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Figure 1. CLOVA is a general visual assistant that updates both LLMs and visual tools via inference, reflection, and learning in a closed-
loop framework. During inference, CLOVA uses LLMs to integrate visual tools to accomplish given tasks. In reflection, CLOVA identifies
tools that require updating based on human feedback. Finally, in learning, CLOVA collects data and updates the tools accordingly.

Abstract
Utilizing large language models (LLMs) to compose off-

the-shelf visual tools represents a promising avenue of re-
search for developing robust visual assistants capable of
addressing diverse visual tasks. However, these methods
often overlook the potential for continual learning, typi-
cally by freezing the utilized tools, thus limiting their adap-
tation to environments requiring new knowledge. To tackle
this challenge, we propose CLOVA, a Closed-LOop Visual
Assistant, which operates within a framework encompass-
ing inference, reflection, and learning phases. During the
inference phase, LLMs generate programs and execute cor-

� Corresponding author: Qing Li (dylan.liqing@gmail.com).

responding tools to complete assigned tasks. In the reflec-
tion phase, a multimodal global-local reflection scheme an-
alyzes human feedback to determine which tools require up-
dating. Lastly, the learning phase employs three flexible
approaches to automatically gather training data and in-
troduces a novel prompt tuning scheme to update the tools,
allowing CLOVA to efficiently acquire new knowledge. Ex-
perimental findings demonstrate that CLOVA surpasses ex-
isting tool-usage methods by 5% in visual question answer-
ing and multiple-image reasoning, by 10% in knowledge
tagging, and by 20% in image editing. These results under-
score the significance of the continual learning capability
in general visual assistants.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
The advancement of large language models (LLMs) [46,
67] alongside various visual tools (e.g., neural networks and
OpenCV functions) [6, 27, 44, 55, 56] offers feasible av-
enues for constructing general visual assistants. When con-
fronted with a task accompanied by language instructions,
a common approach involves harnessing LLMs to generate
programs, which are then executed using readily available
visual tools to solve the task as dictated by the generated
program [7, 10, 32, 40, 60, 65]. For instance, when posed
with the query ”What is the person to the left of the um-
brella doing?”, a viable solution entails LLMs sequentially
performing the following steps: (1) utilizing a detection tool
to locate the umbrella, (2) cropping the image region to the
left of the umbrella, (3) using the detection tool to locate the
person, and (4) finally querying a Visual Question Answer-
ing (VQA) tool with the question ”What is the person do-
ing?”. Being highly compositional, such tool-usage meth-
ods demonstrate impressive performance and appealing ex-
plainability in tackling complex reasoning tasks, including
VQA [11, 29, 30], mathematical reasoning [13, 14], and im-
age editing [38, 72, 77, 78].

However, the potential for continual learning has been
largely overlooked in existing tool-usage methods. Most of
them simply freeze the used tools, which limits their appli-
cability to environments where new knowledge is required,
as depicted in Fig. 1. For instance, a user might instruct a
visual assistant to label the face of the movie director Bong
Joon-ho in a photograph. However, if the face recognition
tool employed by the assistant fails to recognize Bong Joon-
ho, it may provide an incorrect response. In such scenar-
ios, it is expected that the assistant can learn this missing
information about Bong Joon-ho and generalize it to other
photographs. Thus, it is imperative to endow visual assis-
tants with the learning capability, enabling them to swiftly
acquire new knowledge from failures.

In this paper, we propose CLOVA, a Closed-LOop
Visual Assistant that updates used tools via closed-loop
learning [31, 33] to better adapt to new environments, as
illustrated in Figure 1. CLOVA consists of three phases: in-
ference, reflection, and learning. During inference, CLOVA
employs Large Language Models (LLMs) to generate pro-
grams and execute corresponding tools to accomplish the
task at hand. Subsequently, in the reflection phase, CLOVA
utilizes human feedback to provide critiques, identifying
tools that require updates. Finally, in the learning phase,
CLOVA autonomously collects data and updates tools ac-
cordingly. Thus, CLOVA facilitates autonomous tool up-
dating, thereby continually enhancing their ability to adapt
to diverse environments.

To establish such a closed-loop learning framework, we
must address three key challenges. Firstly, identifying tools
that require updates is difficult due to the multi-step nature

of generated programs and the diversity of errors within
them. Secondly, automatically collecting training data is
necessary as the knowledge to be learned is unpredictable.
Thirdly, efficiently updating tools presents another obstacle,
considering their scale and the quality of the collected data.
Visual tools typically involve large neural networks, mak-
ing them inefficient to update, and naive fine-tuning could
result in unacceptable catastrophic forgetting [42]. More-
over, the presence of noise within the collected data further
complicates the training process.

We propose several techniques to tackle these chal-
lenges. First, we introduce a multimodal global-local re-
flection scheme, which resorts to LLMs to identify tools
that need to be updated from both global and local aspects.
For the second challenge, three data collection manners are
employed, including inferring answers by LLMs, search-
ing on the Internet, and searching from open-vocabulary
datasets. Lastly, we develop a training-validation prompt
tuning scheme for the tools, which includes instance-wise
prompt tuning and a subsequent prompt validation stage,
where learned prompts that fail to predict the validation data
will be discarded. The learning phase also updates LLMs by
storing correct examples and incorrect examples with cri-
tiques as in-context examples, which will be used in future
inference. As a result, CLOVA efficiently updates tools in
challenging environments with noisy data, while avoiding
catastrophic forgetting.

We apply CLOVA to compositional VQA and multiple-
image reasoning tasks, using the GQA [19] and
NLVRv2 [64] datasets. Additionally, we manually collect
data for image editing and factual knowledge tagging tasks.
CLOVA outperforms existing tool-usage methods by 5% in
compositional VQA and multiple-image reasoning tasks, by
10% in knowledge tagging tasks, and by 20% in image edit-
ing tasks, showing the significance of the learning capability
for general visual assistants.

In summary, our contributions are three-fold:
• We build CLOVA, a visual assistant that updates its tools

within a closed-loop learning framework for better adap-
tation to new environments.

• We propose a multimodal global-local reflection scheme,
capable of identifying tools in need of updates.

• We employ three flexible manners to automatically col-
lect training data and introduce a novel training-validation
prompt tuning scheme to update tools efficiently while
avoiding catastrophic forgetting.

2. Related Work

2.1. General Visual Assistant

Benefiting from the advancements of LLMs [46, 67]
and visual tools [24, 44, 55, 56], visual assistants have
achieved great progresses. Some methods concatenate
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Method Visual Tool Reflection Update LLMs Update VTs
ART [48] ✗ ✗ Prompt -

TRICE [53] ✗ Global Instruction + RL -
ToolkenGPT [12] ✗ - ✗ -
Toolformer [58] ✗ - Fine-tune -
VISPROG [10] ✓ ✗ ✗ ✗

Visual ChatGPT [72] ✓ ✗ ✗ ✗
HuggingGPT [60] ✓ ✗ ✗ ✗

ViperGPT [65] ✓ ✗ ✗ ✗
GPT4TOOLs [77] ✓ ✗ Instruction ✗

OpenAGI [8] ✓ ✗ RL ✗
AssistGPT [7] ✓ Global Prompt ✗

CLOVA (Ours) ✓ Global+Local Prompt Prompt

Table 1. Comparisons with representative tool-usage methods,
where VTs means visual tools.

and train LLMs with visual tools in an end-to-end man-
ner, where representative work includes LLaVA [36], Ot-
ter [25], MMICL [80], Kosmos-2 [51], and Flamingo [1],
etc. In addition, some work extends the idea of tool
usage for AI assistants from natural language process-
ing [4, 12, 48, 53, 54, 58] to computer vision. By providing
in-context examples, VISPROG [10] and ViperGPT [65]
generate programs to use visual tools. Following this idea,
some work improves performance by collecting instruction-
following data [37, 50, 77], adding more tools [34, 60], and
designing more dedicated tool-usage procedures [15, 38–
40, 72, 73, 78]. The most related work to CLOVA is As-
sistGPT [7] and OpenAGI [8]. The two methods update
LLMs after development through in-context learning and
reinforcement learning, respectively. Different from them,
CLOVA can update both LLMs and visual tools via its re-
flection and learning phases. This allows CLOVA to bet-
ter adapt to new environments. In addition, the closed-loop
framework enables us to set a separate training stage for
tool-usage methods, going beyond zero-shot or few-shot vi-
sual assistants. Comparisons between CLOVA and some
representative tool-usage methods are shown in Tab. 1.

2.2. Reflection of LLMs

Reflection has become a remedy in case LLMs cannot gen-
erate good responses in a single attempt [5, 47, 49, 76]. Re-
flection methods send outputs back to LLMs to obtain cri-
tiques and further improve the outputs. These critiques take
the form of scores or natural language [43, 45, 62, 83]. To
generate better critiques, some methods employ instruction
tuning [57, 75] or reinforcement learning [3, 53]. Recently,
Huang et al. [17] revealed that LLMs struggle to provide ac-
curate critiques for complex tasks. One way to address this
issue is incorporating external information such as human-
desired results into LLMs [2, 74, 76]. Unlike existing meth-
ods that rely solely on feedback in the language modality,
our method generates reflection using all multimodal inter-
mediate results. In addition, our method incorporates both
global and local aspects for reflection, instead of only the
global aspect. These bring more effective critiques for com-
positional tasks.

Program

Results

Human Feedback
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Critique: which 
tools need to 
be updated

Instruction

Inference Reflection Learning

LLM

Image

CROP

VQA

LOC

REPLACE

Toolkit

…
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Figure 2. Framework of CLOVA.

2.3. Prompt-based Learning

Prompt-based learning is an efficient technique to update
neural networks, achieving impressive performance in both
NLP [21, 61] and computer vision [18, 59, 84, 85]. Prompt
engineering and prompt tuning are two kinds of commonly
used methods. Prompt engineering develops interpretable
tokens (e.g., texts and image regions) to guide model pre-
diction, which are usually obtained by manually design-
ing [55, 66], retrieval [79], and model generation [16, 52].
Prompt tuning learns vectors as prompts via gradient-based
optimization. VPT [20] and CoOp [82] learn prompts for
vision encoders and text encoders, respectively. To handle
diverse data, CoCoOp [81] learns to generate prompts for
unknown classes, ProDA [41] builds a Gaussian distribution
for prompts, and MaPLe [23] learns both text and visual
prompts. In addition, some methods employ prompts for
continual learning, which learn prompts for different classes
and produce adaptive prompts during inference. Represen-
tative methods include PIVOT [69], DualPrompt [70], and
L2P [71]. Different from existing methods, our training-
validation prompt tuning scheme discards harmful prompts,
leading to more stable learning processes when the quality
of training data is subpar.

3. Method
3.1. Overview

As shown in Fig. 2, CLOVA has three phases: inference,
reflection, and learning. In the inference phase, CLOVA
uses LLMs to generate programs and executes correspond-
ing tools to solve the task. The reflection phase introduces a
multimodal global-local reflection scheme that uses LLMs
to generate critiques, identifying which tool needs to be up-
dated. During learning, we employ three manners to col-
lect training data and use a training-validation prompt tun-
ing scheme to update the tools.

3.2. Inference

Our inference phase is based on VISPROG [10], while the
difference is that CLOVA first uses LLMs to generate plans
and then generates programs based on the plans, instead of
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Tool Type Tool Name Tool Description Data Collection

Tools
to be

updated

LOC Use the OWL-ViT model [44] for object localization Open-vocabulary datasest
VQA Use the BLIP model [27] for VQA LLM inference
SEG Use the maskformer model [6] for panoptic segmentation Open-vocabulary datasest

SELECT Use the CLIP model [55] to select the most relevant object, given a text description Internet
CLASSIFY Use the CLIP model [55] to classify given images Internet
REPLACE Use the stable diffusion inpainting model [56] to replace one object with another desirable object Internet

Tools
not to be
updated

FACEDET Use the DSFD model [26] for face detection N/A
LIST Use the text-davinci-002 model of OpenAI for knowledge retrieval N/A
EVAL Use the Python function eval() to process string expressions for answers N/A

RESULT Use the Python function dict() to output the intermediate and final results N/A
COUNT Use Python function len() to count the number of input bounding boxes or masks N/A
CROP Use Python function PIL.crop() to crop images N/A

COLORPOP Use Python function PIL.convert() to keep desirable objects in color and other regions gray N/A
BGBLUR Use Python function PIL.GaussianBlur() to blur the background N/A

EMOJI Use emojis in the Python packages AngLy(pypi) to hide someone’s face N/A

Table 2. Used tools in CLOVA, categorized based on whether the tool is updated in our method. Details of tool updates are in Sec. 3.4
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Figure 3. Illustration of the inference phase in CLOVA.

directly generating programs. Plans can be seen as inter-
mediate reasoning chains that benefit the inference and re-
flection phases. Given a task, CLOVA selects in-context ex-
amples from a demonstration pool D (the construction of D
will be detailed in Sec. 3.4.2), including correct examples
and incorrect examples with error critiques. These exam-
ples are used to create prompts that are then sent to LLMs
for plan and program generation. Finally, the program is
parsed to execute visual tools (see Fig. 3).
Plan generation. The demonstration pool D is composed
by D = {Dp,s,Dp,f ,Dc,s,Dc,f}, where Dp,s and Dp,f

contain correct and incorrect examples for plan generation
respectively, and Dc,s and Dc,f contain correct and incor-
rect examples for program generation respectively. Given
a task, we use the BERT model [22] to extract features of
the given instruction and examples stored in Dp,s and Dp,f .
Then, we combine similar examples in Dp,s and Dp,f with
the instruction to create a prompt. Finally, we send the
prompt to LLMs to generate the plan in a one-go manner.
Program generation. Similar to plan generation, we use
LLMs to generate programs in a one-go manner. We select
correct and incorrect examples of programs from Dc,s and
Dc,f . We combine these examples with the plan as a prompt
and then send the prompt to LLMs for program generation.
Tool execution. We utilize the interpreter module in [10] to
parse the program, extracting tool names, inputs, and out-
puts of each step. CLOVR activates tools from a toolkit

(1) The description of input image  …
(2) The coordinate of B is
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(4) The result of Ain Step3 is gray
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Prompt
1. Instruction
2. Human feedback
2. Plan of all steps
3. Program of all steps
4. Intermediate result of 
all steps

The error is caused by the 
program/LOC/VQA of step ..

Do not find the error in this step.

Prompt for reflection of Step1
1. Instruction
2. Steps have been checked (None)
3. Step now need to be checked
(plan, program, and results of Step1)

The error is in the 
program/LOC/VQA of this step

Result 
conversion

Global 
reflection

Local reflection

gary

B: I’:

A:

IMAGE:
[119,150,
210,298]

F_A: yes

Prompt for reflection of Step i
1. Instruction
2. Steps have been checked 
(plan, program, and results of Step1-Step(i-1))
3. Step now need to be checked
(plan, program, and results of Step i)

plan, program, and results of Step i

or

Intermediate results Intermediate results in the language modality

Learning 
phase 

to update 
the tool

The
updated 
tool still 

fail

plan, program, and results of Step1
yes

no end

end
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Figure 4. Illustration of the reflection phase in CLOVA.

T that contains 15 tools, including neural networks and
Python functions, as shown in Tab. 2.

3.3. Reflection

In the inference phase, if a task is not solved correctly, the
multimodal global-local reflection scheme uses LLMs to
generate critiques, identifying which tool needs to be up-
dated, as shown in Fig. 4.
Result conversion. Since LLMs often struggle to iden-
tify errors by themselves [17, 63, 68], we provide the hu-
man feedback, our wrong results, and intermediate results
of each step for LLMs to better identify the error source.
This requires us to convert visual results into textual form.
For this purpose, we use the BLIP [27] model to convert
images into languages by captioning.
Global reflection. CLOVA first uses global reflection to
generate critiques in a one-go manner. The prompts are
composed of task inputs, feedback on the task (e.g., desir-
able results in VQA tasks, or human comments in image
editing tasks), generated plans and programs, and interme-
diate results at each step. We send the prompts to LLMs to
generate critiques that are used to update tools in the learn-
ing phase.
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Local reflection. If CLOVA still fails after the tools are up-
dated via global reflection and the learning phase–meaning
the actual tools that lead to the faulty response are still to
be found, we resort to local reflection to analyze each step
of the program. Prompts are composed of the task inputs,
feedback on the task, the steps that have been checked, and
the current step that needs to be checked. Each step in-
cludes plans, programs, and intermediate results. We send
the prompts to LLMs to infer whether this step has errors
and the reasons. Local reflection continues until an error
location and reasons are identified for a step.

3.4. Learning

3.4.1 Updating tools with prompt tuning

After identifying tools that need to be updated from the re-
flection phase, CLOVA then moves to the learning phase
to collect training data and goes through training-validation
prompt tuning to update the tools, as shown in Fig. 5.
Data collection. Since the tools that need to be updated can
be rather different (a full list can be found in Tab. 2), we ex-
plore three manners to collect data online. (1) We use LLMs
to generate training data for the VQA tool. If reflection con-
cludes that the VQA tool makes errors, we combine the de-
sirable response of the whole task and intermediate results
of each step to prompt LLMs into inferring the correct out-
put of the VQA tool. The question and the inferred output
are then used to update the VQA tool. (2) We gather training
data from open-vocabulary visual object grounding datasets
(e.g., LVIS [9]) for the LOC and SEG tools. For example, if
the reflection phase indicates that LOC does not work well
for the visual concept “horse”, CLOVA will select images
and bounding boxes of horses from LVIS to update LOC.
(3) We collect data by searching on the Internet for the SE-
LECT, CLASSIFY, and REPLACE tools. For instance, If
CLASSIFY is marked as unable to recognize “horse” dur-
ing the reflection phase, CLOVA will search the Internet for
images of horses to update CLASSIFY.
Prompt tuning and validation. Given the collected data,
we invoke training-validation prompt tuning to update tools.
Note that, instead of learning a single prompt for all col-
lected data, we choose to learn a prompt for each training
instance collected. Each learned prompt will then be vali-
dated by running the tool with it on validation data (held out
from collected data except for the VQA tool, where VQA
will be validated on the original visual question it failed
on) and seeing if the tool can produce desirable responses
(e.g. correctly localizing a horse for the LOC tool). As
a result, we discard prompts that do not lead to the desir-
able responses, possibly due to the faulty training instances
they were trained on, alleviating the issue of noisy collected
data. Finally, we build a prompt pool P for each tool. Take
the LOC tool as an example. After training and valida-
tion, CLOVA stores the visual concept (e.g., “horse” in the
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Figure 5. Illustration of the learning phase in CLOVA.

task of localizing horses) with its learned prompts and vi-
sual features of all collected instances in P , formulated as
P =

{
vj :

[
[fj1, · · · , fjn], [pj1, · · · , pjn]

]}m

j=1
, where vj

is the name of the j-the concept (e.g., “horse”), m concepts
are stored totally. For the concept vj , fji and pji are the
feature and learned prompt using the i-th instance, respec-
tively, and n instances are learned for vj .

In summary, a tool is formulated as Tθ,P , where θ is the
parameter of neural networks. The forward process of a
sample x is Tθ,P(x) = θ([x,P]), where we concatenate x
with a retrieved prompt from P as the input for the tool. We
update the tool Tθ,P by tuning P while θ being fixed,

min
P

E(x,y)L
(
Tθ,P(x), y

)
,

where (x, y) is collected data, L is the loss function of Tθ,P .
Prompt ensemble. During inference, we use prompt en-
semble to retrieve and utilize prompts from the learned
prompt pool P . Specifically, given a generated program,
we first identify the visual concept for each involved tool
in the program. For example, given an image editing task,
“Replace the dog with a cat” where the SEG, SELECT, and
REPLACE tools will be used, “dog” is the visual concept
for the SEG and SELECT tools, and “cat” is the visual con-
cept for the REPLACE tool. Then, in each step of tool usage
with an input image x, if the visual concept is not in P of
the corresponding tool, the prompt p′ for x will be set as
a zero-vector, i.e. the concept has not been learned for the
tool so we just use the original tool (using zero-vector as a
prompt); if the visual concept can be found in P , i.e. the
tool was updated with the visual concept before, we aggre-
gate the prompts corresponding to this concept based on the
similarity between features stored with these prompts and
the feature extracted from the current input x: p′ is com-
puted by p′ =

∑n
i=1 wi·pji∑n

i=1 wi
, where we compute the cosine

similarity between feature fx of x and features fji in P as
the weight wi.
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3.4.2 Updating LLMs with demonstrations

Besides the visual tools, CLOVA can also update its LLMs.
As we mentioned above, CLOVA utilizes a demonstration
pool D to provide relevant examples for the LLMs. After
working on new data, the plan, program, and reflection will
be stored in D as correct or incorrect examples, based on
whether the data is correctly proceeded. We also have a
validation process that uses the original instruction as vali-
dation data to evaluate stored in-context examples. As the
size of D grows, LLMs use more examples and therefore
strengthen reasoning skills.

4. Experiments
4.1. Setting

Following VISPROG [10], we evaluate our method on
four tasks: compositional VQA, multiple-image reasoning,
language-guided image editing, and factual knowledge tag-
ging, which requires visual perception, compositional rea-
soning, and image generation and manipulation abilities.

To comprehensively evaluate the learning capability of
CLOVA, we set a separate training stage before deployment,
which iteratively learns new knowledge via inference, re-
flection, and updating phases. In the test stage (i.e., after
development), we do not update LLMs and visual tools, and
evaluate the performance only via the inference phase.

In the compositional VQA task, the GQA dataset [19] is
used. We randomly select 500 samples from its train split as
the training data, and 500 samples from its test-dev split as
the test data. We report the top-1 accuracy. In the multiple-
image reasoning task, we use the NLVRv2 dataset [64] that
provides two images and a statement. We need to judge
whether the statement is true or false. Similarly, we ran-
domly select 500 samples from its train split as our training
data, and 500 samples from its dev split as our test data.

Similar to VISPROG, we manually collect data for the
language-guided image editing and factual knowledge tag-
ging tasks. To better evaluate the learning capability, we
collect fine-grained visual concepts that visual tools may
not have learned, such as “Replace the lion in the image
with pine grosbeak”, where pine grosbeak is a fine-grained
bird of Passeriformes. In the image editing task, we collect
129 images with 193 instructions, where 27 images with 78
instructions are used for training, and the rest are test data.
We manually check whether edited images are semantically
correct. The factual knowledge tagging task needs to iden-
tify persons or objects with bounding boxes in images. We
collect 86 images with 177 instructions for this task, where
10 images with 88 instructions are used for training and the
rest are used as the test data. We report the F1 score for this
task.

In plan and program generation, prompts contain 4 cor-
rect examples and 4 incorrect examples. The demonstration

Method GQA NLVRv2 Editing Tagging

E2E
Otter [25] 48.2 48.2 - -

MMICL [80] 64.4 62.2 - -

Tool

GPT4TOOLs [72] 41.2 45.4 17.8
Visual ChatGPT [72] 43.2 51.6 21.7 -

InternGPT [38] 44.8 39.4 - -
HuggingGPT [60] 46.0 44.0 - -

ViperGPT [65] 47.2 - - -
VISPROG [10] 49.8 60.8 40.2 0.393
CLOVA (Ours) 54.6 65.6 65.4 0.502

Table 3. Comparisons in the four tasks. We report accuracies
on GQA, NLVRv2, and image editing tasks, and F1 score on the
knowledge tagging task. ‘E2E’ means end-to-end methods.

pool D is initialized having about 20 in-context examples.

4.2. Main Results

We compare CLOVA with tool-usage methods: VIS-
PROG [10], GPT4TOOLs [77], Visual ChatGPT [72], In-
ternGPT [38], HuggingGPT [60], and ViperGPT [65]. We
use their official codes, where all methods use the GPT-3.5
model. In addition, we also compare CLOVA with two ad-
vanced end-to-end models: Otter [25] and MMICL [80],
which do well in GQA and NLVRv2 datasets. Results
on the four tasks are shown in Tab. 3. We observe that
CLOVA achieves the best performance among tool-usage
methods. CLOVA has at least 4.8% improvements on
the GQA dataset and 4.9% improvements on the NLVRv2
dataset. The reason is that CLOVA learns how to generate
programs for the two tasks and update the VQA and LOC
tools for better image perception. CLOVA performs com-
petitively and even outperforms Otter and MMICL.

On image editing and knowledge tagging tasks, we do
not compare our method with InterGPT, HuggingGPT, and
ViperGPT, since they either need object masks or cannot
accurately locate objects. In addition, most methods cannot
finish the tagging task. Thus, we compare our method with
VISPROG and Visual ChatGPT. As we collect find-grained
data, it is challenging for off-the-shelf classification, seg-
mentation, and image generation tools. Since GPT4TOOLs
and Visual ChatGPT cannot use OpenCV functions and do
not have the learning capability, they get bad performance
on the image editing task. VISPROG can use OpenCV
functions, but it cannot learn new knowledge. Its main
fault is the inability to recognize or generate fine-grained
concepts. Compared with them, the learning capability of
CLOVA brings more than 20% and 10% improvements to
image editing and knowledge tagging tasks, respectively.

4.3. Qualitative Results

In Fig. 6, we visualize four cases to illustrate the reflection
and learning capability in CLOVA. It identifies tools that
need to be updated, no matter LLMs or visual tools. Prompt
engineering guides LLMs to generate correct programs for
similar instructions. Visual tools learn new concepts via our
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W/o updating the REPLACE tool 

Instruction: Replace the lion with pine grosbeak
Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query=lion',category=None)
Step3: IMAGE0=REPLACE(image=IMAGE,object=OBJ1,prompt='pine grosbeak')

Evaluate the updated REPLACE tool in a new image editing task

W/ updating the REPLACE tool 

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result

Instruction: Replace the bird with pine grosbeak (a kind of Passeriformes)
Human feedback : The pine grosbeak in the new generated image is wrong

Generated program: 
Step1: OBJ0=SEG(image=IMAGE) 
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='bird',category=None) 
Step3: IMAGE0=REPLACE(image=IMAGE,object=OBJ1,prompt='pine grosbeak') 
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Intermediate results:
Step1: The coordinate of OBJ0: [[0, 0, 639, 399], [294, 358, 639, 399], [252, 62, 
449, 395]] 
Step2: The coordinate of OBJ1: [[252, 62, 449, 395]] 
Step3: The description of IMAGE0: a photography of a spiky plant on a rock in 
the woods
Step4: The description of FINAL_RESULT: a photography of a spiky plant on a 
rock in the woods

Critique:
Error Location: functions called by programs. Reason: In the Step3 of the 
program, the used function 'REPLACE' failed to generate a pine grosbeak to 
replace the bird. 'REPLACE’ function need to be updated.

Input image

Step1 SEG result

Step2 SELECT result

Step3 REPLACE result

REPLACE

Prompt tuning for 
the Replace tool

Search data from the Internet

Reflection for the REPLACE tool in an image editing task Update the REPLACE tool

Instruction: What color is the glove? 

W/o updating the LOC tool 

Generated program:
Step1: BOX0=LOC(image=IMAGE,object=‘glove’)
Step2: IMAGE0=CROP(image=IMAGE,box=BOX0)
Step3: ANSWER0=VQA(image=IMAGE0,question='What color is the glove?’)
Step4: FINAL_RESULT=RESULT(var=ANSWER0)

W/ updating the LOC tool 

Input image Step1: LOC result Step2: CROP result Step3: VQA result

None

Prediction: white

Prediction: brown

Input image Step1: LOC result Step2: CROP result Step3: VQA result

Evaluate the updated LOC tool in a new VQA taskReflection for the LOC tool in a VQA task

Instruction: What color is in the glove?
Our wrong answer: white
Human feedback : The answer should be brown

Critique:
Error Location: functions called by programs. Reason: In Step1 of the program, the used function 
'LOC' failed to locate the glove in the given image, as the obtained result of BOX0 is empty. As a result, 
in Step2, the program cropped the entire image instead of the image region of the glove. This led to the 
wrong answer in Step3, where the program asked the color of the entire image instead of the glove. 

Input image

Step1 LOC result

Step2 CROP result

None

Step3 VQA result
white

Generated program:
Step1: BOX0=LOC(image=IMAGE,object='glove')
Step2: IMAGE0=CROP(image=IMAGE,box=BOX0)
Step3: ANSWER0=VQA(image=IMAGE0,question='What color is in the glove?')
Step4: FINAL_RESULT=RESULT(var=ANSWER0)

Intermediate results:
Step1: Result of BOX0 is empty 
Step2: The description of IMAGE0: a photography of a baseball player is 
getting ready to swing at a pitch
Step3: Result of ANSWER0: brown
Step4: Result of FINAL_RESULT: brown

Update the LOC tool

Prompt tuning for 
the LOC tool

Search data from the LVIS dataset

LOC

W/o updating the CLASSIFY tool 

Instruction: Tag the attorney general of the supreme prosecutor’s office of South Korea in 2020
Generated program:
Step1: OBJ0=FACEDET(image=IMAGE)
Step2: LIST0=LIST(query='the Attorney General of the Supreme Prosecutor’s Office of 
the Republic of South Korea in 2021',max=1)
Step3: OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories=LIST0)
Step4: IMAGE0=TAG(image=IMAGE,object=OBJ1)

W/ updating the CLASSIFY tool 

Input image

Input image Step3: CLASSIFY
result

Evaluate the updated CLASSIFY tool in a new knowledge tagging task

Step2: FACEDET result Step4: TAG result

Instruction: Tag the face of Yoon Seok-youl
Human feedback: It tags the wrong face, it is on the face of another 
person, instead of Yoon Seok-youl.

Reflection for the CLASSIFY tool in a knowledge tagging task 

Generated program:
Step1: OBJ0=FACEDET(image=IMAGE)
Step2: OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories='Yoon Seok-
youl')
Step3: IMAGE0=TAG(image=IMAGE,object=OBJ1)
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Intermediate results:
Step1: The coordinate of OBJ0: [[415, 45, 514, 180], [128, 19, 237, 160]]
Step2: The coordinate of OBJ1: [[415, 45, 514, 180]]
Step3: The description of IMAGE0: a photography of two men shaking 
hands in front of two flags

Critique:
Error: functions called by programs. Reason: In Step2 of the program, 
the function ‘CLASSIFY' failed to recognize the face of Yoon Seok-youl
correctly. ‘CLASSIFY’ function need to be updated.

Input 
image

Step1
FACEDET 

result

Step2
CLASSIFY 

result

Step3
EMOJI 
result

CLASSIFY

Prompt tuning for 
the CLASSIFY tool

Search data from the Internet

Update the CLASSIFY tool

Yoon Seok-youl Yoon Seok-youl

Yoon Seok-youl

Step1: LIST 
result

Yoon-Seok-youl

Step1: LIST 
result

Yoon-Seok-youl

Step3: CLASSIFY
result

Step2: FACEDET result Step4: TAG result

Evaluate the updated LLMs in a multiple-image reasoning task

Instruction: There are exactly nine binders 
in the pair of images.
Desirable answer: true

Generated program :
Step1: ANSWER0=VQA(image=LEFT,question='How many 
binders are in the image?')
Step2: ANSWER1=VQA(image=RIGHT,question='How many 
binders are in the image?')
Step3: ANSWER2=EVAL(expr='{ANSWER0} + {ANSWER1} == 9')
Step4: FINAL_ANSWER=RESULT(var=ANSWER2)

Generated program:
Step1: ANSWER0=VQA(image=LEFT,question='How many 
binders are in the image?')
Step2: ANSWER1=VQA(image=RIGHT,question='How many 
binders are in the image?')
Step3: ANSWER2=EVAL(expr='{ANSWER0} == 9 and 
{ANSWER1} == 9')
Step4: FINAL_ANSWER=RESULT(var=ANSWER2)

Intermediate result:
Step1: ANSWER0: 5
Step2: ANSWER0: 4
Step3: ANSWER0: false
Step4: FINAL_ANSWER : false

W/o updating LLMs 

W/ updating LLMs 

LOC result

Reflection for LLMs in a multiple-image reasoning task

Instruction: There are 3 dogs in cars.
Our wrong answer: false
Human feedback : The answer should be true

Critique:
Error Location: Plan and Program. Reason: The error is in Step3 of the 
program. The program is checking if the number of dogs in both images 
is equal to 3, but the statement states that there are 3 dogs in cars, not 
necessarily in both images combined. The correct expression should be 
'{ANSWER0} + {ANSWER1} == 3' instead of '{ANSWER0} == 3 and 
{ANSWER1} == 3'", 

Generated program:
Step1: ANSWER0=VQA(image=LEFT,question='How many dogs are in the image?')
Step2: ANSWER1=VQA(image=RIGHT,question='How many dogs are in the image?')
Step3: ANSWER2=EVAL(expr='{ANSWER0} == 3 and {ANSWER1} == 3')
Step4: ANSWER3=VQA(image=LEFT,question='How many cars are in the image?')
Step5: ANSWER4=VQA(image=RIGHT,question='How many cars are in the image?')
Step6: ANSWER5=EVAL(expr='{ANSWER3} >= 1 and {ANSWER4} >= 1')
Step7: ANSWER6=EVAL(expr='{ANSWER2} and {ANSWER5}')
Step8: FINAL_ANSWER=RESULT(var=ANSWER6)

Instruction: There are 3 dogs in cars.
Our wrong answer: false
Human feedback : The answer 
should be true
Generated program: …
Critique:
Error Location: Plan and Program. 
Reason: The error is in Step3 of the 
program. The program checks if the 
number of dogs in both images is 
equal to 3, but the statement states 
that there are 3 dogs in cars totally. 
The error is in Step3 of the program. 
The correct expression should be…

Saved as in-
context examples 
to update LLMs

LLMs

Update LLMs

Intermediate result:
Step1: ANSWER0: 5
Step2: ANSWER0: 4
Step3: ANSWER0: ture
Step4: FINAL_ANSWER : true

ANSWER0=2

ANSWER2=False

ANSWER4=1

ANSWER6=False

ANSWER1=1

ANSWER3=1

ANSWER5=True

FINAL_ANSWER=
False

Figure 6. Case study of CLOVA on four example tasks.

data collection and prompt turning schemes. In Fig. 7, we
visualize an example of global and local reflection. When
the instruction is complex, the global reflection does not ac-
curately identify which step has the error. Using global re-
flection as in-context examples still cannot generate correct
programs. In contrast, local reflection successfully identi-
fies the error step, and using local reflection generates cor-
rect programs, showing the effectiveness of local reflection.

4.4. Ablation Studies

We conduct ablation studies on the reflection and learning
phases, using the GQA and NLVRv2 datasets. For reflec-
tion, we evaluate only using global reflection, only using
local reflection, not using multimodal intermediate results,
and not generating plans. We separately evaluate learn-
ing schemes for LLMs and visual tools. We evaluate only
storing correct examples or incorrect examples for updating
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Reflection for the LLMS in a VQA task Instruction: What do you think is the item of furniture that the lamp 
made of glass is sitting on?
Our wrong answer: dresser
Human feedback: The answer should be shelf

Generated program:
Step1: BOX0=LOC(image=IMAGE,object='lamp made of glass')
Step2: IMAGE0=CROP(image=IMAGE,box=BOX0)
Step3: ANSWER0=VQA(image=IMAGE0,question='What item of 
furniture is the lamp made of glass sitting on?')
Step4: FINAL_RESULT=RESULT(var=ANSWER0)

intermediate result
Step1: The coordinate of BOX0: [[311, 22, 388, 104]]
Step2: The description of IMAGE0: a photography of a vase with 
flowers on a shelf in a room
Step3: ANSWER0: dresser
Step4: FINAL_RESULT: dresser

dresser

Error Location: Program. Reason: In Step1-Step3, the program should identify the
item of furniture that the lamp made of glass is sitting on, instead of locating the lamp
made of glass and asking questions. LLMs need to be updated.

Critique of global reflection:

Error Location: Program. Reason: Step2 is not appropriate. The original question is
about the item of furniture that the lamp made of glass is sitting on, while Step2 crops
the region of lamp made of glass from the given image. LLMs need to be updated.

Critique of local reflection:

Input image

Step1 LOC result

Step2 CROP result

Step3: VQA result

Step1: BOX0=LOC(image=IMAGE,object='lamp made of glass')
Step2: IMAGE0=CROP_BELOW(image=IMAGE,box=BOX0)
Step3: ANSWER0=VQA(image=IMAGE0,question='What is the furniture?’)
Step4: FINAL_RESULT=RESULT(var=ANSWER0)

Step1: BOX0=LOC(image=IMAGE,object='item of furniture')
Step2: IMAGE0=CROP(image=IMAGE,box=BOX0)
Step3: BOX1=LOC(image=IMAGE0,object='lamp made of glass')
Step4: ANSWER0=COUNT(box=BOX1)
Step5: ANSWER1=EVAL(expr="'yes' if {ANSWER0} > 0 else 'no'")
Step6: FINAL_RESULT=RESULT(var=ANSWER1)

Re-generated program based on global reflection:

Re-generated program based on local reflection:

Figure 7. Visualization of the global reflection and local reflection in a VQA task.

Method GQA NLVRv2

Reflection

w/o local reflection 52.0 65.2
w/o global reflection 53.6 64.2

w/o intermediate results 48.8 61.2
w/o plan 50.0 62.6

Ours 54.6 65.6

Prompt Engineering
for LLMs

w/o incorrect cases 46.1 61.4
w/o correct cases 48.2 63.2

w/o validation 44.2 61.0
Ours 54.6 65.6

Prompt Tuning
for visual tools

w/o validation 42.8 62.8
Ours 54.6 65.6

Table 4. Ablation on the GQA and NLVRv2 dataset.

Dataset Method LLaMA2-7B GPT-3.5 GPT-4

GQA
Baseline 39.2 46.4 52.6

+ Update LLMs 56.8 51.6 56.6
+ Update visual tools 60.2 54.6 60.4

NLVRv2
Baseline 50.0 60.2 64.8

+ Update LLMs 59.2 63.6 68.8
+ Update visual tools 63.8 65.6 69.2

Table 5. Different LLMs on the GQA and NLVRv2 datasets.

LLMs. We also evaluate removing the validation process in
prompt engineering and prompt tuning processes. Results
are shown in Tab. 4. We find that these components are
necessary for CLOVA to achieve better performance.

We evaluate CLOVA using different LLMs: LLaMA2-
7B, GPT-3.5-turbo, and GPT-4. Results on GQA and
NLVRv2 are shown in Tab. 5. We find that CLOVA leads
to improvements in both strong LLMs (GPT-4) and weaker
LLMs (GPT-3.5 and LLaMA2-7). We observe that CLOVA
even achieves higher improvements on open-source LLMs
(i.e., LLaMA2-7B), 21% on the GQA dataset and 13.8% on
the NLVRv2 dataset, bringing the significance of studying
the learning capability of visual assistants. We further con-
duct experiments to evaluate CLOVA on two open-source
LLMs: LLaMA2-7B and Mistral-7B. Results are shown
in Tab. 6. We observe that CLOVA achieves significant im-
provements again.

5. Conclusion and Future Work

In this paper, we have presented CLOVA, a general visual
assistant that can adapt to new environments via inference,

Method GQA NLVRv2 Editing Tagging
LLama2-7B 39.2 50.0 31.2 0.308

LLama2-7B + Ours 60.2 63.8 47.6 0.357
Mistral-7B 20.4 34.6 29.0 0.205

Mistral-7B + Ours 31.4 42.2 46.5 0.303

Table 6. Results on two open-source LLMs.

reflection, and learning in a closed-loop framework. In the
inference phase, using both correct and incorrect examples
for prompts benefits to generate better plans and programs.
Our reflection scheme is capable of identifying tools that
need to be updated. Through three data collection man-
ners and the validation-learning prompt tuning scheme in
the learning phase, CLOVA can efficiently improve its tools.
Experimental results on four tasks and different LLMs show
the effectiveness of CLOVA as a general visual assistant
with learning abilities.

In the current method, we assume there is no selection or
loop structure in programs, and assume there is at most one
tool that needs updates in a task. The two assumptions can-
not always hold in the real world. We could add selection
and loop in-context examples for program generation and
iterate the reflection and learning phases to update multiple
tools. Besides, we could make some deployment designs to
save the response time in our loop, including a foreground
process and a background process. The former performs in-
ference and gathers human feedback, while the latter does
reflection, updates tools, and periodically synchronizes the
weights of tools.

The framework of CLOVA can be easily generalized to
new tools. (1) We will try multimodal LLMs (e.g., LLaVA-
1.5 [35]) to replace LLMs. In this case, we will evaluate
the effectiveness of visual information for plan and program
generation, reflection, and answer inference. (2) We can add
more up-to-date tools (e.g., BLIP2 [28] as a VQA tool and
SAM [24] as an SEG tool), by just designing and program-
ming their forward and prompt tuning processes.
Acknowledgements. We thank the anonymous review-
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