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1: Create Masks from Text 2: Add Stroke Effects and Modify Parameters 3: Create an Animation by marking on timeline

Help me to add stroke text animation to “AssistGUI” in After Effects as demonstrated in this video.

Please help me to stop apps from using my advertising ID.

Sure, I‘ll control your mouse and keyboard to help you complete it.

This is a simple stroke text animation that I added.

Sure, I‘ll control your mouse and keyboard to help you set it.

Press “Windows key + I”

I have set it up.

Figure 1. Illustration of GUI Task Automation in AssistGUI. Given a user query and an instructional video for reference, an agent is
required to manipulate the keyboard and mouse on the desktop to complete the task as requested by the user.

Abstract

Graphical User Interface (GUI) automation holds signifi-
cant promise for assisting users with complex tasks, thereby
boosting human productivity. Existing works leveraging
Large Language Model (LLM) or LLM-based AI agents have
shown capabilities in automating tasks on Android and Web
platforms. However, these tasks are primarily aimed at
simple device usage and entertainment operations. This
paper presents a novel benchmark, ASSISTGUI, to evalu-
ate whether models are capable of manipulating the mouse
and keyboard on the Windows platform in response to user-
requested tasks. We carefully collected a set of 100 tasks
from nine widely-used software applications, such as, After
Effects and MS Word, each accompanied by the necessary
project files for better evaluation. Moreover, we propose a
multi-agent collaboration framework, which incorporates
four agents to perform task decomposition, GUI parsing,

action generation, and reflection. Our experimental results
reveal that our multi-agent collaboration mechanism out-
shines existing methods in performance. Nevertheless, the
potential remains substantial, with the best model attaining
only a 46% success rate on our benchmark. We conclude
with a thorough analysis of the current methods’ limitations,
setting the stage for future breakthroughs in this domain.

1. Introduction
Novices often face a steep learning curve when acquaint-
ing themselves with complex PC applications. For instance,
software like After Effects and Premiere Pro offer a suite
of advanced functions for video editing, yet its richness in
features sets a high entry barrier for new users. An AI Assis-
tant with the capacity to comprehend GUI interfaces, grasp
software usage methodologies, and manipulate applications
would significantly expedite the learning and operating pro-
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cesses. As such an Assistant evolves, it will liberate humans
from the tedious complexities that currently impede their
creativity and productivity.

Early software automation methods, exemplified by voice
assistants such as Siri or Alexa, rely on predefined intents
and the extraction of parameters from user queries to execute
functions, lacking the flexibility required for complex opera-
tions. With the advent of generative models, e.g., GPT [20],
there has been a shift towards using Large Language Mod-
els (LLMs) [36–38] or LLM agents [48, 50] to formulate
interactive tasks as a text-to-text generation. Several bench-
marks [18] are proposed to evaluate their performances on
using an Ubuntu bash terminal, using a database, or en-
gaging in card games, with some recent works [20, 21]
demonstrating impressive results. Moreover, some bench-
marks [25, 32, 41, 49] are proposed to evaluate Web naviga-
tion and Smartphone manipulation. Some work has proposed
methods based on HTML [25, 41] and pure vision [30, 46].
[46] utilized GPT-4V-SoM [47] for Smartphone GUI Navi-
gation, which has achieved promising results. While these
studies are indeed exciting, these tasks are primarily centered
around entertainment scenarios. Consequently, an agent’s
proficiency in these tasks may not necessarily lead to a sub-
stantial increase in human productivity.

Therefore, this paper aims to evaluate the model on task-
oriented PC Graphical User Interface Automation, aimed
at assessing model performance in utilizing productivity
software. This task poses unique challenges compared to
previous Web and Android Automation:
• Dense GUI Understanding: This involves interpreting

various forms of information, not only salient texts on
the screen but also various visual elements like icons and
footage in the office or design software.

• Complex Operations: PC operations demand more so-
phisticated actions than those on the Web or Smartphone,
extending beyond basic tapping, typing, etc. to include
operations like dragging files or drawing masks on footage.

• Long Procedure: Executing a task in productivity software
can involve a sequence of complex steps. For example,
creating a single effect in AE will include layer creation,
media import, effect adding, animation creation, etc.

In order to better research this important but still largely
unexplored domain, we introduce ASSISTGUI, a benchmark
designed for PC GUI Automation. As illustrated in Figure 1,
the model receives an instructional video demonstrating a
specific function of an application, along with a user query
pertinent to the video’s content. The model’s objective is
to interact with the software to fulfill the task specified in
the query. The inclusion of instructional videos is crucial,
particularly for tools like After Effects, which have a vast
array of user-developed customized features. This design
aims to make the model adaptable and efficient at acquiring
new usage techniques.

Correspondingly, we constructed a benchmark that spans
5 major categories of PC tasks: office work, design, widget
usage, system setting, and file manipulation, covering 9
popular applications, such as Premiere Pro, After Effect,
PowerPoint, etc. In total of 100 specific tasks are provided,
each accompanied by a textual query, an instructional video,
and carefully created project files. In addition to the data,
we have developed a system that enables a local Windows
environment to be presented as an interactive platform to a
remote server, facilitating model development and testing.

In addition, we introduce a multi-agent collaboration
framework, named AutoPC, in which four agents work to-
gether to achieve software automation, as depicted in Fig-
ure 3. Specifically, we propose a novel planner that facilitates
the hierarchical decomposition of tasks. An advanced GUI
parser is designed to identify a variety of UI elements. Fur-
thermore, an actor can generate specific actions under the
guidance of a critic, with the ability to adjust future steps
based on the critic’s feedback. Our experiments on the AS-
SISTGUI benchmark revealed that while the proposed model
demonstrates promising potential, it also underscores the
task’s inherent complexity. Subsequent ablation analysis of
different components within our agent framework revealed
limitations of current methods when it comes to intricate
GUI automation tasks. These insights lead us to suggest
future directions for improvement in GUI understanding and
action generation for PC GUI applications.

In summary, our work makes the following contributions:
• We introduce, to the best of our knowledge, the first task

specifically designed for PC software automation.
• We have created a comprehensive benchmark featuring

a carefully selected collection of samples and developed
environments that aid in evaluation.

• We present a strong baseline equipped with advanced GUI
perception capability and a new planning mechanism.

• Extensive experimentation assesses our approach’s effec-
tiveness and highlights the challenges in PC GUI automa-
tion for existing models.

2. Related Work
UI Task Automation Benchmark. UI automation tasks
mainly focus on mobile or web applications with both en-
vironment development and benchmark construction. The
mobile scenarios are widely studied with open-source envi-
ronments built on top of the Android ecosystem. The envi-
ronments [28, 39] provide an interactive way for reinforce-
ment learning for relatively simple tasks. The benchmarks
[5, 15, 25, 41] further extend to more diverse and complex
low-level or high-level tasks. Additionally, there are several
simulated web environments developed for agents to learn
in an interactive way[6, 24, 32, 49, 53]. Regarding further
computer tasks, NL2Bash[16] and agentbench[18] provide
interaction with the terminal systems taking language as
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inputs and outputs. Different from them, ours is more chal-
lenging to handle graphical interaction within a real-world
PC environment for complex UI and diverse tasks.

LLM-as-Agent. Recent studies present promising re-
search directions prompting LLM for multi-step reasoning
and invoking application-specific APIs, external tools, or
domain-specific models. Some works [23, 27, 27, 33, 40, 50,
50], such as CoT, and ReAct, enhance the model’s capability
for better conversation by logical reasoning. There is also
a growing body of work [7, 19, 31, 35, 44, 48] focusing on
using LLMs in conjunction with visual tools to perform mul-
timodal tasks, such as visual question answering and video
summarization. Some research [44] even proposes LLM-
based agents for image editing. We introduce a specialized
LMM-based agent tailored for PC GUI Automation, aiming
to provide a powerful baseline for this task.

Embodied AI for UI Task Automation. The significant
challenges of GUI task automation are the understanding of
the complex graphical UI observation and the planning to
achieve various tasks, leading to end-to-end supervised ap-
proaches or LLM-based zero-shot two-stage solutions. Pre-
vious end-to-end methods adopt reinforcement learning[8]
or imitation learning[10]. [4, 30, 34, 51, 52] rely on vision-
language-action pretraining to learn to directly map visual
observation to actions. However, these methods usually re-
quire a significant number of human expert demonstrations,
which are still hard to generalize to the general applica-
tions. With the advent of LLM, there are some LLM-based
two-stage methods. The first stage is to semantically un-
derstand the elements of the observed UI by either off-the-
shelf models like OCR or learnable vision-language models
[1, 3, 9, 13]. For example, [41, 42, 46] propose to convert
GUI into HTML representation or natural language sentence.
Consequently, the second stage is to generate executable
steps given the UI elements [11, 14, 49, 53] usually with
LLM. However, single OCR and vision-language models are
limited to simple GUIs and fail to capture the full complexity
of PC GUIs. They also struggle with long processes due
to their single-step generation approach. To address these
limitations, we’ve developed an LLM-based agent equipped
with diverse tools for parsing various UI elements and a
new hierarchical planning and critic mechanism for handling
extended procedures.

3. ASSISTGUI Benchmark
ASSISTGUI benchmark provides an interactive environment,
dataset across broad tasks, and goal-oriented evaluation.

3.1. Task Formulation

PC task automation in ASSISTGUI can be formulated as
follows: given a natural language query that briefly describes
a specific task, along with an instructional video as a sup-
plement that more detailed illustrates how to complete it,

Add motion blur to the blades

Stable the provided clip

Change the document from one column to two columns

Set the transitions of the second slide to Push

Replace all '0' with 'zero'

Add bookmarks to 'the importance of reading'

Move all the non-folder files into folder 'design'

Data conversion of 1000 megabytes to gigabyte

Turn on storage sense

(Design)

(Design)

(office)
(office)

(office)

(office)

Figure 2. Distribution of collect tasks and one example query for
each task. We have gathered tasks across 9 applications, focusing
on the use of productivity software as well as fundamental computer
operations and settings.

and the relevant application, the output is a sequence of UI
actions to fulfill the user’s query.

Task description. To describe the task, a textual request
q is provided by the user, which describes the functionality
of an application to be accomplished, e.g., Center align the
text "AssistGUI" in my opened After Effect project. For
some functions of productivity tools, there might be multiple
user-developed implementations. We aim for the model to
generate actions based on the given references. Thus, an
instructional video, denoted as v, is also provided.

State observation. The state of the environment is com-
posed of two types of information. The first type stems from
the operating system’s textual metadata about the software
being used. In contrast to web pages, where HTML offers
comprehensive information, much of this metadata in PC
applications is internal and thus not readily accessible. As
a result, the metadata mainly includes the layout of panels
and pop-up windows. The second type of information con-
sists of screen captures, which offer a more holistic view by
providing visual context.

Action space. Our action space consists of all the raw
mouse and keyboard actions, including left-click, right-
click, double-click, drag, keystrokes, and combinations of
keys for shortcuts, among others. Mouse-related opera-
tions also include the target position at the pixel space
of the observed screenshot. To construct a universal and
complete representation of actions, we exactly followed a
widely utilized Python library for controlling the mouse and
keyboard, PyAutoGUI. One action is denoted by the syn-
tax action_type(arguments), e.g., dragTo(100,
100), which indicates the execution of a drag action from
the current position to the coordinate (100, 100).

Environment Implementation. Recognizing that pro-
ductivity tools usually only support Windows or Mac sys-
tems, while AI models are often deployed on Linux, we’ve
created a Python library to expose a local Windows environ-
ment as an interactive platform to a remote server. This is
done using PyWinAuto API to collect metadata and screen-
shots from Windows. A communication system sends data
to the server, and let server then sends predicted actions
back to the local client for execution on the productivity
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Desktop Environment

1. Plan

Milestone

1. Adjust timeline to … [Finished]

2. Add keyframe for … [In Progress]

3. Add keyframe for the scale  

N. Drag the guides to the edge of the man

Resize the frame

…

Subtask

Planner
Task decomposition

…

Critic
Assess the success of the last action

GUI Parser
Parse GUI to structural text

Actor
Adjust the plan
Generate action represented by code 4. Act

2. Observe3. Feedback Previous Step’s Evaluation.

click(49, 200)

Query +Video

Figure 3. Diagram Illustration of AutoPC. It first outlines key milestones and subtasks, then iteratively employs a GUI Parser, a Critic
module for action assessment, and an Actor module for adjusting the plan and generating code for controlling the PC, sequentially completing
subtasks until the task is finished.

tools. This setup allows remote control of the software by
the server-based model through specific action commands.

3.2. Data Collection

Our benchmark is designed to include a broad spectrum
of PC tasks, systematically segmented into five major cat-
egories that are indicative of routine computer-based work.
These categories include design, Office work (Office), sys-
tem settings (Sys. Set.), widget usage (Widget), and file
management (File Mani.). The collection of task data within
ASSISTGUI is achieved by the following steps:

Task Collection. Due to the complexity of GUI oper-
ations, at this early stage, we are primarily focusing on
relatively basic tasks. We carefully select some popular
instructional videos and those duration do not exceed five
minutes from official software websites and video-sharing
platforms. We also manually crafted one query for each
instructional video. These queries illustrate the tasks that the
model is expected to complete. It is important to note that
the task indicated by the query may not always align exactly
with the operations shown in the video; it could include some
user-customized requirements. Therefore, the model needs
to modify the steps based on the instructional video, e.g.,
type in a different text.

Project File Preparation. To make the results in the
environment to be reproducible, we provide project files for
all editing-related tasks. This ensures that all models initiate
their tasks from an identical starting state. The project files
included in our benchmark stem from two primary sources:
A portion of the project files is directly sourced from the
official tutorials available on the software’s website. These
files are typically crafted by the software providers to accom-
pany their instructional materials. The remaining project
files are meticulously prepared by annotators. We have also
documented the version of each project file. The tested mod-
els are expected to modify this file using applications of the
same version for fair comparison.

Quality Checking. To guarantee the correctness of our
benchmark, each task has undergone a quality check by let-
ting our annotators complete the tasks within the software
to verify if they yield accurate outputs. The quality check
focuses on two main aspects: Firstly, it verifies the correct-

ness of the content in the instructional video, ensuring that
the demonstrated steps are accurate and lead to the antici-
pated outcome. Secondly, it confirms that the project files
are correct and fully functional.

ASSISTGUI finally collects 100 specific tasks from 9
commonly used applications like Premiere Pro, After Effects,
and PowerPoint. We present the distribution of collected over
software and show one example query for each software
ASSISTGUI task in Figure 2.

3.3. Evaluation

ASSISTGUI adopts an outcome-oriented evaluation ap-
proach to determine the success rate of models. Since
ASSISTGUI yields several types of outputs: video output
(Design), document output (Office), the final state of the
software (Widget), system settings (Sys. Set.), and folder
structure (File Mani.), it is hard to construct one general
metric to fit all tasks, thus, we design specific metrics to
calculate the success rate tailored to each type of task.

For the Design and Office tasks, we compare the simi-
larity of the model’s results with the ground truth at a pixel
granularity. If it exceeds a certain threshold, it is considered
successful and scores 1 point; otherwise, it scores 0. The
threshold varies slightly for different tasks, depending on
whether the task inherently includes a certain level of ran-
domness. We did not adopt CLIP-Sim [43], commonly used
in video generation, because video editing often involves
animation changes rather than semantic changes, making it
difficult for CLIP to discern subtle differences. For Widget
tasks, we compare the final screenshot with the ground truth,
if the same in the display region (obtained by metadata), then
consider it a success. For the Sys. Set. and File Mani., we
write scripts to automatically determine whether the system
settings and folder structure meet the expected criteria.

4. Method
Overview. We introduce a multi-agent collaboration frame-
work for PC software automation, AutoPC, that possesses
the capabilities to perceive the software environment, plan
actions, and execute them, as shown in Figure 3. Specifically,
the agent works in two stages: In the first stage, given a query
and a video, the Planner creates a high-level plan outlining
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Window metadata:

Dialog - 'Adobe Premiere Pro 2021 ' 
(8, 8, 1928, 1048)

| 
| Pane - 'DroverLord - Frame 

Window’ (0, 87, 840, 631)
|    | Pane - ‘OS_ViewContainer’ (2, 

115, 837, 628)
|    | ['Pane2', 'OS_ViewContainer’, 

…

Parsed GUI Data:

Panel:
name: Effect Controls, rectangle: [0, 68, 323, 721]
elements:

Motion [64, 180]
Clock|icon [48, 200], Position [82, 200], 960 [262, 200], 540 [314, 200]
…
Free_draw_bizier|icon [108,380] …

name: Program, rectangle: [839, 84, 1562, 631]
elements

Footage [862, 143, 1549, 528]
man [998, 172, 1179, 513], woman [1213,244,1370, 513] …

Icon 
Detection

OCR
Panel 

Layout

LLM

Vision 
Model

Others 
Elements

Invoke the tools for observed software and specific subtaskSubtask

GUI Parser

Figure 4. Diagram Illustration of GUI Parser. An LLM invokes
different vision tools to parse various UI elements.

the key milestones and subtasks of the task. The second
stage involves the collaborative work of three modules to
sequentially accomplish these subtasks. The GUI Parser ob-
serves the GUI environment, the Critic module assesses the
quality of the previous action, and the Actor then adjusts the
plan based on this assessment and generates code to control
the PC.

4.1. Planner

For a given query q and instructional video v, the Planner
aims to output a hierarchical task tree p = [p1,p2, ...,pN ],
where pi is a text string describe the i-th milestone of
the task. And each pi corresponds to a list of subtasks
[si1, ..., s

i
Ni

], sij is also a text string, indicating the j-th sub-
task for i-th milestone. This is achieved in the following
steps. First, the LLM is prompted to extract hierarchical
steps based on the subtitles of the video. Subsequently, the
LLM is requested to modify the extracted steps in accor-
dance with the user’s query. Finally, we design a specific
traversal algorithm that will only traverse the leaf nodes in
order and send the corresponding subtask to the following
modules. We show more details of prompts in the Supp.

4.2. GUI Parser

The goal of the GUI Parser is to convert an observed screen-
shot into a structured textual representation ot like the Docu-
ment Object Model (DOM). Given that PC software typically
comprises a wide variety of UI elements, it is hard for one
model to extract all information, thus, we adopt approaches
similar to MMReAct [48] and VisualClues [45], invoking
multiple tools to extract information, as shown in Figure 4.
Specifically, we utilize metadata from the system for panel
segmentation, employ the OCR model to extract text from

LLM

If Finish, Next

𝒔𝑡 = 𝑛𝑒𝑥𝑡 𝒔𝑗
𝒊

Actor
1. Update Subtask for give Finish flag 

If not Finish, Continue or Retry

𝒔𝑡 = 𝒔𝑗
𝒊

Critic

LLM

Assess if the user's actions achieve the intended results by comparing GUI before and 
after the action.
Main Goal: <Subtask 𝒔𝑡−1> 
Action: <Action 𝒂𝑡−1>
GUI Difference Before and After action: <GUI Difference 𝑑(𝒐𝑡, 𝒐𝑡−1)>
You should output:  {'Success': bool (Current Action completion status), 

'Finish': bool (Whether the main goal is achieved),
'Reason': str (Analysis of possible mistakes if action is wrong)}

{'Success’: False, 'Finished': False,  'Reason’: No changes in the GUI were 
detected. The text box may not have been focused.'}

Use pyautogui to control the computer's mouse 
and keyboard to complete the given task.
Milestone: <Current Milestone 𝒑𝒕 >
Task: <Subtask 𝒔𝒕>
GUI: <GUI 𝒐𝑡>
from pyautogui import *
<Previous action for this subtask 𝒂𝑡−1>
# <error feedback 𝒄𝒕 >

2. Action Generation

doubleClick(260, 200) 
write(‘840')

Desktop 

Environment

Current Subtask

Next Subtask

Figure 5. Top: The Critic assesses the effectiveness of the previ-
ous action by analyzing the screenshots taken before and after its
execution. Bottom: The Actor first updates the current subtask,
then generates the subsequent action, considering the current obser-
vation, current subtask, historical actions, and Critic’s feedback.

images and develop a pattern-matching method to identify
icons. Additionally, some vision models, including a de-
tector, and a segmentation model, are used to localize the
objects in footage, and we have designed simple algorithms
to extract specific elements such as scrolls and reference
lines, etc. The GUI information is represented panel by
panel, including the meanings of UI elements and their spa-
tial position coordinates. Figure 6 shows an example.

4.3. Critic

The Critic utilizes an LLM to evaluate the success of the
executed action by analyzing the screenshots taken before
and after the execution of the action d(ot,ot−1), where d(.)
is a function for identifying differences. It outputs four kinds
of information: whether the previous action was executed
correctly (a Boolean Success Flag), and if not, it provides
an explanation; whether the current subtask is completed
(Boolean Finish Flag), and if not, it offers an explanation, as
shown in the Top of Figure 5. The two flags and explanations,
denoted as ct will feed to the Actor.

4.4. Actor

The Actor is built upon an LLM, aiming to generate ac-
tions within the action space of the ASSISTGUI benchmark.
Specifically, given the Finish Flag provided by the Critic,
the mode first plans what should be done next, as shown in
Figure 5. If the Finished Flag is False, the subtask st at time
t will still be sij , otherwise, st = next(sij), where next(.)
indicates moving to next subtask by using our designed tra-
verse method illustrated in Sec. 4.1.

Then, the Actor generates an output action by considering
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Table 1. Success rate (%) of agents with different planning methods
on ASSISTGUI. Human* represents the average performance of
three non-expert humans who have viewed the instructional video
only once, like how the model does. These results are a reference
to better sense the extent of the model’s capabilities.

Method Design Office Widget Sys. Set File Mani. Overall

CoT 5.9 10.8 20.0 0.00 36.7 12.0
ReAct 14.7 27.0 50.0 62.5 63.6 32.0
Ours 32.4 40.5 60.0 75.0 72.7 46.0

Human∗ 73.5 83.7 100.0 100.0 100.0 85.0

various factors: the current state of the observed software ot,
the previous action at, the current subtask st, and its corre-
sponding milestone pt = parent(st) (which indicates the
milestone associated with the current subtask). Additionally,
the Actor takes into account the Critic’s feedback ct on the
performance of the previous action. Formally,

at = argmax
a∈A

p(a|at−1,ot, st,pt, ct), (1)

where A denotes the action space, comprised of Python code.
It’s important to note that the output action at can either be
a single action or a sequence of actions. This is implemented
by prompting an LLM to process all the aforementioned
information as input and subsequently generate the code for
the next step, as illustrated at the bottom of Figure 5.

5. Experiments

Implementation Details. In the following experiments, we
use gpt-4-0613 [21] provided by OpenAI as the default LLM.
In the GUI parser, we use Google OCR for extracting text,
Yolo-v8 [26] to coarsely localize objects, and LangSAM [12,
17] to obtain the precise object contours. The difference
module d(.) is implemented by using DeepDiff [29].

5.1. Quantitative Results

As ASSISTGUI is a novel Task that requires planning with
an instructional video and processing PC environments (pre-
vious works mostly focus on Web or Android), there are no
ready-made state-of-the-art models available for evaluation.
Thus, we construct various variants based on our approach,
to contrast some core concepts from previous works, thereby
showing the effectiveness of our method and the challenges
of ASSISTGUI.
Comparision with SOTA Planning Method. In Table 1,
we compare the planning approaches that have recently
demonstrated exceptional performance in other environ-
ments. Specifically, we retained the GUI Parser and removed
both the Planning and Actor-Critic modules. The subtitle of
the instructional video is simply put into the prompt. Then,
the model plans the steps in the following methods:
• CoT [40]: The CoT generates all the steps at once, which

cannot obtain information from the environment.

Table 2. Success rate (%) of agents with ablation of reasoning
module.

Method Design Office Widget Sys. Set. File Mani. Overall

Full Model 32.4 40.5 60.0 75.0 72.7 46.0
w/o Planning 20.6 27.0 50.0 75.0 63.6 35.0
w/o Critic 26.5 32.4 60.0 75.0 72.7 41.0
w/o Ins. Video 11.8 37.8 60.0 62.5 72.7 37.0

• ReAct [50]: It iteratively interacts with the environment
through a cycle of thought, action, and observation.
The experimental results demonstrate that our model sig-

nificantly surpasses previous planning methods. The result
of CoT reveals that PC GUI Automation tasks often entail
screen chanthus, thus, it is unable to cope effectively. Re-
garding ReAct, since it does not convert lengthy videos into
discrete steps, it can operate on the finest granularity of ac-
tion plans. Additionally, ReAct’s absence of a dedicated
module for evaluating and adjusting the planning path be-
comes a shortcoming, especially for complex tasks in office
and design environments. The overall results indicate that
ASSISTGUI poses significant challenges, especially for com-
plex productivity tools. This difficulty arises from the intrica-
cies involved in understanding and navigating sophisticated
software interfaces, which require nuanced interpretation of
visual elements and context-aware decision-making.
Ablation on Planner, Actor and Critic. We also conducted
ablation studies on our Critic and Planner, as shown in Ta-
ble 2, where the w/o Planner method directly feeds the whole
subtitle into Actor, instead of the parsed subtask. For simple
tasks, the impact of these components was not particularly
significant. However, their influence becomes much more
apparent in complex Office and Design tasks. On another
note, while the Critic appears to be a very important module,
its performance enhancement was not as large as we initially
expected. This is primarily because the Critic’s judgments
in complex tasks are not always accurate. It requires a high
level of action-vision alignment, which still remains a rel-
atively underexplored area, but we believe it is a direction
worth exploring. Additionally, we constructed a variant that
does not take into account the subtitles of videos. Instead,
it utilizes GPT-4 to plan milestones and subtasks, denoted
as w/o Ins. Video. This approach showed almost no signifi-
cant performance loss in simple tasks because there weren’t
many alternative solutions. However, for the use of complex
software like After Effects and Premiere Pro, instructional
Videos proved to be very helpful.
Ablation on GUI Parser.

Correctly parsing UI Elements is essential for generat-
ing actions. Here, we eliminate different UI elements in
parsed GUI data to observe their impact. Table 3 shows that
removing OCR had the most significant impact since text
often contains crucial information in a GUI. Icons also led
to notable performance loss, especially in Design and Of-
fice software, where many icons lack corresponding textual
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Table 3. Success rate (%) of agents with ablation of GUI Parser.
UI Elements

Panel Layout Icon OCR Others Overall

✓ ✓ ✓ ✓ 46.0
✗ ✓ ✓ ✓ 44.0
✓ ✗ ✓ ✓ 13.0
✓ ✓ ✗ ✓ 4.0
✓ ✓ ✓ ✗ 43.0

Qwen-VL-Chat [2] 5.0

descriptions and are essential for specific functions. Inter-
estingly, Panel Layout had minimal impact on performance,
indicating GPT-4 can recognize the button without panel
information, though it’s still necessary for operations like
clicking in a blank or margin of the panel area. The Oth-
ers category, including footage content, scrolls, and similar
elements, also had little effect. This is due to the model’s
current limitations in handling complex footage operations,
even though they correctly recognize but still fail to complete
the task. We also try to replace Qwen-VL-Chat [2] to replace
the GUI Parser, allowing GPT-4 to plan button interactions
and Qwen-VL-Chat to determine their positions. However,
the results were not very satisfactory, as there may not have
particular training for GUI button grounding.
Impact of Large Language Model. We also experimented
with different language models, gpt-3.5-turbo, and Llama2-
7B [38], in various modules, but found the results to be
generally unsatisfactory, as shown in Table 4. There are two
main reasons for this: 1) The requirement for specific output
formats. For instance, an action must be in the form of cur-
rent step code and can only output code; any other content
would render it non-executable. Similarly, the results from
planning need to adhere to a certain format, which other
language models sometimes fail to follow. 2) The issue of
model hallucination. For the generation of actions, the model
needs to stop at appropriate times, using updated GUI infor-
mation to continue generating actions. However, non-GPT-4
models often hallucinate or invent too much information,
leading to an incorrect code. For these relatively lightweight
models to perform such customized functions effectively,
they may require fine-tuning with specific datasets.

5.2. Qualitative Results

In Fig 6, we showcase some visualized results. Firstly, we
present a successful prediction example, demonstrating that
the model can effectively plan each step for relatively long
processes, accurately perceive specific elements in the GUI,
and convert them into the correct action code. Additionally,
we display the performance of our designed Multi-modal
LLM Agent, which can accurately identify most content,
including small icons such as a clock-shaped keyframe but-
ton, checkboxes, and expand buttons. In contrast, although
GPT-4V [22] possesses robust OCR capabilities, it fails to
output button positions, rendering it unable to execute opera-
tions. The current best method to modify GPT-4V for button

Table 4. Success rate (%) of agents with ablation on LLM.
Planner Actor & Critic Overall Score

GPT-4 46.0

GPT-3.5 12.0GPT-4 Llama2 1.0
GPT-3.5 19.0
Llama2 GPT-4 5.0

grounding is GPT-4V-SoM [47], which uses semantic-SAM
to segment the image first, then label it, and finally input
it to GPT-4V. This approach achieves remarkable results in
Web and Android Navigation tasks. However, as seen, for
PC GUI understanding, the performance of GPT-4V-SoM is
almost nullified due to the limitations of Semantic-SAM’s
segmentation capabilities in productivity software.

Finally, we also highlight some common errors encoun-
tered. 1) The model struggles with complex operations on
footage, which can be highly intricate. For instance, Query
1 requires using a roto brush to select an object, necessitat-
ing continuous adjustments based on the generated edges, a
capability our model currently lacks. Achieving this func-
tion might require training with specific samples or a more
powerful Agent framework. 2) The model has difficulty un-
derstanding blurred areas, such as the edges of documents,
blank spaces in Panels, or determining which area to select
when multiple files are involved. 3) The spatial relation-
ship in dense text. The granularity of OCR output bounding
boxes is uncontrollable. Selecting a specific word or charac-
ter in a text segment is not straightforward with the current
OCR predictions. This may require a highly versatile text
grounding model to address effectively.

6. Conclusion

This paper introduced ASSISTGUI, a novel benchmark for
assessing the capability of models to manipulate the mouse
and keyboard on the Windows platform in response to user
requests. To this end, we collected a diverse set of 100
tasks across 9 widely-used applications, ensuring each task
was supplemented with the necessary project files for a fair
evaluation. We also presented our multi-agent collaboration
framework. This framework is anchored by an enhanced
reasoning mechanism to coordinate four GUI-related agents
for software automation. Our design is particularly adept
at handling complex, lengthy procedural tasks that are com-
monplace in professional software environments. Our ex-
perimental results were promising, demonstrating that our
approach notably outperforms existing methods in GUI au-
tomation. However, despite these advancements, our find-
ings also highlight the considerable challenges that remain
in this field.
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Query: Add a new text layer with text “AssistGUI”, then center align it.

Task 1: Create a new text layer

Subtask 1: Right-click on a blank area of Timeline window Subtask 2: Go to New and then Text Subtask 3: Type "AssistGUI"

Task 2: Center align text

Subtask 1: Hold Ctrl and then double-click on the 
Anchor Point button  

Subtask 2: Click on align window Subtask 3: Click on Align Horizontally Center 
button and Align Vertically Center 

Failure Cases Analysis

Parsed GUI Results

Query 1: Use the Roto Brush to place the text behind the person. Error: Correctly draw a line on the boy, but can't continue to adjust it.

Generated outline Output VideoSubtask: Draw a line on the boy using the roto brush.

1

2

Query 2: Add headers to the file. The header content is 'AssistGUI'

Subtask 1: Double-click the top margin of your document to open the header area.

Error: The agent 
doesn’t know where is 
the margin.

Prediction

Query 3: Rename all the files by deleting 'class' from their names.

Subtask 4: Highlight the word 'class' in the file name.

Error: As the GUI Parser 
only includes the bounding 
box of entire filename, the 
model can't deduce the 
coordinates of “class” and 
thus can't select it.

Our GUI Parser Semantic SAM (Used in GPT-4V SoM)

Type

Drag

Figure 6. Qualititave Results. Top: We show one successful prediction. Middle: We compare our GUI Parser results with Semantic-SAM
which is the core component for supporting GUI-4V to ground in Web or Smartphone Platform (i.e., GPT-4V-SoM). Bottom: We display
some common errors with explanation.
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