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Abstract

The recently proposed SparseFormer architecture pro-
vides an alternative approach to visual understanding by
utilizing a significantly lower number of visual tokens via
adjusting RoIs, greatly reducing computational costs while
still achieving promising performance. However, training
SparseFormers from scratch is still expensive, and scal-
ing up the number of parameters can be challenging. In
this paper, we propose to bootstrap SparseFormers from
ViT-based vision foundation models in a simple and effi-
cient way. Since the majority of SparseFormer blocks are
the standard transformer ones, we can inherit weights from
large-scale pre-trained vision transformers and freeze them
as much as possible. Therefore, we only need to train
the SparseFormer-specific lightweight focusing transformer
to adjust token RoIs and fine-tune a few early pre-trained
blocks to align the final token representation. In such a
way, we can bootstrap SparseFormer architectures from
various large-scale pre-trained models (e.g., IN-21K pre-
trained AugRegs or CLIPs) using a rather smaller amount
of training samples (e.g., IN-1K) and without labels or cap-
tions within just a few hours. As a result, the bootstrapped
unimodal SparseFormer (from AugReg-ViT-L/16-384) can
reach 84.9% accuracy on IN-1K with only 49 tokens, and
the multimodal SparseFormer from CLIPs also demon-
strates notable zero-shot performance with highly reduced
computational cost without seeing any caption during the
bootstrapping procedure. In addition, CLIP-bootstrapped
SparseFormers, which align the output space with language
without seeing a word, can serve as efficient vision encoders
in multimodal large language models. Code and models are
available at https://github.com/showlab/sparseformer

1. Introduction
Large-scale pre-trained vision models [13, 28, 49, 59, 76],
or vision foundation models, exhibit strong transferable or
zero-shot capabilities after pre-training. Most vision foun-
dation models, e.g., ViTs [16], are simply based on the stan-
dard transformer encoder architecture [15], which is known
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Figure 1. SparseFormer bootstrapping procedure and task evalua-
tion. a) With only images as inputs, we bootstrap SparseFormers
from vision foundation models by inheriting weights and align-
ing final representations with much fewer tokens (e.g., 0.25×).
b) Bootstrapped SparseFormers can serve as the efficient vision
encoder in either off-the-shelf or fine-tuning manner for both uni-
modal and multimodal tasks.

for its high capacity and proven effectiveness in modeling
massive natural language corpora [4, 64]. This large capac-
ity is also observed in the vision domain. For instance, the
large-scale ViT pre-trained on the JFT-300M dataset [60]
delivers notable performance on various down-streaming
tasks and scaling up such models and data still consistently
leads to consistent improvements [13, 49, 76]. Despite their
improved performance, these vision foundation transform-
ers require significantly more computational resources and
memory, both in the training and inference stage, espe-
cially when working with high-resolution images, due to
the transformer architecture. As an example, processing a
single 384 × 384 resolution image with ViT-L/16 requires
handling 576 visual tokens, and attention operators between
these tokens take up memory and computation quadratically
with the number of tokens.

Recently, SparseFormer [20] has been proposed as an al-
ternative vision transformer architecture with much fewer
visual tokens in the latent space rather than the original im-
age space. Each token is associated with a region of interest
(RoI) descriptor, and SparseFormer exploits the recurring
focusing transformer to adjust token RoIs and sample im-
age features sparsely according to these RoIs. This design
allows tokens to be deformable and adjustable in terms of
their spatial locations. By training with only classification
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labels, these latent tokens can focus on foreground objects
and exclude non-informative backgrounds. Therefore, the
number of tokens in SparseFormer can be greatly reduced
compared to conventional vision transformers, as well as
the computational cost and memory footprint. Though
being effective in the low compute region, SparseFormer
is found to be hard to scale up, and the largest Sparse-
Former variant in only achieves 84.8% top-1 acc on Ima-
geNet 1K [20]. Moreover, despite tokens being reduced,
training SparseFormers from scratch is also time-costing on
the ImageNet dataset, e.g., ∼12 A100 GPU days for a base
variant, not to mention the large-scale vision language train-
ing. Therefore, it is interesting to explore how to efficiently
train SparseFormers to serve as efficient visual transformer
alternatives but with capabilities as strong as possible.

In this paper, we present a simple solution to this ques-
tion: to “bootstrap” SparseFormers from large-scale pre-
trained vision foundation models, e.g., AugRegs [59] and
CLIPs [49]. By “bootstrapping”, we mean to firstly inherit
large-scale pre-trained weights from foundation models into
the standard transformer encoder blocks in SparseFormers.
And then, we randomly initialize the focusing transformer
in SparseFormers and train SparseFormers to align the final
representation with foundation models with much fewer to-
kens, as depicted in Figure 1. For preserving the structure
of the output space, we only tune a moderate early blocks
with pre-trained weights. Thanks to the SparseFormer effi-
ciency and reuse of pre-trained parameters, we can quickly
bootstrap scaled-up SparseFormer variants in few hours.
For instance, bootstrapping from AugReg-ViT-L/16 (85.8%
on IN-1K with 388 imgs/s) only takes just 6 hours on 8
A5000s, and the resulted SparseFormer achieves 84.5% IN-
1K accuracy, using only 49 visual tokens, with 1557 imgs/s
throughput. Continuing bootstrapping with 80 tokens leads
to 85.5% accuracy, only 0.3% lagging behind AugReg-ViT-
L/16 but with 2.4× throughput. Bootstrapped SparseForm-
ers can also serve as backbones for semantic segmentation,
reaching 51+ mIoU on ADE20k [78] via 256 tokens for a
512×512 input.

Moreover, since the bootstrapping procedure only needs
images as inputs without any labels, we can also bootstrap
SparseFormers from CLIP models to output the visual em-
bedding in the language-aligned space just on ImageNet-
1K. Without seeing any caption, SparseFormer boot-
strapping from CLIP ViT-L/14-336 demonstrates 75.9%
ImageNet-1K zero-shot accuracy with only 0.25× tokens,
as well as the 57.0% I→T@1 retrieval score on the out-of-
domain MS COCO [37]. In addition to that, we can also in-
corporate our bootstrapped SparseFormers into multimodal
large language models (MLLMs) seamlessly without fur-
ther fine-tuning and obtain promising results on the multi-
modal question answering ScienceQA dataset [41].

2. Related work

2.1. Vision Foundation Models

The term “foundation model” was first introduced in Bom-
masani et al. [3] to refer to highly capable language trans-
formers that were once pre-trained on massive data sam-
ples and can be easily adapted to various downstream
tasks. Exemplary of such models includes BERT [15] and
GPTs [4, 47, 48]. The concept “foundation model” also
applies to computer vision area as well, dating back to the
previous cornerstone vision backbones [22, 57] pre-trained
on the ImageNet. Recent work [16, 30, 39, 59] on com-
puter vison focuses on pre-training models on large-scale
datasets, such as ImageNet-21K [14] and JFT-300M [60],
with the classification supervision. The reliance on human
annotations of these datasets somewhat imposes a constraint
on pre-training such foundation models and several work
explores contrastive learning [7, 21, 23], masked model-
ing [18, 24, 58, 62] or other self-supervised learning [5, 45]
to alleviate this issue. Despite the hunger for labels, training
time and hardware demands make training a vision founda-
tion model a difficult and expensive thing.

Data in various domains, such as web images [55], is
naturally multimodal in language and vision, which invokes
interests in pre-training vision models with languages [32,
33, 61, 68, 72, 73, 77]. For example, CLIPs [49] as the most
canonical multimodal models align the output embedding
spaces of the language transformer and the vision trans-
former, leading to remarkable zero-shot and transferring ca-
pabilities on various vision-language understanding tasks.
The success of CLIP has also benefited many downstream
tasks, including text-to-image generation [51, 53, 54] and
open-vocabulary detection [31, 35, 42, 79]. Furthermore,
given the growing influence and availability of large lan-
guage models (LLMs) [44, 64], recent studies [12, 33, 34,
38, 80] aim to build multimodal models with image inputs
by using CLIP pre-trained vision transformers. But still,
training these CLIP vision encoders from scratch can be
extremely expensive, and such dense transformers can be
computationally demanding during inference, particularly
for inputs with high resolution.

2.2. Efficient Vision Foundation Models

It is always an appealing topic to build efficient vision
transformers, e.g., with efficient attention mechanisms [10,
29, 65], or using compact transformer architectures [17,
25, 39, 66]. Beside these, a research line aims to in-
vestigate the token redundancy in vision and thus allevi-
ate it [2, 6, 19, 36, 52, 67, 74] to expedite the inference
phase. Knowledge distillation on [1, 26, 43, 63, 69] have
also been widely applied to architecting small transformers
with knowledge transferred from large vision transformers.
Apart from unimodal ones, there has been an increasing em-
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phasis on efficient multimodal transformers [46, 56, 70].
The recently proposed SparseFormer [20] as a vision

transformer variant exploits the token adjusting mechanism
with much fewer tokens to expedite the visual understand-
ing task. SparseFormer can be also seen as a vision trans-
former with the token reduction right from the start, but
also requires lengthy training from scratch. In this paper,
we mainly discuss how to bootstrap SparseFormers from vi-
sion foundation models with limited training time and data
samples, and use the bootstrapped SparseFormers as the ef-
ficient vision foundation models with most preserved per-
formance in both unimodal and multimodal settings.

3. Method
In this section, we will first briefly revisit the SparseFormer
architecture [20]. Next, we will describe in detail bootstrap-
ping SparseFormers from vision foundation models with the
limited training time, hardware budgets, and data samples.

3.1. Prerequisites: the SparseFormer Architecture

The SparseFormer architecture, as a vision transformer vari-
ant, aims to represent an image by a highly reduced number
of tokens and their corresponding adjustable RoIs. Sparse-
Former consists up of two components: the focusing trans-
former and the cortex transformer. The focusing trans-
former, which is designed to be with minimal parameters
and computational costs, iteratively adjusts token RoIs to
focus on foregrounds. The cortex transformer is exactly
a plain vision transformer encoder, similar to [16], which
is with the majority of parameters and computation used
by SparseFormer. Specifically, given the latent token em-
bedding set T = [t1, t2, · · · , tN ] and the token RoI set
B = [b1,b2, · · · ,bN ], where N is the number of latent
tokens, the focusing transformer operates as follows:

Ti+1,Bi+1 = FocusingTransformer(Ti,Bi), (1)

where T1 and B1 are initial token embedding set and initial
RoI set, and they are learnable parameters of models, inde-
pendent of input images. In the typical setting, the focusing
transformer is repeated in 4 iterations. In each iteration,
the focusing transformer extracts image features according
the current token RoI b(·) = [x, y, w, h] into token embed-
ding t(·), perform self-attention and feed forward network
on embeddings, and adjust token RoIs. The RoI adjusting
mechanism uses the normalized delta form:

x′ = x+∆xw, y
′ = y +∆yh, (2)

w′ = w · exp(∆w), h
′ = h · exp(∆h), (3)

where the tuple (∆x,∆y,∆w,∆h) is produced by the token
embedding in the focusing transformer. All operations are
applied individually to each token, except for self-attention
which involves token interaction.

After the focusing transformer, these token RoIs tend to
cluster around foreground objects [20]. Then, the so-called
cortex transformer, whose architecture is exactly a standard
transformer encoder, operates on the token embedding as:

Tfinal = CortexTransformer(T′), (4)

where we can see that the cortex transformer just processes
token embeddings and does not rely on the token RoIs any-
more. With the RoI adjusting mechanism, SparseFormer
utilizes a highly reduced number of tokens (e.g., 0.25×) for
visual understanding by only attending to foreground ob-
jects and excluding backgrounds.

Feasibility to bootstrap SparseFormers from ViTs.
Since the cortex transformer strictly follows the standard
transformer encoder architecture, it is feasible to inherit pre-
trained vision transformer weights. Once the weights of the
cortex transformer are inherited, we only need to train the
focusing transformer from scratch to align its representation
into the cortex transformer to be compatible with inherited
cortex transformer weights. Thus, when the input repre-
sentation well aligned, the output representation of Sparse-
Former will also align with the original pre-trained vision
transformers, which is especially beneficial for language-
aligned vision representations, such as CLIPs [49]. We
term this procedure as “bootstrapping” SparseFormers from
large-scale pre-trained vision foundation models.

3.2. Bootstrapping from Vision Foundation Models

As discussed above, we need to align the output repre-
sentation of the focusing transformer with the input repre-
sentation of inherited vision transformers. However, this
straightforward idea is infeasible since the shape of these
two representations typically does not match as the number
of SparseFormer tokens is much lower than ones in most
vision transformers.

Therefore, we resort to directly aligning the final repre-
sentation of SparseFormer to one from pre-trained vision
transformers. Specifically, we propose a simple method
to bootstrap SparseFormers from vision foundation mod-
els, which are mostly based on transformers. First, we de-
sign SparseFormer variants to match the dimension and the
number of their cortex transformer blocks with these pre-
trained vision transformers. We inherit these large-scale
pre-trained weights of these transformers and load them into
cortex transformer blocks in SparseFormers. Then, we ini-
tialize the focusing transformer from random and concate-
nate these two to build a complete SparseFormer.

Once a SparseFormer is constructed, we align the fi-
nal representation from SparseFormer with that of the pre-
trained vision transformer given the same image input, as
depicted in Figure 2. We simply use the cosine loss to align
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Figure 2. The detailed bootstrapping procedure. We typically set the number of sparse latent tokens in SparseFormers to 1/4 those in
vision transformers. The starting index of tunable blocks i is N/3 and the frozen is 2N/3 for all bootstrapping settings. Note that [CLS]
represents the extra token in vision transformers besides visual tokens and there is no classification supervision on [CLS] in bootstrapping.

these two final token representations:

ℓ = 1−
tTsparseformertpretrained

∥tsparseformer∥∥tpretrained∥
, (5)

where tsparseformer and tpretrained are the final token em-
beddings in the last embedding space of models, which are
[CLS] tokens before the classifier layer in classification
models or after the projection layer in CLIP models. We
can bootstrap SparseFormers from large-scale pre-trained
vision foundation models without labels, since the align-
ment target from pre-trained models, tpretrained, already
has rich semantics. All we need to do is to seek for a set
of unlabeled supporting images. We find that the medium-
sized ImageNet-1K training set [14], which is most publicly
available to its scale, with minimal augmentation is a suf-
ficient supporting image set for bootstrapping competitive
SparseFormers from pre-trained models.

Difference with distillation methods. It is important to
note that the cosine loss between two token embeddings is
not dependent on pre-defined label sets, and we do not ex-
ploit any labels or captions during the bootstrapping pro-
cess. This differs a lot from existing distillation methods,
which typically make use of specified label sets [26, 63]
for classification models or vision-language pairs for multi-
modal models [70]. Also, distillation methods do not reuse
teacher model weights since the student architecture usually
differs from the teacher, and thus require a lengthy sched-
ule to transfer knowledge effectively. In comparison, our
method can bootstrap a 200M SparseFormer variant in a
few hours (20 epochs) with only 1.2M images from Ima-
geNet as inputs.

Truncate the leading, tune the middle, and freeze the
ending blocks. The leading blocks of pre-trained vision
transformers are usually specialized for low-level visual
modeling [50], which overlaps with the role of the focus-
ing transformer in SparseFormers. Thus, we choose to dis-
card a moderate number, 1/3, of leading transformer blocks
when constructing our SparseFormer variants, which also
help reduce the compute need. Since the bootstrapping goal
is to well align the final representation, we set a few middle
transformer blocks tunable starting from inherited weights
to adapt the output of the focusing transformer. We leave
frozen the rest transformer blocks in the ending to preserve
the structure of the output space by pre-trained weights as
much as possible.

4. Experiments
We start experiments on bootstrapping SparseFormers from
large-scale pre-trained unimodal models and then discuss
vision-language pre-trained ones.

4.1. Bootstrapping from Unimodal Models

We choose the well-established AugReg vision transform-
ers [59], which strictly follow the original ViT architecture,
as the unimodal classification models to bootstrap from.
The AugReg models are pre-trained by the supervised clas-
sification on the ImageNet-21K dataset with well-curated
data augmentation and regularization techniques.

Model configurations and experimental settings. We
design two SparseFormer variants (SF-BAugReg and SF-
LAugReg) according to the base and large variant (ViT-B/16-
224AugReg and ViT-L/16-224AugReg) in Table 1. We set the
token dimension in the focusing transformers half those of
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the cortex transformers except that the last focusing trans-
former block performs sampling operations on the full di-
mension, in accord with [20]. Unlike the leading one, the
last focusing transformer block does not involve FFNs and
self-attention layers. We append a learnable [CLS] to la-
tent tokens after the focusing stage in SparseFormer and use
its final representation for bootstrapping and classification.
To be more consistent with AugReg models (CLIPs below
as well) which add positional encoding to visual tokens, we
inject positional encoding based on token RoIs in the sinu-
soidal form in each focusing iteration. To further reduce
compute and make SparseFormer even more sparse, we re-
duce the channel of the early convolution from 96 to 64,
and shrink the number of sampling points for a token in the
sparse sampling procedure from 36 to 16.

model #tokens focusing
iterations

focusing
dimension

#truncate
blocks

#tunable
blocks FLOPs #Params

ViT-B/16-224AugReg 196 - - - - 17.5G 86M
SF-BAugReg 49 4+1 384 4 4 3.8G 64M
ViT-L/16-224AugReg 196 - - - - 61.6G 304M
SF-LAugReg 49 4+1 512 8 8 11.4G 213M

Table 1. Configurations of SparseFormers.

We choose the publicly-available medium-sized
ImageNet-1K training set as our bootstrapping image
set. The data augmentation is set to be minimal: random
horizontal flipping with the probability 0.5 and random
resized cropping with from the scale (0.5, 1.0) and the
aspect ratio (3/4, 4/3). We use a budget of 20 epochs as
our bootstrapping schedule, where learning rate begins at
2 × 10−4 and follows a half-cosine decay schedule after
the first warming-up epoch. In the warming-up epoch,
the inherited pre-trained weights keep frozen for training
stability. In bootstrapping, only the focusing transformer
and tunable blocks of cortex transformer are learnable.
All the rest parameters inherited from AugReg models,
including the final layer normalization and classification
layer, remain frozen.

Bootstrapped SparseFormers with 49 tokens. We show
results of bootstrapped SparseFormer from AugReg clas-
sification models in Table 2. The default token number
is 49 for SparseFormer models. From the results, we
can see that SparseFormer models with 49 tokens have
achieved promising results, e.g., 84.9% top-1 accuracy for
SF-LAugReg bootstrapping from ViT-L/16-384AugReg. Note
that the number of tokens, e.g. 49, is fixed from the begin-
ning to the end in SparseFormer models, which differs from
recent other methods progressively dropping tokens through
blocks [2, 6]. To our best knowledge, we are the first to ob-
tain ∼85% top-1 accuracy on ImageNet-1K with only 49
tokens in all blocks for vision transformers.

model top-1 acc. #Params FLOPs img/s
ViT-B/16-224AugReg, 196 tokens 84.6 86M 17.5G 1126
SF-BAugReg, 49 tokens 82.5 64M 3.8G↓78.3% 3001↑166%
SF-BAugReg, 80 tokens↑ 83.4 64M 6.2G↓64.6% 2080↑85%
SF-BAugReg, 80 tokens↑, 320px↑ 83.7 64M 6.3G↓64.0% 1898↑67%
ViT-L/16-224AugReg, 196 tokens 85.8 304M 61.6G 388
SF-LAugReg, 49 tokens 84.5 213M 11.4G↓81.5% 1557↑301%
SF-LAugReg, 80 tokens↑ 85.2 213M 18.6G↓69.8% 1008↑160%
SF-LAugReg, 80 tokens↑, 320px↑ 85.5 213M 18.7G↓69.6% 928↑139%
ViT-L/16-384AugReg, 576 tokens 86.9 304M 191G 105
SF-LAugReg, 49 tokens 84.9 213M 11.6G↓93.9% 1353↑1189%
SF-LAugReg, 144 tokens↑ 86.5 213M 33.9G↓82.3% 560↑433%
SF-LAugReg, 196 tokens↑ 86.7 213M 46.5G↓75.7% 378↑260%

Table 2. Results of SparseFormers bootstrapped from AugReg
models. The default SparseFormer token number is 49. Through-
puts are measured with half-precision data type and batch size of
128 on one A5000 GPU.

Continue to bootstrapping with more tokens. Although
SparseFormers with 49 tokens yield promising results, they
are still lagging behind those models to bootstrap from with
a non-negligible margin. To minimize the gap, we fur-
ther continue to bootstrapping SF models with the increased
number of tokens from default SF models. Note that these
increased numbers are still much lower than original vision
transformers, especially for high resolution one. The con-
tinued bootstrap lasts for 5 epochs with LR starting from
5 × 10−5, also following a half-cosine decay scheme. We
denote these models with an extra notation ↑. From the ta-
ble, the gaps between SparseFormers and AugRegs become
closer when original models become larger, especially for
SF-LAugReg with 196 tokens, which is on par with ViT-L/16-
384AugReg but at about 3× real-time throughput. When com-
bined with the higher input resolution, SparseFormer mod-
els still yield improvements on the same number of tokens at
a marginal additional burden. Note that as a sparse architec-
ture, the input resolution has little impact on computational
costs of the most components in SparseFormers.

Ablation studies on bootstrapping. Our bootstrapping
procedure is simple as it just aligns final representations
of SparseFormers and large-scale pre-trained models given
the same image input. Labels are not needed through the
bootstrapping procedure except for the evaluation on bench-

bootstrapping
with

cls loss
w/o reusing

weights
KL distill
τ = 3

KL distill
τ = 5

supervised cls
from scratch

82.5 77.4 69.5 81.0 81.5 80.0

Table 3. Ablations on bootstrapping SF-BAugReg with 49 tokens.
Except for ‘from scratch’ (supervised classification, from scratch,
300ep), we keep the bootstrapping training settings the same (e.g.,
trainable parameters, epochs & augmentation).
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model top-1 acc. FLOPs img/s
ViT-B/16-224AugReg 84.6 17.5G 1126
ToMe@16, off-the-shelf 80.4 8.8G↓49.7% 1980↑75%
ToMe@16, fine-tuned 82.8 8.8G↓49.7% 1980↑75%
DiffRate, fine-tuned† 83.2 11.5G↓34.3% 1400↑24%
SF-BAugReg, 80 tokens↑ 83.4 6.2G↓64.6% 2080↑84%
SF-BAugReg, 80 tokens↑, 320px↑ 83.7 6.3G↓64.0% 1898↑68%
SF-BAugReg, 100 tokens↑, 320px↑ 84.0 7.8G↓55.4% 1579↑40%
ViT-L/16-224AugReg 85.8 61.6G 388
ToMe@12, off-the-shelf 20.6‡ 20.8G↓66.2% 1006↑159%
ToMe@8, off-the-shelf 83.5 31.0G↓49.7% 700↑80%
ToMe@8, fine-tuned 84.8 31.0G↓49.7% 700↑80%
DiffRate, fine-tuned† 85.7 42.3G↓31.3% 452↑16%
SF-LAugReg, 80 tokens↑ 85.2 18.6G↓69.8% 1008↑160%
SF-LAugReg, 80 tokens↑, 320px↑ 85.5 18.7G↓69.6% 928↑139%
SF-LAugReg, 100 tokens↑, 320px↑ 85.7 23.4G↓62.0% 752↑94%
ViT-L/16-384AugReg 86.9 191G 105
ToMe@40, off-the-shelf 8.8‡ 56.0G↓70.7% 315↑200%
ToMe@23, off-the-shelf 86.2 96.4G↓49.5% 187↑78%
ToMe@23, fine-tuned 86.8 96.4G↓49.5% 187↑78%
SF-LAugReg, 196 tokens↑ 86.7 46.5G↓75.7% 378↑260%

Table 4. Comparisons on SparseFormers with token reduction
methods, ToMe [2] and DiffRate [6]. † use MAE [24] pre-trained
weights. ‡ ToMe is not unfriendly to large token merging rates.

marks. Here we ablate the bootstrapping design in Table 3.
Interestingly, aligning the final representations along with
the classification loss (‘with cls loss’ in the table) actually
impairs the performance. We suspect that the supervised
classification requires strong augmentation and regulariza-
tion to be stable with the alignment. We also replace our to-
ken representation alignment with KL distillation loss with
different temperatures on the ImageNet labels. This sim-
ple distillation yields promising results but still with > 1%
lagging behind our bootstrapping.

We also include the bootstrapping result without the
reusage of pre-trained weights (but the final linear classi-
fier remained) and train the entire transformer to align the
final representation for 20 epochs. As expected, it yields the
inferior result, and more training epochs may be required to
well align from scratch.

Comparison with token reduction methods. Sparse-
Formers can be considered as a method to reduce the num-
ber of visual tokens in vision transformers after pre-training,
similar to token pruning or merging approaches [2, 6, 19,
36]. Here, we investigate the effectiveness of Sparse-
Formers from the token reduction perspective and compare
them to state-of-the-art reduction methods, ToMe [2] and
DiffRate [6], in Table 4. In addition to using off-the-shelf
AugReg models with ToMe, we also fine-tune AugRegs
with ToMe using the fine-tuning recipe described in [24]
to ensure a fair comparison with our methods, as addi-
tional fine-tuning is required. We sweep to find best fine-

model mIoU #Params FLOPs train mem. img/s
Swin-L [39] + UPerNet [71]† 51.1 234M 408G 11G, 2bs 20
ViT-Adapter-BAugReg [8] + UPerNet [71] 51.9 134M 376G 50G, 2bs 19
ViT-Adapter-LAugReg [8] + UPerNet [71] 53.4 364M 667G 49G, 2bs‡ 12
SF-BAugReg segmentation (ours) 49.3 68M 36G 10G, 4bs 88
SF-LAugReg segmentation (ours) 51.5 216M 77G 13G, 4bs 46

Table 5. Segmentation performance on ADE20k val set [78]. † is
reported by mmsegmentation [11]. ‡ is with gradient checkpoint-
ing. Throughput is measured with batch size 4 on A5000.

tuning LRs for these ToMe AugRegs respectively. DiffRate
on MAE models are also included, where the ViT-L/16-
224MAE baseline reports a slightly better result than ViT-
L/16-224AugReg. As shown in the table, SparseFormer mod-
els achieve the best trade-off between the accuracy and the
actual throughput, especially for the large models where
many tokens may be redundant. In fact, tokens in boot-
strapped SparseFormers can be further applied with these
token reduction methods but this is beyond this paper scope.

Dense prediction task. We here further investigate the
ability of bootstrapped SparseFormers as pre-trained back-
bones to perform dense per-pixel prediction task, e.g., se-
mantic segmentation. As latent tokens of SparseFormer are
not structured in a grid-like map like conventional vision
transformers [16, 39, 66], it requires some workarounds to
obtain dense feature maps from these latent tokens. We
generally follow the idea of the original SparseFormer on
semantic segmentation to project latent tokens back into
the original dense pixel space according to their RoIs [20].
Here, we find that it is more effective to straightforward
project prediction logits of tokens, instead of embeddings,
back into the dense pixel space using simple single-head at-
tention aggregation:

Ptoken = classifier(T) ∈ RN×L, (6)

Pdense = softmax(QdenseK
T
token/

√
d+B)Ptoken, (7)

where classifier(·) just classify the latent token into pre-
diction logits, N is the number of latent tokens, and L is
the number of classes. In the current implementation, we
first use a linear layer to reduce the latent token dimension
to d = 256 and introduce two small transformer encoder
blocks (d = 256) to process latent tokens, and we use a
linear layer as our latent classifier. Qdense ∈ RHW/42×d

is the flattened feature map transformed by one 3 × 3
convolution from the early convolution feature in Sparse-
Former with shape H/4×W/4. We bias the attention score
by B = Bgeometric + Bpredictive, where the geometric bias
Bgeometric is in the Gaussian-like form w.r.t. token RoIs
as described in [20]. The predictive bias is produced by
a linear layer whose input is the latent token embedding,
Bpredictive = linear(T) ∈ R1×N , indicating the overall
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method
visual

encoder
visual
FLOPs

IN-1K
zero-shot@1

MS COCO
I→T@1

MS COCO
T→I@1

Flickr30k
I→T@1

Flickr30k
T→I@1

CLIP ViT-B/16-224 17.5G 68.3 52.4 33.0 81.9 62.0
CLIP ViT-B/32-224 4.4G 63.3 50.1 30.4 77.5 58.8
TinyCLIP [70]† ViT-63M/32-224 2.0G 64.5 56.9 38.5 84.9 66.0
CLIP + SF (ours) SF-BCLIP w/ 49 tokens 3.8G 66.0 47.7 31.5 76.3 59.6
CLIP ViT-L/14-224 81.1G 75.4 56.3 36.5 85.1 65.2
CLIP + SF (ours) SF-LCLIP w/ 64 tokens 14.8G 73.6 52.3 34.8 80.3 62.8
CLIP + SF (ours) SF-LCLIP w/ 128 tokens 30.0G 74.9 54.7 36.4 82.4 65.2
CLIP ViT-L/14-336 191.0G 76.6 57.9 37.1 87.4 67.3
CLIP + SF (ours) SF-LCLIP w/ 144 tokens 33.9G 75.9 57.0 38.3 84.6 67.7

Table 6. Zero-shot and retrieval evaluation results. We individually bootstrap SparseFormers from CLIP visual encoders in the grayed rows
with <2M ImageNet-1K images as inputs. † needs training on text-image pairs of LAION-400M [55].

importance of token logits into the dense map. In simple
words, we map the latent token predictions into the dense
grid with the consideration of their RoIs and semantic im-
portance, similar to [9]. The classification supervision is
imposed on the mapped dense predictions.

We generally follow the training recipe of [8], includ-
ing learning rate and drop path [27] settings, and finetune
our bootstrapped SparseFormers (default ones w/ 49 tokens)
on the ADE20k dataset [78] with the increased token num-
ber of 256. As our segementation models based on Sparse-
Former are memory friendly, the batch size is increased to
4 and the total training iteration is reduced to 80K. The re-
sults are reported in Table 5. We can see that the perfor-
mance of SparseFormer on the segmentation task is promis-
ing, with much fewer FLOPs and much higher throughput.
This efficiency is credited to fewer computation over lim-
ited latent tokens in SparseFormers compared to conven-
tional dense vision transformers (e.g., 256 versus 1024 for
ViT-Adapter [8] for 512×512 inputs).

4.2. Bootstrapping from Multimodal Models

Till now, we have bootstrapped SparseFormers from uni-
modal classification models and apply them to the down-
streaming dense prediction task, showing their efficiency
and effectiveness. Since our bootstrap procedure directly
aligns the final representations to the pre-trained transform-
ers, it can be easily adopted for the fundamental vision-
language CLIP [49] models as well.

Experimental setups. The bootstrapping procedure for
CLIP models exactly follows the same recipe in unimodal
classification AugRegs, as described in Sec 4.1, including
the training budget, the data augmentation, and the learn-
ing rate setting. We use the official OpenAI CLIP pre-
trained vision transformers to bootstrap from, i.e., ViT-
B/16-224, ViT-L/14-224, and ViT-L/14-336. We only boot-
strap SparseFormers from the CLIP visual encoders and
leave the text encoders untouched. It is worth noting that
we still only use the ImageNet-1K training set as the sup-

porting image dataset, and we do not leverage any text-
image pairs to align the SparseFormer image embeddings
with CLIP models. This differs from TinyCLIP [70], which
also inherits pre-trained weights but requires at least 15M
text-image pairs to distill smaller models.

Results. We use the frozen CLIP text encoders in com-
bination with our bootstrapped SparseFormers as visual
encoders to perform the zero-shot classification task on
ImageNet-1K validation set, as well as the retrieval task
on MS COCO val set [37] and the Flickr30k bench-
mark [75]. Results are presented in Table 6. With only
images as samples for aligning in the bootstrapped proce-
dure, SparseFormers as the visual encoders achieve decent
zero-shot accuracies with greatly reduced compute, espe-
cially for large and high resolution models. For instance,
our SparseFormer-L with 144 tokens is just 0.7 point behind
the ViT-L/14-336 with 576 tokens, and surpass the ViT-
L/14-224 by 0.5 margin with less than 0.5× computational
cost. Interestingly, the zero-shot retrieval performance on
MS COCO and Flickr30k, which have more complicated
data distributions compared to the ImageNet samples for
aligning, is also quite effective.

4.3. Multimodal Large Language Models

Building large language models with integrated vision ca-
pabilities is an emerging and appealing topic [33, 34, 38]
within the computer vision community. Since we have boot-
strapped SparseFormers from CLIP models, a natural ques-
tion arises: can we seamlessly incorporate SparseFormer as
the vision encoder in the multimodal large language model

vision encoder acc multi-modal only acc
ViT-L/16-224 91.2 88.6
SF-LCLIP w/ 64 tokens 89.2 84.5
SF-LCLIP w/ 128 tokens 89.8 85.8

Table 7. In-place vision encoder replacement in LLaVa on the
ScienceQA test set.
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Bootstrapped SF-BAugReg (ours)

SparseFormer-Tiny

Figure 3. Visualization on the original SparseFormer-Tiny [20] and our bootstrapped ViT-B/16-224AugReg. For each image, there are an
input image, token RoIs in the {first, third, last} stage, and sampling points in the last stage in the focusing transformer from left to right.

without re-finetuning LLMs. The answer is yes. We experi-
ment with LLaVa [38], a recent large language model that is
fine-tuned for instructions and can accept images and texts
as the prompt. The vision encoder in LLaVA is typically the
CLIP ViT-L and it directly outputs all visual tokens (typical
number is 256 for a 2242 image) as input tokens for autore-
gressive language modeling, meaning that there are already
256 “word tokens” for image modeling before user input
prompt. In comparison, SparseFormers reduce this num-
ber of tokens to typically 1/4×, which is more friendly for
LLM text modeling.

To demonstrate quantitative multimodal LLM re-
sults, we benchmark the fine-tuned LLaVa variant,
llava-lcs558k-scienceqa-vicuna-13b-v1.3,
for the instruction following on the ScienceQA multi-
choice question answering task [41]. We find that the
data distribution is unique on the ScienceQA dataset and
directly using bootstrapped SparseFormers in Sec 4.2 leads
to inferior results. Therefore, we continue bootstrapping
SparseFormers from CLIP ViT-L/14-224 using the Sci-
enceQA training images for ∼1000 iterations to adapt to
this image domain for about 20 minutes. Then we replace
the CLIP vision encoder in LLaVa with SparseFormers
without any further fine-tuning LLM. Results are shown
in Table 7. The bootstrapped SparseFormer as the vision
encoder preserves most language-vision abilities (84.5 vs
88.6 in the multimodal only entry) with only 1/4× visual
tokens as inputs to the following autoregressive LLM. The
performance gap between SparseFormers and CLIP even
narrows further when scaling to 128 tokens, which is still
half the size of CLIP tokens.

4.4. Visualization

We show the visualization of our bootstrapped Sparse-
Former and compare it to the original SparseFormer [20]
in Figure 3. While the bootstrapped ViT-B/16-224AugReg
and the original SparseFormer-Tiny use exactly the same
number of visual tokens (i.e., 49), our bootstrapped model
demonstrates the better capability to focus on foregrounds
and exclude non-informative regions with less sampling
points (36→16 per token, as described in Section 4.1). As a

result, the bootstrapped SparseFormer from large-scale pre-
trained models can be even sparser in both focal ability and
sampling efficiency compared with the original one.

5. Conclusion
In this paper, we have proposed a simple but effective
method to bootstrap SparseFormers from large-scale pre-
trained vision foundation transformers by inheriting most
pre-trained weights and explicitly aligning the final repre-
sentations. With the short training time and limited data
samples, the SparseFormers bootstrapped from unimodal
classification models can maintain the pre-trained capa-
bilities as much as possible with much fewer tokens and
higher real-time throughput. In particular, we can boot-
strap a SparseFormer with only 49 tokens which obtains
84.9 top-1 accuracy on ImageNet 1K. Also, SparseForm-
ers can serve as backbone networks in the dense per-pixel
semantic segmentation task with decent results but at 2×
throughput. In addition to classification models, Sparse-
Formers can be bootstrapped from multimodal pre-trained
transformer CLIPs without seeing any text caption in the
bootstrapping procedure and the bootstrapped SparseForm-
ers demonstrate strong multimodal performance with down
to 0.2× FLOPs.

Limitation The limitation of our proposed bootstrapping
procedure is that it presumes the underlying transformer ar-
chitecture of vision foundation models and thus can only
applied to transformer-based foundation models. This is
mostly the case, but there are some exceptions, e.g., [40].
Also, it necessitates the availability of weights of vision
foundation models, while that may not be possible for some
large-scaled proprietary ones.
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Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent: A new approach

17718



to self-supervised learning. In Advances in Neural
Information Processing Systems, 2020. 2

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016. doi: 10.1109/CVPR.2016.90. 2

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
2020. 2

[24] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022. 2,
6

[25] Byeongho Heo, Sangdoo Yun, Dongyoon Han,
Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh.
Rethinking spatial dimensions of vision transformers.
arXiv preprint arXiv:2103.16302, 2021. 2

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2, 4

[27] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and
Kilian Q. Weinberger. Deep networks with stochastic
depth. In ECCV (4), volume 9908 of Lecture Notes in
Computer Science, pp. 646–661. Springer, 2016. 7

[28] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. Scaling up visual and vision-
language representation learning with noisy text su-
pervision. In International Conference on Machine
Learning, pp. 4904–4916, 2021. 1

[29] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020. 2

[30] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,
Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big transfer (bit): General visual represen-
tation learning. In European Conference on Computer
Vision, 2020. 2

[31] Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni,
and Anelia Angelova. Open-vocabulary object detec-
tion upon frozen vision and language models. In In-
ternational Conference on Learning Representations,
2023. 2

[32] Junnan Li, Ramprasaath R. Selvaraju,
Akhilesh Deepak Gotmare, Shafiq Joty, Caiming
Xiong, and Steven Hoi. Align before fuse: Vision
and language representation learning with momentum
distillation. In Advances in Neural Information
Processing Systems, 2021. 2

[33] Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. Blip: Bootstrapping language-image pre-training

for unified vision-language understanding and gener-
ation. In ICML, pp. 12888–12900, 2022. 2, 7

[34] Junnan Li, Dongxu Li, Silvio Savarese, and Steven
Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597,
2023. 2, 7

[35] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-
Wei Chang, and Jianfeng Gao. Grounded language-
image pre-training. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022. 2

[36] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing
Song, Jue Wang, and Pengtao Xie. Not all patches are
what you need: Expediting vision transformers via to-
ken reorganizations. In International Conference on
Learning Representations, 2022. 2, 6

[37] Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO:
common objects in context. In ECCV (5), volume
8693 of Lecture Notes in Computer Science, pp. 740–
755. Springer, 2014. 2, 7

[38] Haotian Liu, Chunyuan Li, Qingyang Wu, and
Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023. 2, 7, 8

[39] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2021. 2, 6

[40] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph
Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 8

[41] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. Learn to explain: Multi-
modal reasoning via thought chains for science ques-
tion answering. In The 36th Conference on Neural
Information Processing Systems (NeurIPS), 2022. 2,
8

[42] Matthias Minderer, Alexey Gritsenko, Austin Stone,
Maxim Neumann, Dirk Weissenborn, Alexey Doso-
vitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa
Dehghani, Zhuoran Shen, et al. Simple open-
vocabulary object detection. In European Conference
on Computer Vision, 2022. 2

[43] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via

17719



teacher assistant. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 34, pp. 5191–
5198, 2020. 2

[44] OpenAI. Gpt-4 technical report, 2023. 2
[45] Maxime Oquab, Timothée Darcet, Théo Moutakanni,
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