
Device-Wise Federated Network Pruning

Shangqian Gao∗1, Junyi Li∗2, Zeyu Zhang∗3, Yanfu Zhang4, Weidong Cai5, Heng Huang2†

1 Electrical and Computer Engineering, University of Pittsburgh,
2 Computer Science, University of Maryland College Park,

3 Information, University of Arizona, 4 Computer Science, College of William and Mary,
5 School of Computer Science, University of Sydney

Abstract

Neural network pruning, particularly channel pruning,
is a widely used technique for compressing deep learning
models to enable their deployment on edge devices with
limited resources. Typically, redundant weights or struc-
tures are removed to achieve the target resource budget.
Although data-driven pruning approaches have proven to be
more effective, they cannot be directly applied to federated
learning (FL), which has emerged as a popular technique
in edge computing applications, because of distributed and
confidential datasets. In response to this challenge, we de-
sign a new network pruning method for FL. We propose
device-wise sub-networks for each device, assuming that the
data distribution is similar within each device. These sub-
networks are generated through sub-network embeddings
and a hypernetwork. To further minimize memory usage and
communication costs, we permanently prune the full model
to remove weights that are not useful for all devices. During
the FL process, we simultaneously train the device-wise sub-
networks and the base sub-network to facilitate the pruning
process. We then finetune the pruned model with device-wise
sub-networks to regain performance. Moreover, we provided
the theoretical guarantee of convergence for our method.
Our method achieves better performance and resource trade-
off than other well-established network pruning baselines, as
demonstrated through extensive experiments on CIFAR-10,
CIFAR-100, and TinyImageNet.

1. Introduction

Machine learning algorithms often rely on large amounts of
data, but privacy restrictions can prevent data from being
easily shared across different organizations. For instance,
hospitals may have isolated data that are limited in size

†This work was partially supported by NSF IIS 2347592, 2347604,
2348159, 2348169, DBI 2405416, CCF 2348306, CNS 2347617.

*These authors contributed equally to this work.

and cannot be used to train a high-quality model with good
predictive accuracy. Collaboration between organizations to
train a machine learning model on their combined data can
lead to better results, but sharing data is often not possible
due to privacy policies and regulations [1]. This problem of
‘data islands’ is not limited to hospitals and can be found in
other areas such as finance, government, and supply chains.
Federated learning [42, 49, 74] has emerged as a popular
research topic in the machine learning and computer vision
communities as a solution to these issues.

Convolution Neural Networks (CNNs) have achieved re-
markable success in various computer vision tasks[35, 56,
61], but to address real-world challenges, recent CNNs have
become wider and deeper, leading to improved performance
on various benchmarks. However, this increased capacity
comes at the cost of higher computational and storage re-
quirements, which prohibit CNNs from being deployed on
edge devices. Consequently, numerous efforts [17, 55] have
been made to reduce the size of CNNs to enable their deploy-
ment on mobile and embedded devices. Among different
directions, weight pruning [18] and structural pruning [38]
are two major ways to reduce the model size. Network
pruning methods have achieved promising results. However,
most existing methods do not consider heterogeneous (non-
iid) local data distributions. Instead, they upload local data
to the server to train and prune the model based on the whole
dataset.

There are several existing works [21, 27, 37, 52, 60]
on network pruning under non-iid local data distribu-
tions. These methods mainly focus on weight pruning.
SCBFwP [60] tries to perform channel pruning under non-iid
data distributions, but they mostly rely on channel norms as
the importance score, and they did not show how to scale
their method to larger CNNs. Our method is designed to
perform channel pruning given a certain computational bud-
get (measured in FLOPs) on each device. Because, unlike
weight pruning, channel pruning can achieve acceleration
and compression without any post-processing steps.

Previous research [22, 76] show that data-driven pruning

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12342



approaches often perform much better than using a fixed
criterion (like channel norm [38]). Inspired by this result,
we propose to discover the proper sub-network following
the guidance of local data distributions. Specifically, we
divide the learning of sub-networks into two parts. In the
first part, we design a server-side sub-network, which is
used to serve as a base model for device-wise sub-network.
Ideally, weights that are not useful for any device will be re-
moved from the server-side sub-network. In the second part,
device-side sub-networks will be adaptively generated for
each device. The device-side sub-network will be pruned to
meet the specific resource requirement for each device. Both
the server-side sub-network and device-side sub-networks
are generated by mapping the device id(s) into the network
embedding space. The embedding for each sub-network will
then be fed into a hypernetwork [16] to generate the corre-
sponding structure. The hypernetwork and the embedding
are trained together through gradient-based optimization
algorithms in a federated fashion. To control the commu-
nication costs brought by training the hypernetwork, we
set the fraction of update steps for the hypernetwork to be
small. So that the overhead of training these sub-networks
is not large. In addition, to improve the training efficiency
given the limited update budget, we perform iterative train-
ing of model weights and the hypernetwork, which makes
the hypernetwork adapt to changes in model weights. The
training process of our method may pose challenges to the
convergence of the model. We show that our method can be
converted into a bi-level optimization problem under the FL
setting. We further provide the theoretical convergence guar-
antee showing that our method can converge to a stationary
point. The contribution of this work can be summarized as
follows:
• We proposed a novel channel pruning method for feder-

ated learning. A server-side network and device-wise sub-
networks are learned to achieve a better trade-off between
the performance and the computational resource.

• We proposed to use an embedding layer and a hypernet-
work to generate sub-networks on each device. As a result,
no sub-network structure needs to be stored for each de-
vice.

• We provided the theoretical guarantee of convergence for
our method for federated learning by reformulating our
method as a bi-level optimization problem.

• Extensive experiments on CIFAR-10, CIFAR-100, and
TinyImageNet show the effectiveness of our method
across different models like ResNet-56, ResNet-18/34,
and MobileNet-V2.

2. Related Works
Federated Learning. Federated learning (FL) is a new kind
of distributed learning approach that involves a server coor-
dinating a group of clients/devices to learn a model. In FL,

at each epoch, devices retrieve the model from the server,
train the model locally for several steps, and then upload
the updated model back to the server. The server aggregates
the updates from devices to update the global model. FL
presents several challenges that need to be addressed for
effective implementation. Firstly, devices in FL often have
different data distributions. Various methods are proposed
to solve the data heterogeneity [20, 29, 43, 44, 51, 58, 82].
Second, the communication between devices and the server
is expensive and is a critical bottleneck in FL training. Com-
pression techniques are applied in FL to reduce the com-
munication [24, 30, 45, 57, 64, 68], Finally, although in FL,
the server does not have access to the user data, model in-
version attack [15] is shown to recover the user information
based on the model updates. Cryptography techniques are
applied to improve the privacy of FL, such as homomorphic
encryption [39, 53], differential privacy [49] and multiparty
secure computation [66] etc.. In addition to the challenges
discussed, there are several other challenges in FL, such as
fairness and model interpretability, a more comprehensive
review of FL can be found in [28, 42].

Network Pruning. (1) Regular Setting. Most network
pruning methods assume they can easily access all samples
without restrictions. Early works [18, 38] simply use L1

or L2 norm to measure the importance of weights or struc-
tures. Calculating norms does not require samples, and it
can be seamlessly extended to the FL setting. However, the
performance of these methods is often worse than meth-
ods [11, 22, 76] that require samples for pruning. One
direction of data-driven pruning methods relies on batch
normalization (BN) [23] layers since BN is popular for the
design of recent CNNs [19, 59]. These methods utilize the
scaling factor of BN to indicate which channels are impor-
tant. Liu et al. [46] use sparse regularization on the scaling
factors of BN to prune channels, where a channel is pruned
if its corresponding scaling factor is small. Pruning methods
that involve BN are effective. However, BN layers can pose
challenges in the FL setting due to the varying data distribu-
tion across devices, leading to significant differences in BN
layers’ running mean and variance. Another research direc-
tion frames channel pruning as a constrained optimization
problem [8–14, 32, 76]. In this direction, learnable parame-
ters are utilized to control each channel, and these parameters
are end-to-end differentiable, allowing for gradient-based
optimization methods. Since these methods do not rely on
BN layers, they can potentially be extended to the FL setting.
Alongside advancements in vision, Natural Language Pro-
cessing (NLP) has significantly progressed, demonstrated by
key studies [62, 72, 77–81]. Concurrently, structure pruning
has emerged as a method to improve the efficiency of large
language models, as shown in recent research [67].

(2) Non-iid Setting. Without specialized treatment, regu-
lar pruning methods can impose strong biases in pruned mod-

12343



Embedding

Hypernetwork

...
...

...
...

Server-side 
sub-network

...

Device-side 
sub-networks

Feature 
maps 𝓕𝒍

First 
layer

Last 
layer

Original model

Apply 𝒂𝟎

Pruning for the server-side sub-network

Apply 𝒂𝒏

Device-side 
pruning

nth 
device

n+1th
device

D
e

vice
 lo

ss 
Fu

n
ctio

n
D

e
vice

 lo
ss 

Fu
n

ctio
nKept Channel

Server-side Pruning
Device-side Pruning

Figure 1. An overview of our proposed method. We first generate network embeddings for server-side and device-side sub-networks
given their ids. We then use them as the inputs to the hypernetwork to produce the corresponding sub-networks. We then optimize the
hypernetwork given loss functions on each device.

els because of heterogeneous (non-iid) local data distribu-
tions. Shao et al. [60] employs local training with a full-size
model to discard unimportant channels (measured in channel
norms) on devices. FedPrune [52] guides pruning based
on updated activations. LotteryFL [37] iteratively prunes
a full-size model on devices. PruneFL [27] reduces local
computational costs by finer pruning a coarse-pruned model.
ZeroFL [54] partitions weights into active and non-active
weights and stores sparsified weights and activations for
backward propagation, and it also needs to store non-active
weights and dense gradients. Bibikar et al. [3] employs mask
adjustment on devices and sparse aggregation and magnitude
pruning on the server to generate a new global model. The
FedTiny [21] approach incorporates an adaptive batch nor-
malization (BN) selection module, which adaptively obtains
an initially pruned model that can better fit deployment sce-
narios. Most aforementioned methods focus on weight-level
pruning/sparsity, often requiring high communication costs
to compute importance scores for all parameters. On the
other hand, our method learns the channel configuration of
each layer, which is less resource-demanding.

Federated Bilevel Optimization. Our channel pruning
can be viewed as a federated bilevel optimization problem
(FedBiO). The general FedBiO problem has been studied in
the literature [65, 71, 75]. FedNest [65] studied the general
nested federated problems with FedBiO being a special case,
and it utilized variance reduction to tackle the heterogeneity
of lower level problems; simFBO [71] and FedBiOAcc [41]
adapts the single loop bilevel optimization problems to the
federated learning setting. Some applications in FL can
be viewed as bilevel optimization problems, such as noisy
labels [40] and communication-efficient FL [41].

3. Method

3.1. Notations
We will first introduce our notations before formally de-
scribing our method. In a convolutional neural network
(CNN), the feature map of the lth layer is denoted by
Fl ∈ ℜCl×Wl×Hl , where Cl represents the number of chan-
nels, and Hl and Wl represent the height and width of the
current feature map. L denotes the total number of layers in
the CNN. For simplicity, we ignore the mini-batch dimension
of feature maps in our notation.

3.2. Federated Learning Setting
We first describe the federated learning problem considered
in this paper. In the FL setting, we train a neural network
on N local datasets Dn, n ∈ {1, 2, 3 · · · , N}. Through this
paper, the data distribution on local devices is heterogeneous.
To train a neural network in this setting, we want to optimize
the following optimization problem:

min
W

1

N

N∑
n=1

L(W, Dn), (1)

where W is the weights of the CNN, and L is the objective
function. One common method to minimize communication
costs is by using local stochastic gradient descent (SGD),
where the local device performs several update steps with
their local data before averaging the model weights W . Fe-
dAvg [49] is a popular algorithm that adopts this approach.

3.3. Generate Sub-network Architectures

To prune a model, we need to first generate the corresponding
sub-network architectures. To achieve this goal, we use a
binary vector a ∈ {0, 1} to represent whether to keep or
prune a channel. To facilitate the learning of the sub-network
architecture, we use a hypernetwork [16] (HN) to generate
the architecture vector a:

a = HN(e; θHN), (2)

12344



where e is the network embedding of the corresponding
device or server, which will be discussed later, and θHN is
the parameters of the HN. We use Straight-Through Gumbel-
Sigmoid [25] to enable gradient calculation for the HN. To
control the pruning of each channel, we apply a to the feature
map of each layer:

F̂l = al ⊙Fl, (3)

where F̂l is the feature map after applying al (the archi-
tecture vector of lth layer). Note that we insert al after
normalization and activation layers, which correspond to
control the output channels of the previous convolution layer
and input channels of the next convolution layer.

An alternative approach to control pruning is to add learn-
able parameters for each channel. However, this approach
presents challenges in the context of FL. If we only train a
single sub-network for compression, local parameters must
be accumulated on the server. Using individual learnable
parameters for each channel may result in significantly dif-
ferent parameters across devices due to the non-iid setting,
rendering the final parameters meaningless (often close to
0.5 before binarization). Additionally, if we aim to learn
device-wise sub-networks for pruning, we would need to
train N sets of parameters for all devices, making it unclear
how to share knowledge between devices.

3.4. Architecture Embedding for Server and Device
Side Sub-networks

Our method aims to find the appropriate server-side sub-
network and device-side sub-networks. The server-side
sub-network serves as the weight bank for device-side sub-
networks. In addition, it reduces the communication and
training costs at the finetuning stage and alleviates the mem-
ory burden on each device. Device-side sub-networks are
used to meet the resource constraint of each device at the
inference time, assuming the training and test data distri-
bution on each device are similar. Using HN potentially
provides a unique opportunity to share knowledge between
server-side and device-side sub-networks. To achieve this,
we introduce an embedding layer to produce the embedding
for each sub-network:

en = Emb(n; θEmb), n = 0, · · · , N, (4)

where θEmb is the parameters of the embedding layer Emb,
and n is the index for each device. In addition, we let n = 0
represent the embedding for the server-side sub-network.
By putting Eq. 2 and Eq. 4 together, we can generate the
server-side sub-network and device-side sub-networks by
using:

a0 = HN(Emb(0; θEmb); θHN),

an = HN(Emb(n; θEmb); θHN), n = 1, · · · , N,
(5)

Algorithm 1: Learning Server-side and Device-side
Sub-networks

Input: Dn, Da
n ,ps, pnd , λ, S, K, rW , rθ , rHN

Initialization: kHN = 0.
broadcast the current state of the CNN
for k := 1 to K do

/* Training the CNN. Freeze θ of the
HN. */

for For each device in parallel do
1. Calculate gradients w.r.t to the loss function

defined in Eq. 7.
2. Update local CNN weights using the preferred

optimizer.
end
/* Server updates of the CNN. */
3. if k % rW = 0 then

Randomly sample S devices,
average states of the CNN and broadcasts the

updated states.
/* Training the HN. Freeze W of the

CNN. */
if k % rHN = 0 then

for For each device in parallel do
1. Calculate gradients w.r.t θ given the loss

function defined in Eq. 6.
2. Update local HN weights (including Emb)

using the preferred optimizer.
end
/* Server updates of the HN. */
3. if kHN % rθ = 0 then

Randomly sample S devices,
average states of the HN and broadcasts the

updated states.
4. kHN = kHN + 1

end
Pruning the model with resulting a0, and fine-tuning it.

where a0 is the server-side sub-network and an are device-
side sub-networks. The embedding layer is used more fre-
quently in natural language processing [50], but it well suits
our task since it can covert the device id into a corresponding
sub-network by combining Emb and HN.
3.5. Channel Pruning for Federated Learning
Given the aforementioned settings, we can now formally
introduce the objective function for channel pruning. The
channel pruning problem can be viewed as a constrained
optimization problem, where the constraint is used to control
the computational resource of the sub-network. The channel
pruning objective function can be formulated as follows:

min
θ

1

N

N∑
n=1

L(W, Da
n;a

0 ⊙ an) (6)

+ λ[(R(T (a0), psTtotal) +
1

N

N∑
n=1

R(T (a0 ⊙ an), pndTtotal)],

12345



where θ contains both θHN and θEmb, a0 and an are gener-
ated by using Eq. 5, Da

n is a subset of the local datasets
Dn, R is the regularization loss to control the FLOPs of the
sub-network, ps ∈ (0, 1] is a predefined hyperparameter to
control the preserved FLOPs of the server-side sub-network,
pnd ∈ (0, 1], n = 1, · · · , N are also predefined hyperparam-
eters to control the FLOPs of sub-networks on each device,
T (a0) or T (a0 ⊙ an) is the current FLOPs decided by the
sub-network architecture a0 or a0 ⊙ an, and Ttotal is the
total FLOPs of the CNN. The FLOPs constraint R(x, y)
is generally a regression problem, but regular regression
loss functions, like MAE and MSE, can hardly push R to
near zero values. We let R(x, y) = log(max(x,y)

y ) to push
R to be close to 0. In addition, we explicitly require that
if a channel is pruned by the server-side sub-network, the
corresponding device-side sub-networks should not update
the corresponding position, and the detail is shown in the
supplementary materials.

We perform iterative updates between model weights
and the sub-network architectures. When updating model
weights, we use the following equation:

min
W

1

N

N∑
n=1

L(W, Dn;a
0 ⊙ an). (7)

When training model weights, we freeze the sub-networks
generated by the HN, and when training the HN, we also
freeze W .

The overview of our method is shown in Fig. 1. The
algorithm of training our method for one epoch is shown
in Alg. 1. In Alg. 1 Dn and Da

n are local datasets and their
sub-set for training the HN. λ is the hyperparameter to con-
trol FLOPs constraints, S is the number of sampled devices,
K is the number of iterations within one epoch, rW is the
state average interval for the CNN, rθ is the state average
interval for the HN, rHN decides the frequency of training
the HN. To control the communication and the additional
training costs, we introduce three hyperparameters: rW , rθ
and rHN. rW , rθ controls the communication costs for train-
ing the model and the HN. Larger rW and rθ will reduce
the communication costs, but it may also negatively affect
the quality of the final model and generated sub-networks
under the FL setting. rHN controls the overall training costs
brought by HN. Similarly, larger rHN results in smaller addi-
tional training costs, but it makes the training of HN harder
since the difference of model weights is larger between con-
secutive training iterations of the HN. We follow Mime [31]
for averaging states of the optimizers.
3.6. Theoretical Guarantee of Convergence
The objective of channel pruning is finding an optimal sub-
network such that the FLOPs constraint is satisfied and the
model performance is maximized. In fact, channel pruning in
our setting can be viewed as a federated bilevel optimization

problem [63, 69]. More formally, we combine Eq.(6) and
Eq. (7) to have:

min
θ

h(θ) :=
1

N

N∑
n=1

L(Wθ, D
a
n;a

0 ⊙ an)

+ λ[(R(T (a0), psTtotal) +
1

N

N∑
n=1

R(T (a0 ⊙ an), pndTtotal)],

s.t.Wθ = argmin
W

1

N

N∑
n=1

L(W, Dn;a
0 ⊙ an). (8)

From a bilevel’s perspective, we do channel pruning by
iteratively performing the following steps until convergence:
for a given sub-network structure from the HN and Emb,
we first find the optimal model weight W(solving the lower
level problem in Eq. (8)); then we optimize the sub-network
based on this optimal model weight(solving the upper level
problem in Eq. (8)). Finding the optimal model weight is
expensive, especially for modern deep neural networks; we
instead optimize the HN and Emb weights θ and the model
weight W alternatively as in Alg. 1. Furthermore, the gradi-
ent w.r.t the sub-network structure includes both a direct part,
which is the direct gradient w.r.t θ, and an indirect part due
to Wθ is a function of θ (the minimizer of the lower level
problem). However, the indirect gradient is expensive to
evaluate and leads to minor empirical improvement in prac-
tice, so we only consider the direct gradient when updating θ
in Alg. 1. The convergence of our alternative update method
is guaranteed under mild assumptions [26, 73] as stated in
Theorem 3.1 below:

Theorem 3.1. Suppose we choose the upper level learning
rate η and the lower level learning rate γ as:

η = min

{
1

4Lrθ
,

(
2bN∆θ

KHNLσ2

)1/2}
,

and

γ = min

{
1

4L
,

(
λbN

KHNL2σ2

)1/2}
,

then we have:

1

KHN

KHN−1∑
kHN=0

E∥∇h(θ̄kHN
)∥2 = O

(
1

(bNKHN )1/2

)
where b is the mini-batch size, N is the number of devices,
and KHN is the number of update steps to the upper level
variable θ.

As stated in Theorem 3.1, our algorithm converges to
a stationary point of Eq. (8), with a convergence rate of
O(K−0.5

HN ). Furthermore, the algorithm achieves linear speed
up w.r.t the number of devices and mini-batch size.

12346



Method Dataset Architecture Base Acc ∆-Acc Acc ↓ FLOPs (D) ↓ FLOPs (S)
Filter Pruning [38]

CIFAR-10 ResNet-56 91.22%

-0.93% 90.29% 50% 50%
FedOSP -0.28% 90.94% 50% 50%
FedILP -0.08% 91.14% 50% 50%
DWNP +0.66% 91.88% 50% 20%
Filter Pruning [38]

CIFAR-100

ResNet-18 66.57%

-1.31% 65.26% 50% 50%
FedOSP -0.61% 65.96% 50% 50%
FedILP -0.20% 66.37% 50% 50%
DWNP +1.74% 68.31% 50% 20%
Filter Pruning [38] -2.52% 64.05% 70% 70%
FedOSP -1.79% 64.78% 70% 70%
FedILP -1.44% 65.13% 70% 70%
DWNP +0.05% 66.62% 70% 50%
Filter Pruning [38]

ResNet-34 69.05%

-1.22% 67.83% 50% 50%
FedOSP -0.29% 68.76% 50% 50%
FedILP +0.44% 69.49% 50% 50%
DWNP +2.17% 71.72% 50% 20%
FedILP MobileNet-V2 66.76% -0.22% 66.64% 48% 48%
DWNP +1.46% 68.22% 48% 20%

Table 1. Results of CIFAR-10 and CIFAR-100. ‘Base Acc’ represents the baseline training accuracy. ‘∆-Acc’ represents the accuracy
changes before and after pruning. ‘Acc’ represents the accuracy after pruning. ‘↓ FLOPs (D)’ and ‘↓ FLOPs (S)’ represent the pruned
FLOPs of device-side and server-side sub-networks.

Architecture Method Base Top-1 Acc Base Top-5 Acc ∆ Top-1 Acc ∆ Top-5 Acc ↓ FLOPs (D) ↓ FLOPs (S)

ResNet-18

Filter Pruning [38]

54.99% 78.60%

-1.01% -0.33% 50% 50%
FedOSP -0.18% +0.48% 50% 50%
FedILP +0.07% +0.65% 50% 50%
DWNP +1.06% +1.10% 50% 20%

ResNet-34

Filter Pruning [38]

56.32% 79.37%

-0.91% -0.21% 50% 50%
FedOSP -0.20% +0.21% 50% 50%
FedILP -0.03% +0.34% 50% 50%
DWNP +0.80% +0.74% 50% 20%

Table 2. Comparison results on TinyImageNet with ResNet-18/34. ‘Base Top-1/5’ represents the baseline training Top-1/5 accuracy. ‘∆
Top-1/5 Acc’ represents the Top-1/5 accuracy changes before and after pruning.

4. Experiments
4.1. Settings
Datasets and Models. We use CIFAR-10 [34], CIFAR-
100 [34], and TinyImageNet [6, 36] to evaluate the perfor-
mance of our method. Our method uses ps and pnd to control
the FLOPs for the server and each device. In the experiment
section, we assume pnd has the same value for different de-
vices for a fair comparison with other methods. The detailed
choices of ps and pnd are listed in supplementary materials.
We choose ResNets [19] and MobileNet-V2 [59] for com-
parison. For CIFAR-10, we compare our method with other
baselines on ResNet-56. For CIFAR-100, we compare our
method with other baselines on ResNet-18, ResNet-34, and
MobileNet-V2. For TinyImageNet, ResNet-18 and ResNet-
34 are used for comparisons. To reduce the negative effects
caused by batch normalization layers, we replace batch nor-
malization with layer normalization [2], which has been used
frequently in recent designs of vision transformers [7] and
CNNs [47]. For the main experiments, we consider N = 10
devices. We use the Dirichlet distribution with α = 0.5, as
described in [48], to create non-iid partitions on the devices
for all datasets. Other settings of N and α are also verified
for specific models and datasets. As described in section 3,

we assume the training and test datasets on each device are
similar. To accomplish this, we apply a random permutation
to the samples drawn from the Dirichlet distribution for the
training dataset and then split the test dataset based on the
permuted samples. As a result, the training and test datasets
distributions on each device are similar but not the same.
More details are given in the supplementary materials. Base-
lines. In addition to the proposed method, we also build three
baselines from the literature on channel pruning. (1) Filter
Pruning: we directly adapt the Filter Pruning [38] to the FL
setting, where there are no communication costs for pruning.
In this setting, pruning is purely based on the channel norm
of the weights. (2) FedOSP (Federated One-Shot Pruning):
this baseline can be seen as an improved version of channel
pruning methods with differentiable gates [11, 32, 76] in the
one-shot pruning setting. In this setting, we use the HN to
generate one sub-network for all devices. The HN is learned
in a one-shot setting when model weights are frozen. (3)
FedILP (Federated Iterative-Learning and Pruning): this
baseline can be seen as the simplified version of our method
without device-side sub-networks. Through the experiment
section, our method is abbreviated as DWNP (Device-Wise
Network Pruning). For all settings, we report the mean

12347



(a) α = 0.05 (b) α = 0.10 (c) α = 0.50

Figure 2. The layer-wise pruning rates for device-side sub-networks, the union of device-side sub-networks, and the server-side sub-network
with different α. The union of device-side sub-networks represents the union of kept channels from all devices.

Method N = 10 N = 25 N = 50
Base Acc Base Acc Base Acc

FedILP
66.57%

66.37%

65.86%

65.37%

65.13%

64.88%
-0.20% -0.49% -0.25%

DWNP 68.31% 68.09% 67.58%
+1.74% +2.23% +2.45%

Table 3. Performance of pruned models given different numbers of
devices N with ResNet-18 on CIFAR-100.

results across three runs.
Training Settings. We describe the hyperparameters in
Alg. 1 in this section. For all methods, we let S = N ,
λ = 2.0, rW = 5, rθ = 2 and rHN = 10. K is the number
of iterations for training one epoch. For Filter Pruning and
FedOSP, we train a base model for 200 epochs, and this
base model also servers as the baseline model in Tab. 1 and
Tab. 2. For FedILP and DWNP, we train the model and the
hypernetwork from scratch for 200 epochs. For FedIPL and
DWNP, we start the training of the hypernetwork after 1

4 of
the total training epochs, which avoids misleading pruning
results when weights are not properly trained. We finetune
the model for 200 epochs for all methods to recover the
performance. For each local dataset, we sample 10% of the
training samples to construct Da

n. When updating the local
W , we use SGD with momentum 0.9 and a start learning
rate 0.1. When updating the local θ, we use Adam [33] with
a start learning rate of 10−3. Other training details are shown
in the supplementary materials.

4.2. Results

CIFAR-10/CIFAR-100. We tested different settings on
CIFAR-10 and CIFAR-100 and found that our method
DWNP consistently achieved the best performance across
different model architectures and pruning rates. Specifically,
DWNP outperformed the original model by 0.66%, 1.74%,
2.17%, and 1.46% for ResNet-56, ResNet-18, ResNet-34,
and MobileNet-V2, respectively. This demonstrated that
the design of device-wise sub-networks is beneficial for
achieving a good trade-off for channel pruning under the
federated learning setup. Our method even surpassed the
original model when pruning 70% of FLOPs on ResNet-
18. The relative ranking of other baselines is Filter Pruning,

Method Architecture α = 0.5 α = 0.1 α = 0.05
Base Acc Base Acc Base Acc

FedILP
ResNet-18 66.57%

66.37%

63.22%

62.77%

61.61%

60.50%
-0.20% -0.55% -1.11%

DWNP 68.31% 64.51% 62.59%
+1.74% +1.29% +0.98%

FedILP
ResNet-34 69.05%

69.49%

66.77%

66.46%

64.52%

63.54%
+0.44% -0.31% -0.98%

DWNP 71.72% 68.20% 65.53%
+2.17% +1.43% +1.01%

Table 4. Performance of pruned models given different choices of
α with ResNet-18/34 on CIFAR-100.

FedOSP, and FedILP. Our method achieved a prominent
trade-off between performance and computational costs on
more complex datasets, like CIFAR-100, with an improve-
ment of 0.05%∼2.17% over the original model when prun-
ing 50% FLOPs or more. The performance of our method
on MobileNet-V2 demonstrated that it could be seamlessly
extended to lightweight models.
TinyImageNet. We present the results of ResNet-18
and ResNet-34 on TinyImageNet in Tab. 2. DWNP is
1.06%/1.10% better than the original model regarding the
Top-1/5 accuracy for ResNet-18. For ResNet-34, the ad-
vantage is 0.80%/0.74% regarding the Top-1/5 accuracy.
The advantage of our method compared to other baselines
is still obvious, which ranges from 1.13% ∼ 2.07% and
0.45% ∼ 1.75% for ∆ Top-1/5 accuracy for ResNet-18. We
have similar observations for ResNet-34.

Across all settings, FedILP often performs better than
FedOSP, indicating that learning model weights and archi-
tectures simultaneously are beneficial, as explained in sec-
tion 3.6. In general, data-driven approaches perform better
than pruning methods based on channel norms, suggesting
that local data distributions should be considered explicitly
when pruning under the FL setting. Indeed, the performance
gain of DWNP is not free. For the server-side sub-network,
the FLOPs reduction for DWNP is much smaller than other
methods, and DWNP has to occupy more storage space on
the server.
Other Settings. To verify whether our method can perform
well in other settings, we change N and α to create different
FL settings. In the first experiment, we use ResNet-18 on
CIFAR-100 to verify whether our method can achieve sim-

12348



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. (a, e): normalized FLOPs regularization loss values for the server-side sub-network. (b, f): normalized FLOPs regularization loss
values for device-side sub-networks. (d, h): test accuracy given different choices of rHN. (d): communication costs. (h): trade-off between
server-side and device-side sub-networks. Experiments are conducted on CIFAR-100 with ResNet-18 and when pruning 50% FLOPs (a,b,c)
and 70% FLOPs (f,g,h) on devices.

ilar performance when changing the number of devices N .
From Tab. 3, we can see the ∆-Acc is increased given more
devices, which shows that our method is more resilient when
increasing the number of devices N . On the other hand,
the ∆-Acc of FedILP is similar or worse when increasing
the number of devices, probably because the learning of the
sub-network becomes harder when increasing N . In Tab. 4,
we show the results when changing α on ResNet-18/34. A
smaller α represents more diverse local data distributions
and is often harder for model training. The table shows that
both DWNP and FedILP are affected by decreasing α. How-
ever, DWNP can still maintain a positive performance gain
for both ResNet-18/34. We plot the layer-wise pruning rate
for channels with different α in Fig. 2. It can be seen that the
sub-network architecture changes when changing local data
distributions. For high heterogeneity (α = 0.05), DWNP
prefers to perverse more later layer channels, which is plau-
sible because feature maps of later layers are more diverse
on each device. In addition, the early stages of the model
are not well utilized by device-side sub-networks. On the
one hand, it is reasonable since CNNs tend to learn uniform
representations from early stages. On the other hand, maybe
we can add constraints to encourage the utilization of early
stages or adjust the server-side sub-network so that it can be
better used.
Detailed Analysis. We examine how rHN changes the train-
ing dynamics during the optimization process. The training
of model weights is not the focus of our paper, so we did
not study rW . The effect of rθ is not obvious compared to
rHN. We present our study in Fig. 3. We plot the first 50
epochs for regularization loss values after the training of
HN begins. As described in the settings 4.1, the training of

HN starts after 50 epochs of model weights training. We
test 4 settings of rHN: {5,10,20,30}. In short, our method
performs well when rHN ≤ 10. We can see an obvious per-
formance drop when rHN = 30. We also plot the overall
communication costs for W and θ in Fig. 3d, and the red
dashed line represents the costs for W only. For rHN ≥ 10,
the communication overhead from training the HN becomes
marginal. As a result, rHN = 10 provides a good trade-off
between performance and additional communication costs.
In Fig. 3h, we show the trade-off between the model per-
formance and the server-side FLOPs when pruning 50% of
FLOPs on devices with ResNet-18 on CIFAR-100. We can
see that our method can maintain a good performance when
the remained server-side FLOPs are larger than 75%.

5. Conclusion

In this paper, we proposed a new channel pruning method
under the Federated Learning settings. Specifically, we gen-
erate device-side sub-networks from the server-side sub-
network through a hypernetwork and a network embedding
layer for device-wise pruning. Our method can be opti-
mized in an end-to-end differentiable fashion, which is very
efficient. In addition, the extra communication costs and
training costs for the hypernetwork and the embedding layer
can be easily controlled using only two hyperparameters.
Furthermore, we establish a theoretical guarantee of conver-
gence, affirming that our method converges to a stationary
point. Our method achieves competitive performance on
CIFAR-10, CIFAR-100, and TinyImageNet datasets with
ResNets and MobileNet-V2.

12349



References
[1] Jan Philipp Albrecht. How the gdpr will change the world.

Eur. Data Prot. L. Rev., 2:287, 2016. 1
[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
6

[3] Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan
Chen. Federated dynamic sparse training: Computing less,
communicating less, yet learning better. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 6080–6088,
2022. 3

[4] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau,
and Yoshua Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014. 6

[5] Yubei Chen Chun-Hsiao Yeh. IN100pytorch: Pytorch im-
plementation: Training resnets on imagenet-100. https:
//github.com/danielchyeh/ImageNet- 100-
Pytorch, 2022. 7

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. Ieee, 2009. 6

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International Conference
on Learning Representations. 6

[8] Alireza Ganjdanesh*, Shangqian Gao*, and Heng Huang.
Interpretations steered network pruning via amortized inferred
saliency maps. In European Conference on Computer Vision,
pages 278–296. Springer, 2022. 2

[9] Alireza Ganjdanesh, Shangqian Gao, and Heng Huang. Eff-
conv: efficient learning of kernel sizes for convolution layers
of cnns. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 7604–7612, 2023.

[10] Alireza Ganjdanesh*, Shangqian Gao*, Hirad Alipanah, and
Heng Huang. Compressing image-to-image translation gans
using local density structures on their learned manifold. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
2024.

[11] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.
Discrete model compression with resource constraint for deep
neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1899–
1908, 2020. 2, 6

[12] Shangqian Gao, Feihu Huang, Yanfu Zhang, and Heng Huang.
Disentangled differentiable network pruning. In European
Conference on Computer Vision, pages 328–345. Springer,
2022.

[13] Shangqian Gao, Burak Uzkent, Yilin Shen, Heng Huang, and
Hongxia Jin. Learning to jointly share and prune weights for
grounding based vision and language models. In The Eleventh
International Conference on Learning Representations, 2023.

[14] Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang,
and Heng Huang. Structural alignment for network prun-

ing through partial regularization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 17402–17412, 2023. 2

[15] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
Michael Moeller. Inverting gradients–how easy is it to
break privacy in federated learning? arXiv preprint
arXiv:2003.14053, 2020. 2

[16] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016. 2, 3

[17] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[18] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in neural information processing systems, pages
1135–1143, 2015. 1, 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2, 6

[20] Feihu Huang, Junyi Li, and Heng Huang. Compositional
federated learning: Applications in distributionally robust av-
eraging and meta learning. arXiv preprint arXiv:2106.11264,
2021. 2

[21] Hong Huang, Lan Zhang, Chaoyue Sun, Ruogu Fang, Xi-
aoyong Yuan, and Dapeng Wu. Fedtiny: Pruned federated
learning towards specialized tiny models. arXiv preprint
arXiv:2212.01977, 2022. 1, 3

[22] Zehao Huang and Naiyan Wang. Data-driven sparse structure
selection for deep neural networks. In Proceedings of the
European conference on computer vision (ECCV), pages 304–
320, 2018. 1, 2

[23] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning -
Volume 37, pages 448–456. JMLR.org, 2015. 2

[24] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir
Braverman, Ion Stoica, and Raman Arora. Communication-
efficient distributed sgd with sketching. arXiv preprint
arXiv:1903.04488, 2019. 2

[25] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 4

[26] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Provably faster
algorithms for bilevel optimization and applications to meta-
learning. arXiv preprint arXiv:2010.07962, 2020. 5

[27] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko,
Wei-Han Lee, Kin K Leung, and Leandros Tassiulas. Model
pruning enables efficient federated learning on edge devices.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2022. 1, 3

[28] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learn-
ing. arXiv preprint arXiv:1912.04977, 2019. 2

12350



[29] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank J Reddi, Sebastian U Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for on-
device federated learning. arXiv preprint arXiv:1910.06378,
2019. 2

[30] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich,
and Martin Jaggi. Error feedback fixes signsgd and other
gradient compression schemes. In International Conference
on Machine Learning, pages 3252–3261. PMLR, 2019. 2

[31] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale,
Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Mime: Mimicking centralized
stochastic algorithms in federated learning. arXiv preprint
arXiv:2008.03606, 2020. 5

[32] Jaedeok Kim, Chiyoun Park, Hyun-Joo Jung, and Yoonsuck
Choe. Plug-in, trainable gate for streamlining arbitrary neural
networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020. 2, 6

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 7

[34] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Citeseer,
2009. 6

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017. 1

[36] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015. 6

[37] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li,
Yiran Chen, and Hai Li. Lotteryfl: empower edge intelli-
gence with personalized and communication-efficient fed-
erated learning. In 2021 IEEE/ACM Symposium on Edge
Computing (SEC), pages 68–79. IEEE, 2021. 1, 3

[38] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 1, 2, 6

[39] Junyi Li and Heng Huang. Faster secure data mining via
distributed homomorphic encryption. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2706–2714, 2020. 2

[40] Junyi Li, Jian Pei, and Heng Huang. Communication-efficient
robust federated learning with noisy labels. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 914–924, 2022. 3

[41] Junyi Li, Feihu Huang, and Heng Huang. Communication-
efficient federated bilevel optimization with global and local
lower level problems. Advances in Neural Information Pro-
cessing Systems, 36, 2023. 3

[42] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang,
Yuan Li, Xu Liu, and Bingsheng He. A survey on federated
learning systems: vision, hype and reality for data privacy
and protection. IEEE Transactions on Knowledge and Data
Engineering, 2021. 1, 2

[43] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith.
Ditto: Fair and robust federated learning through personal-
ization. In International Conference on Machine Learning,
pages 6357–6368. PMLR, 2021. 2

[44] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and
Zhihua Zhang. On the convergence of fedavg on non-iid data.
arXiv preprint arXiv:1907.02189, 2019. 2

[45] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J
Dally. Deep gradient compression: Reducing the commu-
nication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017. 2

[46] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In ICCV,
2017. 2

[47] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,
2022. 6

[48] Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and
Jiashi Feng. No fear of heterogeneity: Classifier calibration
for federated learning with non-iid data. Advances in Neural
Information Processing Systems, 34:5972–5984, 2021. 6

[49] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273–1282.
PMLR, 2017. 1, 2, 3

[50] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013. 4

[51] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh.
Agnostic federated learning. In International Conference on
Machine Learning, pages 4615–4625. PMLR, 2019. 2

[52] Muhammad Tahir Munir, Muhammad Mustansar Saeed, Ma-
had Ali, Zafar Ayyub Qazi, and Ihsan Ayyub Qazi. Fed-
prune: Towards inclusive federated learning. arXiv preprint
arXiv:2110.14205, 2021. 1, 3

[53] Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and
Shai Halevi. Towards deep neural network training on en-
crypted data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages
0–0, 2019. 2

[54] Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao,
Yan Gao, Titouan Parcollet, and Nicholas Donald Lane. Ze-
rofl: Efficient on-device training for federated learning with
local sparsity. arXiv preprint arXiv:2208.02507, 2022. 3

[55] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016. 1

[56] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[57] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita
Ivkin, Ion Stoica, Vladimir Braverman, Joseph Gonzalez,
and Raman Arora. Fetchsgd: Communication-efficient feder-
ated learning with sketching. In International Conference on
Machine Learning, pages 8253–8265. PMLR, 2020. 2

12351



[58] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer,
Ameet Talwalkar, and Virginia Smith. On the convergence
of federated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127, 3, 2018. 2

[59] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018. 2, 6

[60] Rulin Shao, Hui Liu, and Dianbo Liu. Privacy preserving
stochastic channel-based federated learning with neural net-
work pruning. arXiv preprint arXiv:1910.02115, 2019. 1,
3

[61] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in neural information processing systems, pages 568–
576, 2014. 1

[62] Hannah Smith, Zeyu Zhang, John Culnan, and Peter Jansen.
ScienceExamCER: A high-density fine-grained science-
domain corpus for common entity recognition. In Proceedings
of the Twelfth Language Resources and Evaluation Confer-
ence, pages 4529–4546, Marseille, France, 2020. European
Language Resources Association. 2

[63] Mikhail Solodov. An explicit descent method for bilevel
convex optimization. Journal of Convex Analysis, 14(2):227,
2007. 5

[64] Sebastian U Stich. Local sgd converges fast and communi-
cates little. arXiv preprint arXiv:1805.09767, 2018. 2

[65] Davoud Ataee Tarzanagh, Mingchen Li, Christos Thram-
poulidis, and Samet Oymak. Fednest: Federated bilevel, min-
imax, and compositional optimization. In International Con-
ference on Machine Learning, pages 21146–21179. PMLR,
2022. 3

[66] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
curenn: 3-party secure computation for neural network train-
ing. Proc. Priv. Enhancing Technol., 2019(3):26–49, 2019.
2

[67] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured
pruning of large language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6151–6162, Online, 2020. Asso-
ciation for Computational Linguistics. 2

[68] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. arXiv preprint
arXiv:1705.07878, 2017. 2

[69] Ralph A Willoughby. Solutions of ill-posed problems (an
tikhonov and vy arsenin). SIAM Review, 21(2):266, 1979. 5

[70] Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen
Dai, Brian Bullins, Brendan Mcmahan, Ohad Shamir, and
Nathan Srebro. Is local sgd better than minibatch sgd? In
International Conference on Machine Learning, pages 10334–
10343. PMLR, 2020. 1

[71] Peiyao Xiao and Kaiyi Ji. Communication-efficient federated
hypergradient computation via aggregated iterative differen-
tiation. In International Conference on Machine Learning,
pages 38059–38086. PMLR, 2023. 3

[72] Dongfang Xu, Zeyu Zhang, and Steven Bethard. A generate-
and-rank framework with semantic type regularization for
biomedical concept normalization. In Proceedings of the
58th Annual Meeting of the Association for Computational
Linguistics, pages 8452–8464, Online, 2020. Association for
Computational Linguistics. 2

[73] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably
faster algorithms for bilevel optimization. arXiv preprint
arXiv:2106.04692, 2021. 5

[74] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology (TIST),
10(2):1–19, 2019. 1

[75] Yifan Yang, Peiyao Xiao, and Kaiyi Ji. Simfbo: Towards
simple, flexible and communication-efficient federated bilevel
learning. Advances in Neural Information Processing Systems,
36, 2023. 3

[76] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping
Wang. Gate decorator: Global filter pruning method for
accelerating deep convolutional neural networks. In Advances
in Neural Information Processing Systems, pages 2130–2141,
2019. 1, 2, 6

[77] Zeyu Zhang and Steven Bethard. Improving toponym res-
olution with better candidate generation, transformer-based
reranking, and two-stage resolution. In Proceedings of the
12th Joint Conference on Lexical and Computational Seman-
tics (*SEM 2023), pages 48–60, Toronto, Canada, 2023. As-
sociation for Computational Linguistics. 2

[78] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. Joint mod-
els for answer verification in question answering systems.
In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 3252–3262, Online, 2021. Association
for Computational Linguistics.

[79] Zeyu Zhang, Thuy Vu, Sunil Gandhi, Ankit Chadha, and
Alessandro Moschitti. Wdrass: A web-scale dataset for docu-
ment retrieval and answer sentence selection. In Proceedings
of the 31st ACM International Conference on Information &
Knowledge Management, page 4707–4711, New York, NY,
USA, 2022. Association for Computing Machinery.

[80] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. In situ
answer sentence selection at web-scale. arXiv preprint
arXiv:2201.05984, 2022.

[81] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. Double
retrieval and ranking for accurate question answering. In
Findings of the Association for Computational Linguistics:
EACL 2023, pages 1751–1762, Dubrovnik, Croatia, 2023.
Association for Computational Linguistics. 2

[82] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018. 2

12352


