RℓiRπ

2
uℓi must be perpen-

dicular to the projected camera velocity v̂i. Forming the dot
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product with this vector yields:

v̂⊺
i RℓiRπ

2
uℓi = v⊺

(
uℓ
yie

ℓ
3i − uℓ

zie
ℓ
2i

)
= 0 (12)

with Rπ
2
=

1 0 0
0 0 −1
0 1 0

 .

Note that the above constraint remains, even when inserting
the alternative solutions S0, S3 or S1, S2, since these only
lead to a change in the sign. Stacking M such equations,
one for each line, can be summarized as: uℓ

y1e
ℓ
31

⊺ − uℓ
z1e

ℓ
21

⊺

...
uℓ
yMeℓ3M

⊺ − uℓ
zMeℓ2M

⊺


︸ ︷︷ ︸

.
=D∈RM×3

v = 0 . (13)

We solve this equation again with SVD, by selecting
the column of V corresponding with the minimal singular
value. From this system, we also conclude that we need
a minimum of two lines to recover v. Again, SVD only
recovers v up to an unknown parity, i.e. both ±v satisfy
the equation. To disambiguate the solution, we enforce that
the projected velocity must point in the same direction as
Rℓiuℓi for each line. This can be written concisely as

v̂⊺
i Rℓiuℓi = v⊺

(
uℓ
yie

ℓ
2i + uℓ

zie
ℓ
3i

)
> 0 , (14)

If at least one line does not satisfy this condition, the
sign of v should be flipped. Compared to [12], which uses
a more expensive Shur-Complement step to eliminate un-
known scale factors, our algorithm only requires a single
step of SVD, but yields the same results. This is because
our algorithm is actually equivalent to that of [12], as will
be shown in the supplementary material.

Note that the above line averaging scheme may run into
issues, if two lines are parallel. Making, the common eℓ1
component of v unobservable. However, this case actually
induces a rank deficiency on D, as proved in the supple-
mentary material, and can thus easily be discarded.

4. Implementation
We integrate the aforementioned linear solver into a
RANSAC framework for parameter determination of each
manifold, followed by fitting over all inliers. Diverging
from the approach of [12], our implementation adopts the
GC-RANSAC framework [1] for robust geometric model
estimation. GC-RANSAC enhances the original RANSAC
by introducing a few versatile functionalities tailored for
early termination, thereby expediting the overall process.
Essentially, GC-RANSAC first iteratively selects a mini-
mal, spatially coherent subset of events (N = 5) from the
incoming event stream, applies the proposed linear solver

(i) single line constraint (ii) multiple line constraints

Figure 3. (i) The line constraint in Eq. 11 dictates that the 90-
degree rotated measured velocity RℓiRπ

2
uℓi should be perpen-

dicular to v̂i, or v⊺H⊺
iRℓiRπ

2
uℓi = 0. (ii) Each such constraint

spans a two-dimensional subspace, in which v must reside. With
a minimum of two such subspaces, the velocity can be found.

described in Alg. 1, and evaluates the quality of the resulting
hypothesis. Each occurrence of a so-far-the-best hypothesis
will trigger a local refinement within a subset of its inliers.
This procedure is repeated M times to separately identify
M manifolds. We will now delve into the critical aspects
influencing this process.

Spatially Coherent Sampler: The manifold’s continu-
ous structure allows for the examination of the data’s spa-
tial coherency. We utilize NAPSAC [35] to sample from
the incoming event stream. This approach starts by ran-
domly selecting one event in the space-time volume fol-
lowed by identifying four additional events within a hyper-
sphere centered on the initial event, based on a predeter-
mined radius r. In practice, these four points, located within
the hyper-sphere, are likely to be inliers1.

Angular Reprojection Residual: We employ the an-
gular reprojection residual [22] for inliers selection. The
objective is to minimally correct the two lines, the bearing
vector emanating from an event and the 3D line, so they
could converge at a single point (i.e. Pj in Fig. 1). Unlike
the typical image reprojection residual, this measurement is
invariant to both rotation and scale.

Local Refinement: RANSAC often results in numerous
ineffective iterations. Therefore, when a promising hypoth-
esis emerges, it is recommended to perform local refine-
ment using the inlier sets, which can enhance the inlier ra-
tio and decrease the total number of required iterations. In
our work, we introduce two distinct methods for local re-
finement. The first method leverages the over-determined
nature of our proposed linear solver, while the second em-
ploys non-linear optimization with Levenberg–Marquardt
over an algebraic error (i.e. Eq. 6). As suggested in [1],
we randomly select a subset from the inlier set (N = 10)
and repeat this procedure Q times.

1Note that this method does not conflict with the findings about en-
suring spatial distribution among samples [12]. However, we adhere to
a general rule of maintaining this spatial distribution within our defined
hyper-sphere.
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Table 1. General comparison between the two solvers.

Method Runtime (µs) Error Rate (%)
min. avg. ≥ 0.1◦ ≥ 1.0◦

Gröbner [12] 1893 2046 1.00 0.28
Linear (ours) 3.00 3.25 0.00 0.00

5. Experiments

We perform evaluations both on synthetic and real data. We
first confirm the runtime improvement and numerical sta-
bility of our linear solver. Next, we discuss the impact of
the number of used events or lines, over different noise se-
tups. We conclude with experiments on a few public real-
world sequences, demonstrating the advantage over existing
methods. We quantify the accuracy of our results with the
same criterion as [12], the direction error ϕ between the es-
timated and the ground truth velocities, given that the scale
is not observable. All experiments are conducted on a 32GB
RAM desktop with an Intel Core i9-10900F Processor.

5.1. Simulation

We first evaluate the performance of the proposed linear
solver under different setups over synthetic data. Readings
from individual manifolds are generated as follows. We first
sample randomly directed linear and angular velocities of
0.5m/s and 15 °/s magnitude, respectively. The time win-
dow length is set to 0.5 s, and the virtual event camera has
a resolution of 640×480 and a focal length of 320 pixels.
Next, we sample a random line in 3D with a finite length
and sample random events according to the spatiotemporal
strategy in [12]. We study three types of noise with different
magnitudes: pixel noise (0.5 px), timestamp jitter (0.5ms),
and gyroscope noise (5.0 °/s), which is assumed to be given
by an IMU. The magnitude of the pixel noise and the noise
on camera angular velocities are consistent within the same
noise level but vary in direction. Timestamp noise follows a
zero-mean Gaussian. For a more detailed sensitivity study
for different noise sources and levels see the supplementary
material. We generate one million random line, velocity,
and event configurations, and report the mean and median
angle error, as well as the minimum and mean runtime in
milliseconds of our method and the one in [12].

Runtime Analysis: In each run we record the runtime
of both solvers. As reflected in Tab. 1, our solver runs over
600 times faster than the Gröbner basis solver in [12].

Numerical Stability: We further analyze the numerical
stability of both methods under the noise-free setup. We
report the likelihood of the solver to converge to within a
low (1.0◦, or 0.1◦) error. Our solver consistently reaches
a zero error, unlike the polynomial solver, which, due to
numerical instabilities of the elimination template, fails to

Table 2. Noise resilience of our linear solver and the solver in [12].
Left corresponds to the mean, right to the median error in degrees.

Method num. Pixel Noise Time. Jitter Gyro. Noise
events (0.5px) (0.5ms) (5.0 °/s)

Gröbner [12] 5 7.80/1.67 3.61/0.83 7.48/3.09
Linear (ours) 5 5.53/1.24 2.87/0.73 6.53/2.47
Linear (ours) 10 0.46/0.15 0.17/0.12 1.50/1.17

converge within a 0.1◦ error range 1% of times.
Analysis of the Number of Used Events: In each sim-

ulation, we sample 1,000 signal events and introduce a type
of representative noise to the measurements. From these,
we use the first 5 ≤ K ≤ 1, 000 events as input for our lin-
ear solver for a fair comparison and document the resulting
error. We repeat this simulation a million times, varying K,
and report the results in Fig. 4. We observe a clear trend that
as the number of used events increases, the error decreases
markedly, except when noise is introduced to the camera’s
angular velocity. This exception occurs because the solver
cannot average out the noise on the angular velocity, regard-
less of the number of events processed. The other two errors
approach near zero when 1,000 events are used. A full anal-
ysis of the solver’s performance under each noise type can
be found in the supplementary material.

Analysis of the Number of Used Lines: Finally, we val-
idate our velocity averaging scheme. We extend our simu-
lation to multiple manifolds. For each run, we sampled ten
lines and, within each line, we selected ten signal events
with known line associations as input to our solver. The
first 2 ≤ K ≤ 10 solutions (line and partial motion param-
eters) from each manifold were taken into the linear aver-
aging scheme, and the error was recorded. This simulation
was executed 10,000 times. Fig. 4 shows that as the num-
ber of used lines increases, the error drops significantly. A
comprehensive analysis of the solver’s performance against
various noise types is available in the supplementary mate-
rial. Additionally, we show quantitative results in Tab. 2.
Both the Gröbner Solver and our linear solver use five lines
with either five or ten events each. Our approach demon-
strates a lower error with noisy measurements, and this mar-
gin grows further in overdetermined systems (i.e. N = 10).

5.2. Real-world Experiment

Similarly to [12], we validate our method on the same data
sequence from VECtor Benchmark [11]. Unlike the pre-
vious work, we first segmented the event data into non-
overlapping intervals of 0.1 s each and reduced the overall
size of the data to approximately 5,000 events per interval
for efficiency. Motion-corrected bearing vectors are then
calculated by fusing gyroscope readings from the attached
IMU. Next, to construct the chosen sampler used in GC-
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Table 3. Real-world experiment results. Left corresponds to the mean, right to the median error in degrees.

Seq. Name CELC+opt [30] Gröbner [12] Linear only Linear w/ non-min. solver Linear w/ non-linear opt.

mountain-normal 27.7/29.3 33.5/33.6 25.2/21.4 17.0/17.2 16.5/14.6
desk-normal 26.6/26.6 26.4/26.7 22.7/23.4 19.8/19.2 22.1/20.7
sofa-normal 24.0/26.1 31.5/29.5 21.9/17.6 20.6/16.1 19.9/15.0
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Figure 4. Condensed analysis of the number of used events (left) and used lines (right) over three types of representative noise.

RANSAC, we multiply the timestamp by a scale factor of
1,000 and established a radius of 50 to compose the spatially
coherent graph in the space-time volume. We apply an an-
gular reprojection threshold of 0.2◦ for inlier selection, con-
sistent across both the primary iterations and the local re-
finement stages. The number of iterations for each manifold
fitting is capped at 100 and evaluated manifolds is capped
at 10. In Tab. 3, we summarized the performance, includ-
ing both mean and median errors, across two baseline ap-
proaches and three variants of our proposed method. Impor-
tantly, as [12] reports, CELC+opt [30] is limited to certain
sub-sequences, where spatial-temporal plane clustering is
feasible, while, [12] does not suffer from this limitation. We
test three configurations of our method: linear only, linear
with non-minimal refinement, and linear with non-linear
optimization. Each configuration uses GC-RANSAC with
the spatially coherent sampler. The latter two configurations
perform different operations when a new best hypothesis is
found by the sampler: “Linear w/ non-min. solver” samples
10 events from the found inliers and feeds them to the linear
solver, resulting in a refined solution. “Linear w/ non-linear
opt.” runs on-manifold Levenberg-Marquardt optimization
steps (with line parameters Rℓ ∈ SO(3)) over the 10 se-
lected events and minimizes the algebraic error in Eq. 6. We
use a subset of 10 inliers to enhance efficiency and reduce
errors, as seen in simulated experiments.

Results: In each configuration, our method achieves a
lower error than the two baseline approaches. Additionally,
local refinement enhances accuracy significantly. Without
refinement it already has a 10% lower mean error than [30],
and 24% lower mean error than [12]. Introducing non-
minimal solver refinement reduces the mean error by an-

other 18% over the “Linear only” baseline and non-linear
optimization reduces it by 16%.

6. Conclusion and Future Work
This work introduced a novel, efficient, and linear N-point
solver for line-based relative motion estimation of an event
camera. Compared to existing works that rely on polyno-
mial system solvers, our method is more numerically stable,
over 600 times faster, and allows the identification of degen-
erate cases explicitly. Moreover, we introduce a novel ve-
locity averaging scheme that is simpler and faster than pre-
vious approaches. When combined with GC-RANSAC we
show improved normalized velocity estimation compared to
existing approaches, at a fraction of the runtime. Finally, the
solutions found by our solver deliver new insights into event
manifolds generated by lines and thus pave the way for line-
based motion estimation with events. Moreover, despite fo-
cusing on event cameras in this work, our formulation is
fully compatible with line detections from standard cam-
eras. Thus the tools developed in this work can benefit both
frame- and event-based computer vision. Our next steps
consist of adding uncertainties to the partial velocity read-
ings and applying the fusion strategy asynchronously over
time as well as in conjunction with IMU measurements.
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[16] Javier Hidalgo-Carrió, Guillermo Gallego, and Davide
Scaramuzza. Event-aided direct sparse odometry. In CVPR,
pages 5771–5780, 2022. 2

[17] Shi-Sheng Huang, Ze-Yu Ma, Tai-Jiang Mu, Hongbo Fu, and
Shi-Min Hu. Lidar-monocular visual odometry using point
and line features. In ICRA, pages 1091–1097, 2020. 1

[18] Sio-Hoi Ieng, João Carneiro, and Ryad B. Benosman. Event-
based 3d motion flow estimation using 4d spatio temporal
subspaces properties. Frontiers in Neuroscience, 10:596,
2017. 2

[19] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison.
Real-time 3d reconstruction and 6-dof tracking with an event
camera. In ECCV, pages 349–364, 2016. 2

[20] Beat Kueng, Elias Mueggler, Guillermo Gallego, and Da-
vide Scaramuzza. Low-latency visual odometry using event-
based feature tracks. In IROS, pages 16–23, 2016. 2

[21] Cedric Le Gentil, Florian Tschopp, Ignacio Alzugaray,
Teresa Vidal-Calleja, Roland Siegwart, and Juan Nieto.
IDOL: A framework for imu-dvs odometry using lines. In
IROS, pages 5863–5870, 2020. 2

[22] Seong Hun Lee and Javier Civera. Closed-form optimal two-
view triangulation based on angular errors. In ICCV, pages
2681–2689, 2019. 6

[23] Hyunjun Lim, Jinwoo Jeon, and Hyun Myung. UV-SLAM:
Unconstrained line-based slam using vanishing points for
structural mapping. IEEE RA-L, 7(2):1518–1525, 2022. 1

[24] Daqi Liu, Alvaro Parra, and Tat-Jun Chin. Globally optimal
contrast maximisation for event-based motion estimation. In
CVPR, pages 6348–6357, 2020. 2

[25] Junxin Lu, Zhijun Fang, Yongbin Gao, and Jieyu Chen. Line-
based visual odometry using local gradient fitting. Jour-
nal of Visual Communication and Image Representation, 77:
103071, 2021. 1

[26] Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego,
Narciso Garcı́a, and Davide Scaramuzza. Event-based vision
meets deep learning on steering prediction for self-driving
cars. In CVPR, pages 5419–5427, 2018. 2

[27] Elias Mueggler, Basil Huber, and Davide Scaramuzza.
Event-based, 6-dof pose tracking for high-speed maneuvers.
In IROS, pages 2761–2768, 2014. 2

[28] Elias Mueggler, Guillermo Gallego, Henri Rebecq, and Da-
vide Scaramuzza. Continuous-time visual-inertial odometry
for event cameras. IEEE T-RO, 34(6):1425–1440, 2018. 2

[29] David Nister, Oleg Naroditsky, and James Bergen. Visual
odometry. In CVPR, pages I–I, 2004. 2

[30] Xin Peng, Wanting Xu, Jiaqi Yang, and Laurent Kneip. Con-
tinuous event-line constraint for closed-form velocity initial-
ization. In BMVC, 2021. 2, 8

[31] Xin Peng, Ling Gao, Yifu Wang, and Laurent Kneip.
Globally-optimal contrast maximisation for event cameras.
IEEE TPAMI, 44(7):3479–3495, 2022. 2

[32] Henri Rebecq, Timo Horstschäfer, Guillermo Gallego, and
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