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Abstract

This paper views the DETR’s non-duplicate detection
ability as a competition result among object queries.
Around each object, there are usually multiple queries,
within which only a single one can win the chance to be-
come the final detection. Such a competition is hard: while
some competing queries initially have very close predic-
tion scores, their leading query has to dramatically enlarge
its score superiority after several decoder layers. To help
the leading query stands out, this paper proposes EASE-
DETR, which eases the competition by introducing bias that
favours the leading one. EASE-DETR is very simple: in ev-
ery intermediate decoder layer, we identify the “leading /
trailing” relationship between any two queries, and encode
this binary relationship into the following decoder layer
to amplify the superiority of the leading one. More con-
cretely, the leading query is to be protected from mutual
query suppression in the self-attention layer and encour-
aged to absorb more object features in the cross-attention
layer, therefore accelerating to win. Experimental results
show that EASE-DETR brings consistent and remarkable
improvement to various DETRs.

1. Introduction

The non-duplicate detection ability is an important charac-
teristic shared by DEtection Transformer (DETR) [3] and
its variants [6, 18, 21, 26, 30, 34, 35, 38, 39, 42]. More con-
cretely, DETR uses plenty of queries (e.g., 300 in DETR
[3] and 900 in DINO [39]) in the decoder to search for the
objects. Though the queries are redundant, the predictions
made by them are expected to be non-duplicate, i.e., only
one query predicts each ground-truth object. This charac-
teristic is known as being related to the one-to-one label as-
signment, which sets up the training objective. In contrast,
we are interested in the mechanism DETR employs to reach
this objective.

†Corresponding author.

This paper views the non-duplicate detection ability of
DETR as the result of a competition among object queries.
We explain this viewpoint through a revisit into the DETR
decoder. Before the first decoder layer, there are mul-
tiple queries around each object, as shown in Figure 1.
Some queries become even closer after the first decoder,
because they are attracted by the same object through cross-
attention. Such closeness regards not only the position,
but also the predicted scores. Within these close queries,
only a single one can win the chance of detecting the ob-
ject and makes high prediction score at the final decoder
layer. All the other competing queries are suppressed as the
background and make low prediction scores. Therefore, a
leading query (that usually has only subtle superiority at the
beginning) has to dramatically enlarge its score gap against
the trailing queries after several decoder layers.

We argue that helping the leading query to win the above
competition easier can benefit the training efficiency and
improve the detection accuracy. To achieve this, we propose
EASE-DETR, which eases the competition by introducing
bias that favours the leading query. EASE-DETR is very
simple: given any two competing queries in the intermedi-
ate decoder layers, we identify their relationship of “leading
/ trailing” and further amplify the superiority of the leading
query in the following layer. The superiority amplification
can be conducted in both the following self-attention and
cross-attention layers.

• The self-attention layer facilitates global interaction
among all queries for suppressing duplicate detections [14,
26]. However, any two queries in the self-attention are in
symmetric position, and both receive suppression from each
other. We aim to decay the suppression upon the leading
query while maintaining the suppression upon the trailing
queries, so as to enlarge their gap. Instead of hand-crafted
decay, we encode the binary “leading / trailing” relationship
into a decay weight through a trainable projection (MLP, in
practice). Empirically, we find the learned decay weights
protect the leading query from mutual suppression and thus
enlarge its superiority against the trailing one.

• The cross-attention layer enables each query to absorb

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17282



(a) ground truth (b) before decoder (c) after first decoder layer

Figure 1. DETR decoder has multiple queries competing for each ground-truth object. These competing queries have close position and
similar prediction scores at their initial status. (a) the ground truth; (b) multiple queries are around the same object before input into the
decoder; (c) after the first decoder, some queries are attracted by the object through cross-attention. Correspondingly, they become even
closer and have close prediction scores.

features. Particularly, the competing queries absorb object
features from the same object and thus tend to make du-
plicate predictions. To ease the competition in the cross-
attention layer, we aim to decay the feature absorption of the
trailing queries while maintaining that of the leading query.
We use another trainable projection to encode the binary re-
lationship into a decay weight, which enforce stronger de-
cay upon the trailing queries. Consequently, the leading
query increases its priority for learning object feature and
enlarges its superiority.

In both the self-attention layer and cross-attention layer,
the operation of EASE-DETR is very simple and similar,
i.e., multiplying the original attention score with an addi-
tional decay weight projected from the binary “leading /
trailing” relationship. It adds virtually no computational
cost to training and inference. In practice, we develop an-
other variant that combines the spatial relationship (i.e. the
IoU) with the score relationship for generating the decay
weight, because we want the impact of easing competi-
tion is to be within local regions. This variant brings fur-
ther improvement. No matter using IoU or not, there is
no hand-crafted hyper-parameter. All additional projections
are learned in the end-to-end DETR training.

We conduct extensive experiments with popular DETR
baselines on MS-COCO [19] dataset. Experimental re-
sults show that our EASE-DETR brings remarkable im-
provement to DETRs. For example, on the Deformable++
DETR [16] baseline (ResNet-50 [13] backbone), EASE-
DETR achieves 1.3 AP improvement under the 12-epoch
training scheme. Importantly, EASE-DETR, with focus
on competition under the one-to-one supervision, manifest
good cooperation with the one-to-many supervision strat-
egy: the one-to-one branch uses the EASE-DETR attention
while the one-to-many branch uses the standard attention.
Such a simple combination achieves competitive accuracy,
e.g., 50.8 AP on ResNet-50 [13] DINO [39] baseline and
57.8 AP on Swin-Large [25] DINO [39].

The contributions of our work are summarized as fol-
lows: First, we conduct an in-depth investigation of the
DETR decoder, uncovering how attention weights influ-
ence the suppression process of similar queries. Sec-
ond, we introduce explicit relationships between queries
into the decoder, proposing the MSelf-attention layer and
MCross-attention layers to enhance the suppression pro-
cess of queries. Third, through empirical experiments, we
demonstrate that EASE-DETR achieves performance im-
provements across various popular DETR baselines and ul-
timately surpasses the state-of-the-art results.

2. Related Work

2.1. DETR-base Detectors

The landscape of object detection has been fundamentally
altered with the advent of the original DEtection TRans-
former (DETR) [3]. Introduced as a pioneering approach,
DETR offered an end-to-end framework that mitigated the
reliance on hand-crafted components prevalent in previ-
ous methodologies, such as Non-maximum Suppression
(NMS). While DETR set a new paradigm, it still suffers
from its comparatively slow training convergence and sub-
optimal performance on detecting smaller objects. To solve
these problems, a series of innovative works have emerged.
Deformable DETR [42] introduces multi-scale features and
thus proposes a deformable attention module to detect small
objects and speed up training. Further adaptations, such as
the DAB-DETR [21], enhance the DETR’s performance by
integrating anchor boxes into queries explicitly and update
them continuously. DN-DETR [18] introduces denoising
part to stabilize the bipartial matching, and DINO [39] and
its successor Stable DINO [22], offer refined optimization
techniques that stabilize the training process and enhance
the convergence speed. The recent DAC-DETR [14] di-
vides the cross-attention out from this contrary for better
conquering thus accelerates convergence and improves its
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performance. In this paper, we introduce a plugin solution
to ease the query competition in DETR-based detectors, of-
fering enhanced compatibility with various detector archi-
tectures.

2.2. Modulated Attention

The transformer [33] revolutionizes deep learning by us-
ing attention mechanisms to efficiently blend queries and
keys. And DETR [3] uses transformer structure on object
detection, results an end-to-end paradigm on object detec-
tion. Deformable DETR [42] mudulates traditional atten-
tion with deformable attention for sampling efficiency and
speed. Conditional DETR [26] uses object query condi-
tioning to hasten convergence. SMCA [10] proposes Spa-
tially Modulated Co-Attention mechanism which modu-
lates co-attention emphasizing relevant image regions for
quick training. DAB-DETR [21] modulates the queries with
dynamic anchor boxes to improve the query-to-feature sim-
ilarity and eliminate the slow training convergence issue in
DETR. DDQ [40] utilizes NMS to select query for both
training and inference. Some works [8, 9, 11, 15, 31, 37]
modify attention mechanisms in other fields. The afore-
mentioned research modifies the traditional DETR model
to cater to specific issues, achieving notable performance
improvements. Our focus lies in the relationships between
each query. We encode these relationships into the self-
attention and cross-attention of the decoder to further boost
performance.

2.3. Non-duplicate Detection

The traditional detectors [1, 4, 12, 17, 20, 23, 28, 29, 32,
36] employ Non-Maximum Suppression (NMS) [27] to
eliminate redundant detections, ensuring unique and pre-
cise detection results. Alternatively, CenterNet [41] ap-
proaches duplicate results problem through NMS Pooling,
which centralizes on the object’s central point rather than
bounding boxes, pooling nearby detection responses, and
effectively managing dense object scenarios. Moreover,
DETR [3] and its variants employ self-attention layers for
information propagation, combined with a one-to-one label
assignment strategy to address the issue of duplicate detec-
tion results. This paper proposes a method to ease query
competition, a challenge intrinsic to these models, aiming
to achieve superior non-duplicate detection results.

3. Methodology
3.1. Overview

In our EASE-DETR development, we introduced a novel
approach to ease query competition by introducing a bias
towards the leading query, thereby enhancing model conver-
gence and accuracy. Our architecture, depicted in Figure 2
(A), refines the traditional DETR framework, particularly

in the decoder’s self-attention and cross-attention modules.
We start by computing scores and bounding boxes for each
query in the decoder, using these scores for calculate rela-
tive ranking relation Rrank and the bounding boxes to cal-
culate spatial relation Rspt. And the information is then
encoded into the MSelf-Attention mechanism, adjusting at-
tention weights to emphasize the leading query. Concur-
rently, in the MCross-Attention mechanism, we assess and
scale the attention based on the Rrank and Rspt. These
enhancements are parallelized and minimally increase the
number of parameters, ensuring EASE-DETR’s compatibil-
ity with mainstream DETR detectors and enhancing perfor-
mance without adding computational overhead.

3.2. Preparation

In the DETR, each intermediate transformer decoder layer
predicts scores and boxes for auxiliary supervision. These
outputs are precisely the inputs required by our EASE
model. We predict the score and bounding box from the pre-
ceding layer, utilizing a category-independent score. These
scores are employed to establish a ’leading/trailing’ rela-
tionship among pairs of queries. The formula for the rela-
tive ranking Rrank is as follows, where Si, Sj represents the
prediction score of the i-th query from the previous layer:

Rrank(i, j) =

{
+1 Si ≥ Sj

−1 Si < Sj

. (1)

Our objective with the relative ranking relationship Rrank

is to ease the competition among similar queries. To further
strengthen the aspect of locality in our methodology, we in-
troduce the spatial relation Rspt between queries into our
later computations. The formula is as follows:

Rspt(i, j) = IOU(Bi, Bj). (2)

The relative ranking relation, denoted as Rrank, and the
spatial relation, denoted as Rspt, will be utilized to mod-
ulate the subsequent self-attention and cross-attention mod-
ule.The bounding boxes Bi, Bj are produced from the pre-
vious layer.In the first layer, we bypass the use of the EASE
module and adopt the same box initialization as the base-
line.

3.3. Encourage Leading Query in Self-attention

In our analysis of the DETR framework, we emphasize the
critical role of self-attention in facilitating non-duplicated
detection. And the interaction of self-attention mechanism
introduce competition among queries. These interactions
occur as each query is projected and subsequently under-
goes matrix multiplication to calculate attention scores. At
this stage, the presence of competing queries with very sim-
ilar initial prediction scores necessitates extensive learning
for effective optimization. To address this, our method
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Figure 2. (A) EASE-DETR uses the relative ranking (“leading / trailing”) and IoU between every two queries to ease their competition.
EASE-DETR is very simple and makes only slight modifications to the original self-attention and cross-attention layers. All the modifica-
tions are highlighed in red. (B) In the modified self-attention layer (MSelf-Attention), the ranking and IoU are multiplied and then encoded
through an MLP and sigmoid function. Through end-to-end training, it learns to decay the suppression upon the leading queries. (C) In the
modified cross-attention layer (MCross-Attention), the ranking and IoU are multiplied and then encoded into another decay weight. This
decay weight reduces the object feature absorbed into trailing queries. In a word, both the MSelf-Attention and MCross-Attention layers
introduce bias that favours the leading query and thus help it to enlarge its superiority in the competition.

involves binarizing the relative ranking Rrank, encoding
them, and subsequently utilizing this encoded data to mod-
ulate the attention weights.

A straightforward approach to modulate attention using
relative ranking involves directly utilizing Rrank as the sign
bit for the attention weights after softmax operation. This
method is notably simple, and we have corroborated its ef-
fectiveness in our subsequent experiments, which encom-
pass both 2D and 3D detection tasks.

To strengthen the aspect of locality, we further integrate
Rrank and Rspt in our approach. The Rrank, being binary,
is denoted by +1 and −1. We directly multiply the Rspt

values with Rrank and use MLP to binarize them.The MLP
below uses a single hidden layer with a dimension of 16.
The corresponding formula is as follows:

Ds = sigmoid(MLP(Rrank ·Rspt)). (3)

The resulting self attention decay Ds modulate the atten-
tion in the self-attention mechanism, as illustrated by the
following equation:

Aij =
Ds

ij exp(Wij)∑N
k=1 D

s
ik exp(Wik)

, (4)

where W represent original attention weight before soft-
max, and A represents the final attention weight. In this for-
mula, we modulate the attention scheme by multiplying the
decay Ds with the respective attention weights. This mod-
ulation either intensifies or diminishes the original attention
signals, thereby embedding explicit query relationships into
the model.

In our methodology, a single decay matrix Ds is shared
across all attention heads. To accommodate the multi-head
attention architecture, we have refined the output layer of
the MLP, transitioning from a unidimensional output to an
N -dimensional output, where N stands for the number of
heads in the self-attention mechanism. With this modifica-
tion, each head is allocated a corresponding decay matrix
Ds, which is uniquely modulated to fine-tune the process-
ing capabilities of that particular head.

3.4. Penalize Trailing Query in Cross-attention

After modulating self-attention with Rrank and Rspt, we
further explored their modulation effects on cross-attention.
Typically, cross-attention is considered a mechanism for ag-
gregating object information. Our aim in the cross-attention
phase is to encourage the leading query to assimilate more
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Method Backbone #epochs AP AP50 AP75 APS APM APL

Deformable++ [16] R50 12 47.0 65.2 51.5 31.2 50.4 61.1
Deformable++ [16] R50 36 49.0 67.6 53.5 32.6 52.3 63.3
Deformable++ [16] Swin-T 12 49.3 – – 31.6 52.4 64.6

EASE-Deformable++ (ours) R50 12 48.3 (+1.3) 67.0 52.3 31.5 51.3 62.8
EASE-Deformable++ (ours)* R50 24 49.6 (+0.6) 68.4 54.1 32.8 52.8 64.2
EASE-Deformable++ (ours) Swin-T 12 50.2 (+0.9) 69.4 54.8 32.5 53.6 65.3

H-DETR [16] R50 12 48.7 66.4 52.9 31.2 51.5 63.5
H-DETR [16] Swin-T 12 50.6 - - 33.4 53.7 65.9

EASE-H-DETR (ours) R50 12 49.4 (+0.7) 67.7 53.8 33.6 52.7 63.6
EASE-H-DETR (ours) Swin-T 12 51.7 (+1.1) 70.2 56.3 34.5 55.0 66.8

DINO [39] R50 12 49.0 66.6 53.5 32.0 52.3 63.0
DINO [39] Swin-T 12 51.3 69.0 56.0 34.4 54.4 66.1

EASE-DINO (ours) R50 12 49.7 (+0.7) 67.5 54.3 32.7 52.9 64.1
EASE-DINO (ours) Swin-T 12 51.8 (+0.5) 69.5 56.6 35.4 55.1 66.1

Table 1. EASE-DETR brings consistent improvement over popular baselines. The term ’EASE-’ indicates the integration of our EASE
module. We rigorously test its performance with different detectors, over various epochs, and using diverse backbones. The integration
of our EASE module consistently results in performance enhancements. Notably, in the 12-epoch setting with ResNet-50 backbone,
significant improvements are observed in the currently popular Deformable++ and DINO frameworks. Specifically, there is an increase of
1.3 AP in Deformable++ [16] and a 0.7 AP increase in DINO [39].

Method Backbone #epochs AP AP50 AP75 APS APM APL

Baseline (DINO [39]) R50 12 49.0 66.6 53.5 32.0 52.3 63.0
Baseline (DINO [39]) R50 24 50.4 68.3 54.8 33.3 53.7 64.8

H-DETR [16] R50 12 48.7 66.4 52.9 31.2 51.5 63.5
H-DETR [16] R50 36 50.0 68.3 54.4 32.9 52.7 65.3

Group-DETR [5] R50 12 49.8 - - 32.4 53.0 64.2
Stable-DINO-4scale [22] R50 12 50.4 67.4 55.0 32.9 54.0 65.5
Stable-DINO-4scale [22] R50 24 51.5 68.5 56.3 35.2 54.7 66.5

DAC-DETR [14] R50 12 50.0 67.6 54.7 32.9 53.1 64.2
DAC-DETR [14] R50 24 51.2 68.9 56.0 34.0 54.6 65.4

EASE-DETR (ours) R50 12 50.8 (+1.8) 68.9 55.3 34.1 54.2 65.1
EASE-DETR (ours) R50 24 51.6 (+1.2) 69.9 56.2 34.0 54.6 66.0

Baseline (DINO [39]) Swin-L 12 56.8 75.6 62.0 40.0 60.5 73.2
Group-DETR [5] Swin-L 36 58.4 - - 41.0 62.5 73.9

Stable-DINO-4scale [22] Swin-L 12 57.7 75.7 63.4 39.8 62.0 74.7
Stable-DINO-4scale [22] Swin-L 24 58.6 76.7 64.1 41.8 63.0 74.7

DAC-DETR [14] Swin-L 12 57.3 75.7 62.7 40.1 61.5 74.4
EASE-DETR (ours) Swin-L 12 57.8 (+1.0) 76.7 63.3 40.7 61.9 73.7

Table 2. Comparison to SOTA DETR. Compared to DINO [39], our EASE-DETR yields improvements of 1.8 and 1.2 AP in 12-epoch and
24-epoch settings on the ResNet-50 [13] backbone, achieving 50.8 and 51.6 AP, respectively. The results surpasses methods like Stable-
DINO [22], Align-DETR [2], and DAC-DETR [14]. Additionally, using the Swin-L backbone with EASE-DETR increases performance
by 1.0 AP, reaching 57.8 AP and exceeding the latest SOTA, Stable-DINO.

object features in the cross-attention layer, while diminish-
ing the ability of trailing queries to acquire target infor-
mation. To achieve this, we adopted a straightforward ap-
proach: we quantified the level of suppression L using the
product of −Rrank · Rspt, as illustrated by the following
equation:

Li =
n−1
max
j=0

(−Rrank(i, j) ·Rspt(i, j)), (5)

where the n index number of query. And the specific for-
mula for cross attention decay Dc is as follows,

Dc
i = sigmoid(MLP(Li)). (6)

For the i-th query, our methodology involves selecting
queries that not only have a higher score than the current
query but also share an IoU with it. We then compute the
cumulative attention weight of these queries in relation to
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the current query. This sum is subtracted from one to derive
the cross-attention scale, denoted as Dc

i . We employ Dc
i

to modulate the result of the current cross-attention directly
by multiplying it with Dc

i . Similarly, drawing inspiration
from the multi-head design inherent in self-attention mech-
anisms, our model generates a multi-head scale Dc

i within
the cross-attention.

4. Experiments
4.1. Setup and Implementation Details

Dataset. We conduct experiments on the COCO [19] 2017
validation dataset. And we report our results with the
mean average precision (mAP) metric under different IoU
thresholds. We report results with two different backbones:
ResNet-50 [13] (pretrained on ImageNet-1k [7]) and Swin-
L [25] (pretrained on ImageNet-22k [7]).
Implementation details. We develop EASE-DETR using
Python 3.8.17, PyTorch 1.10.1, and CUDA 11.3. For 2D
object detection training, we train all models with a batch
size of 16, employing the AdamW optimizer. We initialized
the learning rate at 1e-4. In the setting with 12 epochs, we
reduced it by a factor of 0.1 at the 11th epoch. Similarly, in
the setting with 24 epochs, we decreased the learning rate by
a factor of 0.1 at the 20th epoch. In our experiments on 3D
object detection, we adhere to the established configurations
from PETR [24], adapting only the Rrank component for
the 3D detector.

4.2. Main Results

In our experiments conducted on the COCO 2017 valida-
tion set, we evaluate the effectiveness of our EASE module.
The results, as presented in Table 1, demonstrate the mod-
ule’s performance across various detectors, epochs, and di-
verse backbone architectures. The integration of our EASE
module consistently leads to enhancements in performance.
Notably, when incorporated into the original attention ar-
chitecture, the module enables a significant improvement in
Deformable++ models, achieving an increase of 1.3 AP and
0.9 AP on the ResNet50 and Swin-T backbones, respec-
tively. Remarkably, our EASE-enhanced Deformable++
outperforms the standard Deformable++ by 0.6 AP in just
24 epochs, compared to the latter’s 36 epochs.

Furthermore, applying EASE to H-DETR [16] and
DINO [39] models also yields substantial improvements,
signifying the module’s compatibility and efficacy in one-
to-many and denoise design paradigms. These results un-
derscore the adaptability and effectiveness of our EASE
module in various frameworks and settings.

To compare with current SOTA DETR models, we uti-
lize DINO [39] as our baseline, integrate our EASE mod-
ule, and adopt the recent one-to-many strategy from DAC-
DETR [14], a method we refer to as EASE-DETR, as show-

Figure 3. Comparison of the predicted score distribution of the
competing queries in the last decoder layer. For each object, the
top-scored query wins the competition and becomes the final pre-
diction, while the other queries are suppressed to be background
and should have low scores. ‘First’, ‘Second’, ‘Third’ represent
the queries with the 1st, 2nd and 3rd highest prediction score,
respectively. It shows that our EASE-DETR increases/decreases
prediction score for the 1st/2nd queries, therefore enlarging their
gap and easing the query competition.

cased in Table 2. Remarkably, this integration yields im-
provements of 1.8 and 1.2 AP for the 12-epoch and 24-
epoch settings on the ResNet-50 [13] backbone, respec-
tively, achieving 50.8 AP and 51.6 AP. These results surpass
those of other leading methods such as Stable-DINO[22],
Align-DETR[2], and DAC-DETR[14]. In a thorough eval-
uation, we experiment with EASE-DETR using the Swin-L
backbone, further boosting performance with an additional
increase of 1.0 AP, reaching a new high of 57.8 AP, and
surpassing the recent SOTA model, Stable-DINO[22].

Furthermore, we compare the predicted score distribu-
tion of the competing queries in the last decoder layer,
illustrated in Figure 3. For each object, the top-scored
query wins the competition and becomes the final predic-
tion, while the other queries are suppressed to be back-
ground and should have low scores. On the val set, EASE-
DETR enlarges the gap between the wining query and the
competitors, indicating eased competition.

4.3. Ablation Studies

Component analysis. We conduct experiments to ascer-
tain the effectiveness of each module within our proposed
framework. The detailed outcomes of these experiments are
presented in Table 3. Our study commences with a baseline
model employing the Deformable DETR architecture. The
model exhibits continuous improvements through the se-
quential addition of MSelf-attention and MCross-attention
modules. This progression significantly highlights the con-
tribution of each module to enhancing the overall perfor-
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Figure 4. Visualizing the relation between Rrank · Rspt and self attention decay Ds. The graph reveals that, across different layers and
heads, the relationship between Rrank · Rspt and Ds generally displays a monotonic decrease, with the function being asymmetric, thus
underscoring the importance of introducing Rrank.

Figure 5. Visualizing the relation between level of suppression L
and cross attention decay Dc. The illustration reveals that with
an increasing value of L, the decay Dc diminishes, leading to a
weaker absorption of target information. Furthermore, it is ob-
served that the initial layers exhibit a stronger absorption of object
information compared to the later layers.

mance of the model. Specifically, the integration of MSelf-
attention and MCross-attention modules leads to incremen-
tal improvements of 1.1 AP and 0.2 AP, respectively. No-
tably, our model achieves an impressive 48.3 AP on the De-
formable++ baseline, even without the implementation of a
one-to-many approach.

We visualize the relation between Rrank ·Rspt and self-
attention decay Ds as shown in Figure 4, where each self-
attention layer includes 8 heads. The graph reveals that,
across different layers and heads, the relationship between
Rrank · Rspt and Ds generally displays a monotonic de-
crease, with the function being asymmetric, thus underscor-
ing the importance of introducing Rrank. This observation
is consistent with our analysis of attention modulation. Ad-
ditionally, we visualize the relation between the level of
suppression L and cross-attention decay Dc in Figure 5.
It is apparent that a higher L corresponds to a smaller de-
cay value, indicating that stronger suppression of the query
leads to less absorption of object information. Moreover,
the initial layers show a greater absorption of object infor-

mation compared to the later layers.

Comparison of different self-attention modulation
strategies. In our modulated self-attention study, we in-
troduced two variant approaches to ease query competi-
tion by favoring the leading query. In the first variant, we
solely incorporated relative ranking Rrank to modulate self-
attention. This method acts as a sign factor, altering at-
tention post-softmax, as shown in the 2nd row of Table 4.
Compared to the baseline, introducing only Rrank leads to
an improvement of 0.8 AP. The second variant aims to en-
hance locality by building upon Rrank with the addition of
Rspt. Considering that Rrank is binary and Rspt is a non-
negative number, we multiply the two as input. Through a
MLP and sigmoid, we generated weights to adjust the self-
attention weights. We perform the modulation of our sec-
ond method variant before the softmax function, correspond
to the 3rd row. The results further improved by 0.3 AP on
top of the first variant, culminating in a total enhancement
of 1.1 AP compared to the baseline.

Investigation MSelf-attention on two-stage Deformable
DETR. In order to delve deeper into the MSelf-attention
module, we conducted ablation studies on commonly used
tricks, as demonstrated in Table 5. It is evident from the
results that our Mself-attention consistently enhances per-
formance across these experiments, validating the effective-
ness of our approach. Notably, integrating MQS (Mixed
Query Selection) on top of our method yields a relatively
modest improvement (from 44.3 AP to 46.3 AP compared
to 47.4 AP to 47.7 AP). This led us to revisit the MQS
method. The MQS approach selectively enhances posi-
tional queries with the top-k selected features while main-
taining the learnability of content queries as before. We be-
lieve the primary reason for MQS’s superior performance
in baseline settings is its implicit incorporation of ranking
information. This is an unintentional result of the specific
code implementation of MQS. Specifically, by selecting the
top-k initial positional queries, a sorting process is inher-
ently involved. In the implementation, the highest-scoring
positional query is always matched with the first learnable
content query, and the lowest-scoring with the last, allow-
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Method Backbone #epochs AP AP50

Deformable++ [16] R50 12 47.0 65.2
+MSelf-attention R50 12 48.1 66.6

+MCross-attention R50 12 48.3 67.0

Table 3. Component analysis. Our MSelf-attention and MCross-
attention models are evaluated on a Deformable++ [16] baseline.
Incorporating the MSelf-attention model results in an improve-
ment of 1.1 AP. Further addition of the MCross-attention module
introduce an additional increase of 0.2 AP.

Method Backbone #epochs AP AP50

Deformable++ [16] R50 12 47.0 65.2
w/Rrank R50 12 47.8 (+0.8) 66.3

w/Rrank*Rspt R50 12 48.1 (+1.1) 66.6

Table 4. Comparison of different self-attention adjustment strate-
gies for EASE-DETR. Incorporating Rrank straightforwardly into
our self-attention mechanism yielded an improvement of 0.8 AP.
To further enhance locality, we multiply Rrank and Rspt to mod-
ulate self-attention, achieving an additional performance boost.

ing the learnable content queries to implicitly embody a se-
quence order through learning iterations.
Efficiency Analysis. In Table 6, we present an analysis of
the computational costs introduced by our Mself-attention
and Mcross-attention. We conducted comparative exper-
iments with 300 and 900 queries respectively. At 300
queries, Our model only adds 0.1 GFLOPs, introducing a
negligible amount of parameters, which is notably minimal.
At 900 queries, due to the proportional relationship between
computation and the number of queries, there is a more sig-
nificant increase compared to 300 queries. However, the to-
tal increase of approximately 0.7 GFLOPs remains within
acceptable limits.
Results on multi-view 3D object detection. Our approach
is highly adaptable to various DETR-based methods and is
not confined to 2D detection tasks. To demonstrate its uni-
versality, we apply our method to multi-view 3D detection
tasks, as shown in Table 7. The results show that EASE-
DETR achieves non-trivial improvements, i.e., +1.6 NDS
and +0.9 mAP on the PETR [24] baseline.

5. Conclusion
In conclusion, the EASE-DETR approach introduced in this
study significantly enhances the non-duplicate detection ca-
pability of DETRs. By framing the detection process as a
competition among object queries, where only one query
emerges as the final detection, our method effectively man-
ages the inherent challenges. The strategy of identifying
and biasing towards the leading query in each decoder layer
proves to be a crucial element in this improvement. This
is accomplished by protecting the leading query from mu-
tual suppression in the self-attention layer and bolstering

DP0 MQS LFT MSELF AP

43.7
✓ 46.9 (+3.2)

✓ 44.3
✓ ✓ 47.4 (+3.1)
✓ ✓ 46.3
✓ ✓ ✓ 47.7 (+1.4)
✓ ✓ ✓ 47.0
✓ ✓ ✓ ✓ 48.1 (+1.1)

Table 5. Analysis of MSelf-Attention combined with various tech-
niques. DP0: implementing a 0 Dropout Rate within the Trans-
former. MQS: mixed query selection. LFT: look forward twice.
MSELF: MSelf-attention.

Method #queries GFLOPs Params

DAB-DETR [21] 300 90.4 43.67 M
W/EASE 300 90.5 (+0.1) 43.67 M

DAB-DETR [21] 900 103.3 43.67 M
W/EASE 900 104.0 (+0.7) 43.67 M

Table 6. Analysis of the efficiency. Utilizing DAB-DETR [21]
as our baseline, our EASE model incurs only a minimal increase
of 0.1 GFLOPs and 0.7 GFLOPs for 300 and 900 queries respec-
tively, with virtually no increase in the number of parameters.

Method w/Rrank NDS mAP

PETR [24] 42.6 37.8
PETR [24] ✓ 44.2 (+1.6) 38.7 (+0.9)

Table 7. Results on multi-view 3D object detection. By simply
combining with Rrank, we achieve improvements of 1.6 NDS and
0.9 mAP on PETR [24], demonstrating its versatility across differ-
ent DETR-based frameworks.

its ability to assimilate more object features in the cross-
attention layer. Consequently, this approach not only sim-
plifies the competition but also accelerates the winning pro-
cess of the leading query. Our experimental results demon-
strate that EASE-DETR offers consistent and substantial
enhancements across various DETR models.
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