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Abstract

As a fundamental problem in multimodal learning, mul-
timodal fusion aims to compensate for the inherent limita-
tions of a single modality. One challenge of multimodal
fusion is that the unimodal data in their unique embedding
space mostly contains potential noise, which leads to cor-
rupted cross-modal interactions. However, in this paper
we show that the potential noise in unimodal data could be
well quantified and further employed to enhance more sta-
ble unimodal embeddings via contrastive learning. Specif-
ically, we propose a novel generic and robust multimodal
fusion strategy, termed Embracing Aleatoric Uncertainty
(EAU), which is simple and can be applied to kinds of
modalities. It consists of two key steps: (1) the Stable
Unimodal Feature Augmentation (SUFA) that learns a sta-
ble unimodal representation by incorporating the aleatoric
uncertainty into self-supervised contrastive learning. (2)
Robust Multimodal Feature Integration (RMFI) leveraging
an information-theoretic strategy to learn a robust com-
pact joint representation. We evaluate our proposed EAU
method on five multimodal datasets, where the video, RGB
image, text, audio, and depth image are involved. Extensive
experiments demonstrate the EAU method is more noise-
resistant than existing multimodal fusion strategies and es-
tablishes new state-of-the-art on several benchmarks.

1. Introduction

By exploring the complementary information from dif-
ferent modalities, multimodal learning has achieved impres-
sive success in kinds of artificial intelligence applications,
such as multimodal image classification in Internet appli-
cations [|-5] and sentiment analysis in intelligent robotics
[6-9]. Tt has been widely proved that fusing information
from different modalities appropriately is helpful to gain
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Figure 1. An illustration of the aleatoric uncertainty in multimodal
datasets and the distributional representations: (a) As the seman-
tics are ambiguous, the multimodal data are prone to introducing
noisy data. (b) We adopt a multivariate Gaussian distribution to
represent the fuzzy semantics in a noisy latent space.

better performance. Dedicated to this, multimodal fusion
has become an emerging challenge in multimodal learning,
which integrates different modalities into a unified repre-
sentation with powerful neural networks.

Nevertheless, with the studies developing, researchers
have recognized that the multimodal data in different modal
forms may be unreliable due to the unique noise in their
own modal space. Recently, several works [5, 10—13] show
that previous multimodal fusion methods have overlooked
the unreliable quality of multimodal data. Specifically, the
widely adopted fusion strategies may fail on noisy multi-
modal data because the cross-modal interactions may ob-
tain limited influence by the uncertainty in data. Here we
illustrate typical noise in multimodal data in Fig. 1. Due
to the semantics of “Positive” being fuzzy and the labels
being judged by humans subjectively, the given image-text
pairs are all recognized as positive in sentiment analysis,
even though there is obvious noise in both image and text
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modalities. In general, we can say the introduced noise
comes from the aleatoric uncertainty [14], which under-
mines the effectiveness of exploiting multimodal data and
demonstrates multimodal learning is not a free lunch.

Hence, with the emerging challenge of uncertainty in
multimodal data, we raise the first fundamental question:
Can we quantify the uncertainty in multimodal data? In-
spired by probability Distributional Representation [15—

], we naturally adopt the Gaussian distributions to work
out this problem. We assume that each instance can be rep-
resented as a multivariate normal distribution, where the
variance can be regarded as the intrinsic aleatoric uncer-
tainty. With the quantified uncertainty, we are allowed to
take a closer look at the multimodal fusion and raise the
second question: Is it appropriate to completely drop the
intrinsic uncertainty? From the examples in Fig. 1(a),
we can observe that even if image-text pairs reveal simi-
lar semantics, the aleatoric uncertainty is still unavoidable
because of the domain shift, extra descriptions, or image
quality, efc. To this end, as is illustrated in Fig. 1(b), we
argue that a multivariate normal distribution that consid-
ers aleatoric uncertainty can be regarded as a fuzzy rep-
resentation for semantics, where the semantic-related data
are within similar distributions, even if they are in different
modalities. Motivated by the two assumptions, we develop
a novel multimodal fusion strategy in this paper, i.e., Em-
bracing Aleatoric Uncertainty (EAU).

Specifically, our EAU method consists of the follow-
ing two processes: (1) The Stable Unimodal Feature Aug-
mentation (SUFA) quantifies the intrinsic aleatoric uncer-
tainty in each modality by representing samples as multi-
variate normal distributions. Then, we further conduct self-
supervised contrastive learning with these distributional
representations to learn stable unimodal embeddings with
better semantical consistency. (2) Robust Multimodal Fea-
ture Integration (RMFI) that dynamically fuses the stable
unimodal embeddings into a joint representation. Particu-
larly, considering that SUFA focuses on semantic consis-
tency only and ignores the problem of information redun-
dancy, we employ an information-theoretic strategy, i.e.,
Variational Information Bottleneck [19,20], to learn a com-
pact joint representation with less redundancy. We evalu-
ate our method on five multimodal benchmark datasets and
demonstrate it outperforms existing state-of-the-art meth-
ods on both Multimodal Sentiment Analysis and Multi-
modal Image Classification tasks. Moreover, our pro-
posed EAU method also reveals better robustness on noisy
datasets compared with the counterpart methods [2, 3, 5].

Overall, our contributions in this paper can be summa-
rized as three-fold:

* We propose a novel multimodal fusion method termed
Embracing Aleatoric Uncertainty (EAU), which quan-
tifies the intrinsic aleatoric uncertainty and leverages it

to learn stable and robust joint representations.

* We devise the Stable Unimodal Feature Augmentation
(SUFA) module, which quantifies aleatoric uncertainty
and learns stable unimodal representations with better
semantical consistency.

* We design the Robust Multimodal Feature Integration
(RMFI) module to learn compact joint representations
with less redundancy, which further improves the ro-
bustness of multimodal fusion in our method.

2. Related Work

Multimodal Fusion. Multimodal fusion, which aims at
learning stronger representations from different modalities,
has become an essential part of a spectrum of computer vi-

sion research, such as vision-audio learning [21,22], vision-
language learning [23, 24], image retrieval [25-27], and
video understanding [28-30]. Generally, multimodal fusion

can be categorized into three types: early fusion, intermedi-
ate fusion, and late fusion. The previous multimodal fusion
methods can be categorized into early fusion and late fusion
in terms of their feature-level or decision-level fusion opera-
tions. In the last decades, massive works with deep learning
suggest that intermediate fusion [13,29, 31], which learns
unified embeddings for multimodal data in the hidden lay-
ers of neural networks, could benefit representation learn-
ing. Although these multimodal fusion methods achieve
remarkable improvements in kinds of multimodal learning
tasks, most of them ignore the uncertainty in multimodal
learning. Recently, several works [5, 10—13] empirically
or theoretically demonstrated that conventional multimodal
fusion methods had limited performance and robustness on
noisy or corrupted multimodal data. Inspired by these pio-
neering works, we devised a novel intermediate multimodal
fusion method, which could quantify the uncertainty and
learn more robust joint representations.

Uncertainty in Deep Learning. In general, the uncertain-
ties in deep learning can be categorized into epistemic un-
certainty and aleatoric uncertainty [14]. The former aims
at capturing the noise of the parameters in deep neural net-
works, while the latter measures the noise inherent in given
training data. To improve the robustness and generaliza-
tion of open-world scenarios, many researchers incorporate
the uncertainty estimation into the deep learning models for

computer vision tasks, such as face recognition [ 15, 16], se-
mantic segmentation [32], and action localization [33, 34].
There is also a list of works that incorporate uncertainty
estimation into multimodal learning tasks [5, 17, 22, 35].

However, most of them only quantified uncertainties to
learn probability distribution representations that are used
for cross-modal interactions, but ignore the value of intrin-
sic uncertainties and hardly take a further analysis on the ro-
bustness of multimodal fusion. Following this observation,
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we develop this work to learn more robust compact joint
representations for multimodal learning, which embraces
the uncertainties via self-supervised contrastive learning.

Information Bottleneck Theory. The Information Bottle-
neck Theory [19] was initially formulated in the context
of signal processing, which is proposed to discover a more
concise representation of a signal while retaining its utmost
informative content. Alemi et al. [36] proposed the Varia-
tional Information Bottleneck (VIB) to bridge the gap be-
tween Information Bottleneck Theory and deep learning,
which approximates the information bottleneck constraints
and enables it in deep learning. Based on the VIB, massive
researchers introduce the Information Bottleneck Theory in
deep learning models to tackle kinds of computer vision
tasks, such as object detection [37-39] or image classifica-
tion [37,38]. Furthermore, as the VIB aims at learning com-
pact minimal representations, it also attracts wide attention
from the multimodal learning field [28, 31]. For example,
Mai et al. [28] devised a multimodal information bottle-
neck to learn the minimal sufficient unimodal and multi-
modal representations. Inspired by their successes, we also
devise an multimodal integration strategy based on VIB to
reduce the redundancy in joint representations, which fur-
ther improves the robustness and effectiveness.

3. Proposed Method
3.1. Preliminaries

Uncertainty Estimation in Deep Learning Models. In
terms of [14], the uncertainties in deep learning models can
be categorized into aleatoric uncertainty and epistemic un-
certainty. The former refers to the uncertainty inherent in
the observations and can not be explained away with more
data, while the latter only accounts for uncertainty in the
model and can be explained away given enough data. Typ-
ically, given a deep learning model fy (-), it conducts the
mapping X — Y, where X’ and ) represent input data and
observed label space respectively. The aleatoric uncertainty
in X will lead to a corrupted predicted results in ). To
estimate the uncertainties in deep learning models, a widely
adopted strategy is sampling N weights 8 ~ p (0|z,y) ,x €
X,y € Y via Dropout operations for different predictions
for mean ;. and variance o2, and adopting a Gaussian poste-
rior p(y|z) ~ N (p« (z),02 (x)). Here we can get the pre-
dictive variance and extract the aleatoric uncertainty which
represents the ambiguity in x:

W) = = 3 ),
o) = 0, o)+ 3 k) — ) D
=E; [01-2 (J:)] + Var; [u;(2)],

where E; [af (;v)} represents the aleatoric uncertainty, while
Var; [u;(z)] is the epistemic uncertainty, which attributes
to the model fy (-) rather than input data X’. In our work,
we pay more attention to the aleatoric uncertainty since our
goal is to quantify the intrinsic noise in multimodal data and
leverage it for learning better joint representations.
Variational Information Bottleneck. The Variational In-
formation Bottleneck (VIB) [20] is an information-theoretic
strategy widely adopted in deep learning models, which
aims to maintain maximal discriminative feature represen-
tations with minimal redundancy. Specifically, given the
input variable x with noise or redundant information and
the target variable y, the VIB is to learn the compressed la-
tent variable z, and z is maximally discriminative about the
target variable y. Moreover, since the input x is noisy and
redundant, the VIB also requires z to be minimally discrim-
inative about the original variable x. In our work, we lever-
age the VIB to learn compact joint representations, which
overcome the redundancy brought by highly aligned distri-
butional multimodal representations to improve the robust-
ness of multimodal fusion.
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Figure 2. An illustration of the Unimodal Distributional Represen-
tation process. For clarity, we visualize the multivariate Gaussian
distributions with two variables only.

3.2. Stable Unimodal Feature Augmentation

As the data in different modalities contain unique noise
in their own modal space, we first propose the Stable Uni-
modal Feature Augmentation (SUFA) module to quantify
their intrinsic aleatoric uncertainty. Following the argument
that the uncertainty is attributed to the fuzzy representation
of semantics, we further leverage the aleatoric uncertainty
via self-supervised contrastive learning.

Unimodal Distributional Representation. Given the
multimodal samples x*, m € M where M is the modality
set including images, audio, text, efc., we learn the distribu-
tional representations to quantify the aleatoric uncertainty
in each modality. According to the deviation listed in Eq.
1, we can observe that the aleatoric uncertainty can be pre-
dicted with deep learning models fq (-) as the variance o7
directly if the epistemic uncertainty is not considered. To
this end, we first employ the corresponding feature extrac-
tor to learn the preliminary embeddings for each modality,
then deploy two additional fully connected layers to learn a
mean vector u** € R and a variance vector o** € R,
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Furtherly, we define the representation z;" in latent space
of each sample x[" as a multivariate Gaussian distribution
with d variable, which can be represented as:

PN ~ N (", o),

wi' = fop (xi"), " = fop ("),

2)

where fgr (-) and fpy (-) represent the two different fully
connected layers for mean and variance respectively. I is the
identity matrix. To maintain the consistency of semantics
in different modalities, we further align the distributional
representations of a multimodal sample with the Kullback-
Leibler divergence:

m1,ma €M
> KL(p("x")|p(z" x"))
mi#Ema
meM (3)

+ > KL(p(z]"x[")|N(0,1).

LUDR =

We illustrate the Unimodal Distributional Representation
process in Fig. 2 with bi-modal input for clarity. It can
be observed the Lypg will push two multimodal distribu-
tional representations with similar semantics closer. In this
way, the representation of each multimodal sample is not
limited within a deterministic point embedding, but a con-
sistent fuzzy representation on several multivariate Gaus-
sian distributions. Particularly, the variance o} reveals the
aleatoric uncertainty in m modality and the mean " is the
corresponding stable representation.
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Figure 3. [Illustration of the Uncertainty-based Representation
Augmentation process. Here we show the distributional represen-
tations of image modality only for clarity.

Uncertainty-based Representation Augmentation. With
the quantified aleatoric uncertainty, we consider the second
question we raised in Sec.1: should we drop the aleatoric
uncertainty in multimodal data? Intuitively, the aleatoric
uncertainty in multimodal data is unavoidable since the nat-
ural ambiguity of semantics. However, it also results in the
diversity of unimodal data in different modalities. To this
end, we leverage the aleatoric uncertainty to generate the

unseen samples such that learned unimodal representations
are insensitive to diverse unimodal input with similar se-
mantics. Take the image modality as an example, we illus-
trate the Uncertainty-based Representation Augmentation
process in Fig. 3. Specifically, given a unimodal distribu-
tional representation p(z"|x7") ~ N (ul", o?1), we first
random sample an anchor point z;"* and an augmented point
z;" from the multivariate Gaussian distribution as match-
ing pairs. Moreover, we randomly sample a set of negative
points from other distributional representations and devise a
self-supervised contrastive learning mechanism as follows:

esim(i;” z")/T

LURA = — IOg . y

Zj;éi <esim(zi”7z;"’)/7 + esim(i?",z}")/‘r)

“)
where 7 is a temperature factor and sim is cosine simi-
larity calculation. Here we adopt the re-parameterization
trick [40] to conduct the sampling operations, which can be
formulated as follows:

z" = pu" +eolt e~ N(0,1). 5)
3.3. Robust Multimodal Feature Integration

With the SUFA, we obtain stable unimodal representa-
tions with consistent semantics. However, we only consider
the consistency in each modality but ignore the redundancy
caused by duplicated representations. To this end, we pro-
posed the Robust Multimodal Feature Integration (RMFI)
module in this section. The overview of the RMFI module
is illustrated in Fig. 4.

Dynamic Multimodal Integration. Inspired by dynamic
multimodal fusion [5], we assume that different modalities
have unequal contributions to the joint representations in
terms of the observed label space. To this end, we first apply
a Dynamic Multimodal Integration strategy based on an at-
tention mechanism. Specifically, given the stable unimodal
representations u;", we calculate the attentive weights in
the distributional representations across modalities accord-

ing to their quantified uncertainties o, and apply them for
multimodal integration:
5
. e’
xi= Y al'ul, of'=—"—"—r. (6
meM EmGM e’

where %;, ;" represent the integrated joint representations
and the average variance of the multivariate Gaussian dis-
tribution of m modality. In this way, we preliminarily in-
tegrate stable unimodal representations into joint represen-
tations, where the contributions of different modalities are
estimated dynamically.

Joint Representation Compression. In the SUFA mod-
ule, we fully consider the consistency of semantics in dif-
ferent modalities to avoid noise in unimodal data. However,
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Figure 4. An illustration of the RMFI module. We provide Cross-
Entropy loss and L, loss for classification-based and regression-
based downstream tasks respectively.

with similar multivariate Gaussian distributions among dif-
ferent modalities, redundant duplicated information will be
introduced into joint representations. Hence, we devise a
joint representation compression with the Variational Infor-
mation Bottleneck (VIB) [20]. Specifically, given the pre-
liminary joint representation X; and the target observations
y in label space, we learn the compressed joint representa-
tion Z in a latent space:
P(zif%i) N (o, 670), oy = o, (), 60 =fz, (%)

(N
where f; and fj are two fully connected layers. Simi-
larly, we also adopt the re-parameterization tricks [40] for
the final compressed joint representations:

Z; = fi; + 6,6 ~ N (0,1). 8)

As our proposed method can be applied to different
downstream tasks, here we provide two training objectives
for the joint representation compression. Specifically, we
employ the cross-entropy for the classification-based task:

Lire = ~y " logd (fo (i) + MK L (p(i[%:) [0, 1)),
€))
where ¢ (-) represents softmax function and fy (-) is the
deep learning models for classification, A is a hyperparam-
eter. As for the regression-based task, we employ the mean
square error as the training objective:

Lyre = [y = fo (2:)]* + KL (p(2:|%:)|IN(0,1)) . (10)

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate our method on five multimodal
datasets, including two tri-modal datasets, i.e., CMU-MOSI
[41] and CMU-MOSEI [42] and three bi-modal datasets,
i.e., MVSA-Single [43], UPMC Foodl101 [1], and NYU
Depth v2 [44] datasets. The CMU-MOSI [41] and CMU-
MOSEI [42] datasets are widely employed video datasets
for Multimodal Sentiment Analysis (MSA) task. The for-
mer encompasses 2199 short videos, each accompanied by
a sentiment strength score ranging from -3 to 3, offering

a nuanced measure of emotional intensity. The latter, de-
signed specifically for emotion analysis tasks, is a larger
dataset comprising 22,856 movie review clips. The bi-
modal dataset, i.e., MVSA-Single [43] is also used for MSA
task but it only contains image-text pairs obtained from so-
cial media for sentiment classification. Following [2-5], we
also employ the UPMC Food101 [!] and the NYU Depth
v2 [44] datasets for Multimodal Image Classification (MIC)
task. The UPMC Foodl0I dataset contain 101 categories ,
respectively, these datasets are specifically designed for bi-
modal classification tasks. The UPMC FOODI01 dataset
contains images with 101 categories obtained by Google
Image Search and their corresponding textual descriptions.
The NYU Depth v2 dataset [44] is utilized for scene recog-
nition and comprises depth and RGB images. Following
[5], we also adopt the commonly used 9 out of the 27 scene
categories and the remaining categories as “Others”.
Implementation Details. In alignment with alternative
methodologies, for our trimodal video dataset, we employ
FACET, COVAREP, and BERT as feature extractors for vi-
sual, audio, and text modalities, respectively. For the bi-
modal dataset, we utilize ResNet-152 as the feature extrac-
tor for RGB and depth images, coupled with BERT as the
feature extractor for text. As for the hyperparameters, we
set the temperature factor 7 and the balance factor A to 0.5
and le-3 respectively. We employed the Adam optimizer
with learning rate of le-5,and adopt the Reduce-on-Plateau
learning rate adjustment strategy to train our EAU method.
Evaluation Metrics. For the regression-based MSA task
based on CMU-MOSI and CMU-MOSEI, we follow the
previous work [6,7,9,45] and adopt Acc7, F1 score, and
Pearson correlation coefficient as our metrics. As for the
classification-based MSA task on the MSVA-Single dataset
and MIC task on the UPMC FOODI101 and The NYU
Depth v2 datasets, we reported commonly used metrics, in-
cluding accuracy and F1 score.

4.2. Comparisons with State-Of-The-Arts

To show the superiority of our proposed EAU method
on multimodal fusion, we compared our EAU method with
existing state-of-the-art methods of the MSA task on the
CMU-MOSI and CMU-MOSETI datasets, including MIB
[28], HMA [6], MIM [7], GCNet [46], ConFEDE [£], DiC-
MoR [45], and DMD [9]. Moreover, we also make fair
comparisons with the widely adopted simple multimodal
fusion strategies i.e., Concat and Late Fusion, as well as
recent well-designed multimodal fusion strategies on the bi-
modal datasets, including TMC [3], ITIN [47], MMBT [2],
PMF [4], MVCN [48], and QMF [5]. Particularly, similar to
the counterpart method QMF [5], we evaluate our method
on noisy datasets to observe the model robustness.
Multimodal Fusion on Classification Task. We report
the performance of classification tasks, including both MSA
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CMU-MOSI CMU-MOSEI MVSA-Single Food 101 NYU Depth v2

Method AccT FI Com | AccT FI_ Corr Method Acc  FI | Acc FI | Acc _ FI
MIB [28] (2022) 486 853 0.798 | 541 862 0.790 Concat 65.59 6543 | 88.20 88.19 | 7030 69.82
HMA [ ] (2023) 453 856 0782 528 854 0787 Late Fusion 76.88 75.72 90.69 90.77 69.14 68.32

MIM [7] (2023) | 47.0 859 0.805 | 525 863 0.792 MMBT [2] (2020) | 7850~ - ) 9152 9128 | 71.04 -
TMC [3] (2021) 76.06 74.55 | 89.86 89.80 | 71.06  69.83

GCNet [46] (2023) | 449 85.1 - 515 852 - ITIN (7] (2022) | 75.19 7497 | - i : i

DiCMoR [45] (2023) | 453 85.6 - 534 85.1 - MVCN [48] (2023) | 76.06 74.55 - - - R
DMD [9] (2023) 456 86.0 - 545  86.6 - QMF [5] (2023) | 78.07 77.18 | 92.92 92.93 | 70.09 68.65
EAU (Ours) 488 862 0.809 | 548 869 0.816 EAU (Ours) 79.15 78.36 | 93.20 93.18 | 72.05 70.63

Table 1. Comparisons with state-of-the-art multimodal fusion methods on MSA and MIC tasks. The CMU-MOSI and CMU-MOSEI
datasets contain videos, audios, and texts. The MVSA-Single and Food-101 datasets consist of texts and RGB images. The NYU Depth
v2 contains RGB and depth images. Note that CMU-MOSI and CMU-MOSEI are used for regression-based MSA tasks, while the others

are used for classification-based MSA or MIC tasks.

and MIC tasks on bi-modal datasets in Table 1, where the
best results are marked in bold. From the experimental re-
sults, we can observe that our proposed EAU method out-
performs all three datasets. Particularly, compared with the
recent state-of-the-art method QMF method [5], our EAU
method achieves at least 1% absolute improvements on the
MVSA-Single and NYU Depth v2 datasets. These results
demonstrate that our EAU approach conducts better mul-
timodal fusion on text, depth, and RGB images, affirming
the effectiveness of leveraging aleatoric uncertainty in mul-
timodal data. However, we also note that the improvements
on UPMC Food 101 are not as remarkable as the other two
benchmark datasets. We speculate that one probable reason
is the images and texts in this dataset are clear compared
with the others. Hence, our EAU method obtains fewer im-
provements since the augmentation is limited.

Multimodal Fusion on Regression Task. We evaluate
our method on the regression task on the CMU-MOSEI and
CMU-MOSI datasets, where the MSA task is conducted by
predicting sentiment strengths. From the experimental re-
sults in Table 1, we can observe that: For the CMU-MOSI
dataset, our proposed EAU method achieves state-of-the-art
performance across all evaluation metrics, with a particu-
larly significant improvement noted in Acc7. On the CMU-
MOSEI dataset, our method has also demonstrated substan-
tial improvements on most evaluation metrics. These results
demonstrate the superiority of our proposed EAU, which
benefits from high-quality multimodal fusion via learning
stable and robust joint representations. Simultaneously,
these results indicate that our approach can effortlessly ex-
tend to other modalities and can be seamlessly transferred
to frameworks accommodating kinds of modalities.

Model Robustness on Noisy Multimodal Datasets. To
validate the effectiveness of our model in handling data
noise, we conducted more evaluation on the noisy datasets
following a recent multimodal fusion strategy QMF [5].
Concretely, we consider different intensities of Gaussian
and Salt-Pepper noise on the MVSA-Single and NYU
Depth v2 datasets. For fair comparisons, we conducted 10

Noisy MVSA-Single

Clean | Salt-Pepper Noise | Gaussian Noise

Method e=0|e=5 e=10 e=5]e=10

Concat 65.59 | 58.69 51.16 50.70 | 46.12

Late Fusion 76.88 | 67.88 55.43 63.46 | 55.16

MMBT [2] (2020) | 78.50 | 74.07 51.26 71.99 | 55.34

TMC [3] (2021) | 74.87 | 68.02 56.62 66.72 | 60.35

QMEF [5] (2023) | 78.07 | 73.90 60.41 73.85 | 61.28

EAU (Ours) 79.15 | 74.81 61.04 73.89 | 62.04
Noisy NYU Depth v2

Clean | Salt-Pepper Noise | Gaussian Noise

Method €=0|c=5] e=10 |e=5]e=10

Concat 70.44 | 57.98 44.51 59.97 | 53.20

Late fusion 69.16 | 56.27 41.22 59.63 | 51.99

MMTM [2] (2020) | 71.04 | 59.45 44.59 60.37 | 52.28

TMC [3](2021) | 71.06 | 59.34 44.65 61.04 | 53.36

QMF [5] (2023) | 70.09 | 58.50 45.69 61.62 | 55.60

EAU (Ours) 72.05 | 59.83 46.85 63.33 | 58.85

Table 2. Comparisons with state-of-the-arts concerning model per-
formance on noisy MVSA-Single and NYU Depth v2 datasets.

experiments with different random seeds and reported the
mean results as our final performance. According to the
experimental results listed in Table 2, we can observe that
our method has achieved state-of-the-art performance under
various types and intensities of noise. Moreover, with the
intensity of noise increasing, the margin of performance be-
tween our method and existing multimodal fusion strategies
goes larger. Particularly, our method achieves more than 3%
improvement on the Noisy NYU Depth v2 dataset over the
QMF method [5]. Such a result demonstrates our method
reveals better robustness against data noise. The reason
is our model pioneeringly leverages the intrinsic aleatoric
uncertainty in the training data to enhance the stable fea-
ture representation, which is not fully considered in existing
counterpart methods [2, 3, 5].

4.3. Further Analysis

Analysis on Model Structure. To explore the impact
of different model structures, we decomposed our proposed
method into two components, SUFA and RMFI, and evalu-
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Method Clean Salt-Pepper Noise Gaussian Noise Modality | Acc F1 Corr
Acc@e=0 | Acc@ec=5 | Acc@e =10 | Acc@c=5 | Acc@e =10 T 44.1 83.7 | 0.785
Naive Backbone + Late Fusion | 76.88 4+ 1.30 | 67.88 & 1.87 | 55.43 +1.94 | 63.46 4+ 3.46 | 55.16 4 3.60 \'% 16.7 45.3 | 0.072
Naive Backbone + Concat 74.53 £ 097 | 62.24 +2.47 | 53.14 £ 2.89 | 56.08 + 1.89 | 49.21 + 2.81 A 15.8 48.7 | 0.099
Naive Backbone + RMFI 7723 £0.74 | 70.99 £2.77 | 59.11 £ 1.92 | 66.53 +2.26 | 52.02 + 3.45 T+A 46.7 84.2 | 0.794
SUFA + Late Fusion 77.11 £ 1.05 | 70.05 + 1.50 | 55.93 +2.25 | 62.27 +4.20 | 55.90 + 3.67 T+V 46.3 84.6 | 0.786
SUFA + Concat 78.18 £ 1.08 | 73.10 £ 1.07 | 60.67 &+ 1.38 | 71.40 + 1.48 | 59.11 + 1.60 A+V 202 | 553 | 0.117
BERT (NAACL'19) [49] 75.61 £0.53 | 69.50 £ 1.50 | 47.41 £ 0.79 | 69.50 &+ 1.50 | 47.41 £ 0.79 T+A+V | 48.8 | 86.2 | 0.809
MMBT (arXiv’19) [2] 78.50 £ 0.40 | 74.07 £ 1.12 | 51.26 +5.65 | 71.99 + 1.04 | 55.34 +2.84
TMC (ICLR’21) [3] 74.87 +2.24 | 68.02 +3.07 | 56.62 + 3.67 | 66.72 +4.55 | 60.35 + 2.79 T 76.30 | 75.90 -
QMF (ICML’23) [5] 78.07 £ 1.10 | 73.90 £ 1.89 | 60.41 +2.63 | 73.85 + 142 | 61.28 +£2.12 A% 63.58 | 63.35 -
SUFA + RMFI (EAU) 79.15 + 0.60 | 74.81 + 1.59 | 61.04 - 1.31 | 73.89 + 0.96 | 62.04 + 1.26 T+V 79.15 | 78.36 -

Table 3. Analysis concerning key model structures in our EAU method on the Noisy MSVA-Single (Left), and analysis concerning

modalities on the CMU-MOSI (Right Upper) and MVSA-Single (Right Lower) datasets. Note that BERT [

ated their effectiveness in combination with various model
structures on the Noisy MVSA-Single dataset. Specifically,
we employ two alternative designs for SUFA and RMFI re-
spectively: (1) Naive Backbone: deploying the feature ex-
tractors directly, where the distributional representation and
stable feature augmentation in the SUFA module are dis-
abled. (2) Late Fusion: the unimodal representations are
used for downstream tasks first and the fusion operations
are conducted in probability space. To observe the stability
of our method, we conduct 10 experiments with different
random seeds and report the mean and variance in Table 3.
Here we also make fair comparisons with several counter-
part methods [2, 3, 5,49] to furtherly show our superiority.
According to the experimental results presented in Ta-
ble 3, we can observe that: (1) Our proposed SUFA and
RMFI modules consistently improve performance on all
metrics. Particularly, with the SUFA module, the results
of fusion strategy Concat are boosted with more than 10%
absolute performance on the noisy data. Moreover, com-
pared with Late Fusion, our proposed RMFI module can
also significantly boost the classification accuracy on noisy
data with the SUFA module. These results prove again that
our method shows great superiority in the effectiveness and
robustness of multimodal fusion. (2) It also explicates that
our proposed EAU method remarkably outperforms com-
pared with the counterpart methods [2, 3, 5]. Particularly,
compared with the recent state-of-the-art method QMF [5],
our complete model reveals better performance and stabil-
ity, demonstrating the capability of our EAU method again.
Analysis on the Effectiveness of Multimodal Fusion. To
verify the effectiveness of multimodal fusion in our EAU
method, we also conduct ablation studies concerning dif-
ferent modalities on the CMU-MOSI datasets, which con-
sist of video (V), text (T), and audio (A) three modalities.
By observing the experimental results illustrated in Table
3, we have drawn the following conclusions: (1) Our fu-
sion strategy demonstrated significant effectiveness across
different modal combinations. As the number of modalities
increased, our approach facilitated the integration of multi-
modal information, resulting in a significant improvement
across all evaluation metrics. (2) We also note that the text

] adopts text modality only.

modality performs an essential role in the MSA task on the
CMU-MOSI dataset. However, combined with the other
two modalities via our proposed EAU method, the results
are also boosted significantly, demonstrating the superiority
of our EAU method again. Such a phenomenon also proves
the rationality of our Dynamic Multimodal Integration pro-
cess in the RMFI module.

Noisy MVSA-Single Dataset Noisy NYU Depth v2 Dataset
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270 L <% L8 ==
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Figure 5. Analysis for robustness evaluated by over 10 times ran-
dom experiments under different noisy data.

Analysis on Model Robustness. To verify the robust-
ness and stability of our proposed EAU method, we con-
duct more ablation studies on the MVSA-Single and NYU
Depth v2 datasets under different noise levels and observe
the sparsity of final accuracy. Specifically, we conduct more
than 10 experiments randomly with complete EAU (denoted
as Complete) and EAU w/o SUFA (denoted as w/o SUFA),
and show the statistics in Fig. 5. By observing the exper-
imental results, we can find that: (1) The SUFA module
consistently shows its effectiveness on both two datasets
under different noise strengths. Particularly, when introduc-
ing more noise to the data, the ablated model shows strong
fluctuations. Contrastively, the complete EAU model re-
veals remarkably reduced fluctuations, which demonstrates
the superiority of model robustness and stability. (2) We
also note that the improvements on the NYU Depth v2 are
slightly lower than the MVSA-Single dataset, though both
two datasets have significant results. We speculate this is
caused by the difference between text modality and depth
images. Concretely, the depth images can be regarded as
another view of spatial information, which has less comple-
mentary information for RGB images compared with texts.
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To this end, the introduced noise will show more impact on
the depth-RGB than the image-text compositions.

1 085
095 == w/o RMFI =—=w/o RMFI

=&~ w/o SUFA 0.8 [ |=#=w/o SUFA
0.9 Comp. Comp.

Accuracy
= \

111 21 31 41 51 e 71 81 9 11 21 31 41 51 61 71 81 9f

Training Epoch Training Epoch

Figure 6. Analysis concerning the training convergence and per-
formance fluctuations during training.

Analysis on Training Process. We also illustrate the train-
ing process of our proposed EAU method on the MVSA-
Single in Fig 6 to observe the training convergence and
performance fluctuations. According to the illustrated ex-
perimental results, we can observe that the complete EAU
model exhibits a smoother training process and converges
more rapidly with a remarkably better performance. Par-
ticularly, compared with the ablated model w/o RMFI, the
other two models show much better stability during train-
ing. This is because the fused features learned by the ab-
lated model w/o RMFI have redundant information caused
by cross-modal distributional alignment in the SUFA mod-
ule. It proves again the rationality of our proposed RMFI
module, which deploys an information-theoretic strategy to
address the limitation.

® Negative

Neutral
Positive

® Negative 1 AN
&

Neutral & *
Positive

(a) Concat

® Negative %0, ® Negative
Neutral Neutral
® Positive ® Positive

(c) EAU w/o RMFI (d) EAU

Figure 7. Visualizations of joint representations by t-SNE [50]
on MVSA-Single dataset. Here we adopt Concat for the ablated
model w/o RMFI.

Visualizations of Joint Representations. To further ver-
ify the superiority of our proposed EAU method, we also
employ the t-SNE [50] to visualize the learned joint rep-
resentations. As illustrated in Fig. 7, it can be observed
that the features generated by our method exhibit a more

compact and discriminative distribution. In contrast, when
the SUFA or RMFI module is removed, more sparse points
appear around the feature distribution which leads to cor-
rupted classification results at last. Such results indicate
that our method is more capable of learning a representa-
tive joint representation.

Text Clear Gaussian Salt-Pepper Predictions
Modali e=0.0 e=5.0 €=10.0 e=5.0 £=10.0 EAU QMF
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Figure 8. Visualizations of test cases selected from the MSVA-
Single datasets. It can be observed that our EAU method reveals
better robustness against the noise.

Positive Neutral

Qualitative Analysis. Moreover, we also illustrate sev-
eral typical test cases in Fig. 8 and make comparisons
with the recent counterpart method QMF [5]. Under differ-
ent noise settings, our proposed EAU method consistently
classifies the sentiment of the given image-text input pre-
cisely, while the QMF method returns incorrect results. It
explicates that our proposed EAU method benefits from the
well-designed SUFA and RMFI module, which is effective
in learning more stable and robust joint representations for
noise-resistant performance with higher accuracy.

5. Conclusion

In this paper, we proposed a novel multimodal fusion
method, namely, Embracing Aleatoric Uncertainty (EAU).
It achieves more discriminative joint representations by
fully considering the aleatoric uncertainty in multimodal
data. Specifically, with the well-designed Stable Uni-
modal Feature Augmentation (SUFA) and Robust Multi-
modal Feature Integration (RMFI) modules, our proposed
EAU could learn compact and robust joint representations.
We evaluated our proposed EAU method on five multi-
modal benchmark datasets for both classification and re-
gression tasks and demonstrated its superiority in fusion
performance and robustness. For future work, we will fur-
ther explore the uncertainties in multimodal learning.
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