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Abstract

We present GenesisTex, a novel method for synthesizing
textures for 3D geometries from text descriptions. Gen-
esisTex adapts the pretrained image diffusion model to
texture space by texture space sampling. Specifically, we
maintain a latent texture map for each viewpoint, which
is updated with predicted noise on the rendering of the
corresponding viewpoint. The sampled latent texture
maps are then decoded into a final texture map. During
the sampling process, we focus on both global and local
consistency across multiple viewpoints: global consistency
is achieved through the integration of style consistency
mechanisms within the noise prediction network, and
low-level consistency is achieved by dynamically aligning
latent textures. Finally, we apply reference-based inpaint-
ing and img2img on denser views for texture refinement.
Our approach overcomes the limitations of slow opti-
mization in distillation-based methods and instability in
inpainting-based methods. Experiments on meshes from
various sources demonstrate that our method surpasses the
baseline methods quantitatively and qualitatively.

1. Introduction
In recent years, with the development of deep learning,
3D content generation technology has made significant
progress. The applications of 3D content generation are
diverse, ranging from AR/VR to gaming and filmmak-
ing. While there has been considerable research on deep
learning-based geometric asset generation[40], there has
been a notable industry demand for generating realistic tex-
tures for given geometries.

Recently, text-conditioned image diffusion models [34]
have achieved impressive results in image generation. Some
works [7, 19, 29] have leveraged text-conditioned image
diffusion models to generate textured 3D assets by gener-
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Figure 1. Texturing results of different methods. Score Distilla-
tion Sampling (SDS) based method produces blurred and oversat-
urated textures. Inpainting-based approach results in artifacts at
the boundaries of inpainting masks. Texture space sampling con-
currently generating content from multiple viewpoints, produces
clean, clear and natural colored textures.

ating content from multiple viewpoints, achieving notable
performance. In this work, our focus is on generating high-
quality textures for a given geometry, leveraging the pri-
ors provided by pre-trained text-to-image diffusion models.
This task poses several challenges, including: 1) View con-
sistency: ensuring cross-view constraints for maintaining
low-level consistency; 2) High efficiency: generating tex-
tures for a model within a few minutes, enabling practical
applications; 3) Zero-shot learning: achieving texture gen-
eration without requiring additional training or finetuning.
Addressing these challenges is crucial for successful appli-
cation of image diffusion models to the texture domain.

Currently, the most prominent method for text-to-3D
generation is Score Distillation Sampling (SDS) [7, 19, 29].
SDS utilizes the prior knowledge from image diffusion
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models to iteratively generate gradients for rendering im-
ages of 3D objects. However, SDS has limitations in terms
of both efficiency and quality. It often takes several hours to
generate a single textured 3D object, and the resulting tex-
tures can suffer from over-saturation due to the adoption of
a large CFG (classifier-free guidance) scale, which reduces
randomness during generation. Recent works [2, 6, 33] have
introduced inpainting-based methods for multi-view gener-
ation. These methods establish a predetermined order of
views, using the content of previously generated views as
a condition for subsequent views. While inpainting-based
approaches are faster and produce realistic colors, they are
sensitive to the predefined view order. Additionally, they
require texture segmentation to determine the source view
for each texture pixel, which often results in artifacts around
the borders of the segmented areas.

To address the aforementioned issues, we propose Gene-
sisTex, a novel approach that introduces texture space sam-
pling. Specifically, we maintain multiple-view latent texture
maps throughout the sampling process and perform denois-
ing to improve their quality. Subsequently, the content is
decoded from the latent space to obtain RGB textures. Our
approach focuses on achieving two aspects of consistency
during the sampling process. Firstly, we ensure global style
consistency across multiple views by incorporating style
consistency in the noise prediction network. This helps
maintain a coherent style throughout the generated textures.
Secondly, we employ dynamic alignment of latent textures
to ensure low-level multi-view consistency, enhancing the
overall quality of the generated textures. Due to mem-
ory limitations, texture space sampling operates on sparse
views. However, to further enhance the quality, we lever-
age reference-based inpainting and Img2Img techniques on
denser views for texture map refinement. GenesisTex can
generate detailed, clean, and naturally colored textures for
a given geometry within a few minutes. Unlike inpainting-
based methods, our proposed texture space sampling con-
currently generates content for multiple views without rely-
ing on a predefined order. This adaptability makes Gene-
sisTex suitable for various geometries and results in fewer
artifacts in the generated textures.

Our contributions can be summarized as follows:
• First, we present a novel method for texture generation,

where the core is texture space sampling. This sampling
technique allows for the concurrent denoising of latent
textures associated with multiple viewpoints.

• Second, we introduce Style Consistency and Dynamic
Alignment in texture space sampling for multi-view con-
sistency.

• Third, we conduct a comprehensive study involving nu-
merous 3D objects from various sources. The experimen-
tal results demonstrate the superiority of our method over
baseline methods.

2. Related Work

Texture Synthesis. Generating textures over 3D surfaces
is a challenging problem, as it requires attention to both
colors and geometry. Earlier works like AUV-Net [8] and
Texturify [38] embed the geometric prior into a UV map
or mesh parameterization. Different from them, EG3D [3]
and GET3D [11] directly train 3D StyleGANs [15] to gen-
erate geometries and textures jointly, where the textures are
implicit texture fields. However, these methods either only
work on a single category, or demand textured 3D shapes
for training without text conditioning, which limits their
broad applicability. Recently, [2, 6, 33] use the priors pro-
vided by the image diffusion model to synthesize textures.
Text2Tex [6] and TEXTure [33] performs inpainting on
multiview renderings. TexFusion [2] propose a sequential
texture sampling method. Our method predicts multi-view
noise concurrently, avoiding the following issues of sequen-
tial noise prediction: 1) Each iteration requires adding for-
ward noise to visited regions to match unvisited areas, po-
tentially leading to detail loss. 2) Consistency is only con-
strained between adjacent viewpoints, with no direct con-
sistency for long-range viewpoints.

Text-to-Image Diffusion Models. Over the past years, the
development of several large-scale diffusion models [28, 32,
34, 35] has enabled the production of highly detailed and
visually impressive images. These models generate images
based on input text prompts. Specifically, Stable Diffusion
is trained on a substantial text-image dataset [36] and in-
corporates a text encoder from CLIP [31] to understand the
input prompts. Beyond the basic text conditioning, Con-
trolNet [51] enables the model to condition its denoising
network on additional input modalities, such as depth maps.
In this work, we utilize ControlNet and Stable Diffusion to
provide geometrically-conditioned image priors.

Text-to-3D using 2D Image Diffusion Models. Early
works [14, 26, 27] utilize the pretrained CLIP model to
maximize the similarity between rendered images and text
prompt. However, pioneering works DreamFusion [29] and
SJC [46], on the other hand, propose to distill a 2D text-to-
image generation model to generate 3D shapes from texts,
and many follow-up works [19–21, 23, 25, 30, 47] fol-
low such per-shape optimization scheme. Recently, several
methods [4, 12, 13, 22, 24, 37, 42–44, 48] have been pro-
posed to generate consistent multi-view images by using
diffusion models. MVDream [37] and SyncDreamer [22]
share similar ideas, generating consistent multi-view im-
ages via attention layers. However, existing approaches ei-
ther endure slow optimization processes or depend on sep-
arately trained 3D priors, rendering them unsuitable for di-
rect application in texture synthesis. In contrast, our method
does not require additional training and can generate results
within several minutes.
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3. Methodology
Our objective is to generate a texture map T for a given 3D
meshM, using the provided text as a descriptive condition.
Our approach leverages the Stable Diffusion model as the
image diffusion model. We begin by introducing some basic
concept about Stable Diffusion and texture representation in
Sec. 3.1. Then, we introduce a sampling algorithm in tex-
ture space for Stable Diffusion in Sec. 3.2. Furthermore, we
propose multi-view consistency strategy in Sec. 3.3. Finally
we perform refinement on the texture map, which includes
Inpainting and Img2Img, as described in Sec. 3.4.

3.1. Preliminary

Stable Diffusion. The diffusion model belongs to a class of
generative models that generate data through iterative de-
noising from random noise. In the sampling process, zi−1

can be sampled from zi using a DDIM sampler [39]:

ẑi→0 = (zi −
√
1− αiϵθ(zi, ti, ctext))/

√
αi,

zi−1 =
√
αi−1ẑi→0 +

√
1− αi−1 − σ2

i ϵθ(zi, ti, ctext)

+ σiε,
(1)

where ϵθ is a pretrained U-Net for noise prediction and the
initial zT ∼ N (0, I). In this paper, we specifically employ
Stable Diffusion [34]. Stable Diffusion performs denoising
in the latent space and employs an autoencoder D(E(·)) for
the conversion between image and latent representations.
So z0 generated by the diffusion process is decoded to the
image D(z0) finally.
ControlNet. ControlNet [51] injects low-level control dur-
ing the denoising process of Stable Diffusion. Our approach
employs depth d as the geometric control condition. The
predicted noise of the U-Net with ControlNet is represented
as ϵθ(zi, ti, ctext, d).
Texture Representation. In this paper, we utilize mesh as
the 3D representation. Texture map is associated with an
UV parameterization of the meshM. We use xatlas [50] to
generate the UV parameterization.
Rendering. Given a meshM, a texture map T and a view-
point C, we can use the rendering function R to get the
rendered image x(img) = R(T ;M, C). Similar to [2], we
do not consider any lighting and rendering involves solely
sampling colors from the texture map. The inverse render-
ing functionR−1 can inverse render the image x(img) back
to a texture map T ′ = R−1(x(img);M, C).

3.2. Sampling in Texture Space

The most straightforward method for sampling on the tex-
ture map is to fine-tune the Stable Diffusion model directly
on some texture maps, making its distribution more like the
distribution of texture maps. However, the distribution of
texture maps is much more complex than that of rendering

Algorithm 1 Texture Space Sampling

Input: meshM, cameras {C1, . . . , CN}
Parameters: Denoising time schedule {ti}0i=T , DDIM
noise schedule {σi}0i=T

{z(tex)T,n }Nn=1 ← {0}
{z(bg)n }Nn=1 ∼ {N (0, I)}
{ϵ̂T+1,n}Nn=1 ∼ {N (0, I)}
▷ denoising stage:
for i ∈ {T . . . 1} do

for n ∈ {1 . . . N} do
εn ∼ N (0, I)

z
(img)
i,n ←Mn(

√
αiR(z(tex)i,n ) +

√
1− αi − σ2

i+1ϵ̂i+1,n)

+(1−Mn)z
(bg)
n + σi+1εn

ϵ̂i,n ← ϵθ(z
(img)
i,n , ti, c, dn)

ẑ
(img)
0,n ← (z

(img)
i,n −

√
1− αiϵ̂i,n)/

√
αi

z
(tex)
i−1,n ← R−1(ẑ

(img)
0,n )

z
(bg)
n ← √αi−1ẑ

(img)
0,n +

√
1− αi−1 − σ2

i · ϵ̂i,n
end for
{z(tex)i−1,n}Nn=1 = dynamic align({z(tex)i−1,n}Nn=1)

end for
▷ decoding stage:
for n ∈ {1 . . . N} do
x
(img)
n = D(ẑ(img)

0,n )

x
(tex)
n = R−1(x

(img)
n )

end for
T = merge({x(tex)

n })Nn=1

return Texture map Tsampled

images since different UV parameterizations of the same
3D object correspond to different texture maps. Instead of
fine-tuning existing image diffusion models, we adapt them
to the texture space for texture map generation.

Algorithm 1 presents our proposed texture space sam-
pling algorithm. Firstly we define a set of C(sampling) =
{C1, .., CN} camera views and render the corresponding
depth map dn in each view. Since we employ a latent dif-
fusion model, our texture space sampling method first per-
form denoising in the latent texture space and then decode
the latent to texture image. In the denoising stage, a ded-
icated diffusion denoising algorithm is applied to a set of
latent texture maps {z(tex)n }Nn=1. In the decoding stage, we
recover the texture map Tsampled from the latent space.
Denoising Stage. In the denoising stage, we adapt the
DDIM from the rendering space to the texture space and
utilize the same parameters as DDIM, including denoising
time schedule {ti}0i=T , DDIM noise schedule {σi}0i=T . For
each viewpoint, we maintain a separate latent texture which
dynamically interact during the denoising process. We be-
gin with {z(tex)T,n }Nn=1 = {0}, the zero latent texture map
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Figure 2. Overview of GenesisTex. GenesisTex generates a texture map for a given mesh M, based on a prompt. Texture Space Sampling
samples a texture map using Stable Diffusion, introducing style consistency and dynamic alignment across multiple viewpoints. Further-
more, Inpainting and Img2Img are applied to fill in the blank regions and enhance the quality of texture map details, respectively.

corresponding to N viewpoints. At each denoising step,
our goal is to predict z(tex)i−1,n from z

(tex)
i,n . We first render the

latent texture map z
(tex)
i,n to the rendering space using the

rendering function R, and then calculate the corresponding
latent image z

(img)
i,n :

z
(img)
i,n = Mn(

√
αiR(z(tex)i,n ) +

√
1− αi − σ2

i+1ϵ̂i+1,n)

+ (1−Mn)z
(bg)
n + σi+1εn

(2)
Here, Mn represents the foreground mask for viewpoint
Cn (downsampled to the same resolution as z(img)), where
foreground pixels have a value of 1, and background pix-
els have a value of 0. ϵ̂i+1,n represents the noise predicted
by the noise prediction network at step i + 1 → i (no-
tably, we define ϵ̂T+1,n ∼ N (0, I)). z

(bg)
n is the back-

ground of the latent image, which is set to Gaussian noise
at initialization. εn ∼ N (0, I) is a random Gaussian
noise. Subsequently, we predict the corresponding noise
ϵ̂i,n = ϵθ(z

(img)
i,n , ti, c, dn) for the latent image z

(img)
i,n con-

ditioned on the depth map dn. With the predicted noise, we
can obtain the predicted ẑ

(img)
0,n :

ẑ
(img)
0,n = (z

(img)
i,n −

√
1− αiϵ̂i,n)/

√
αi, (3)

Finally, we inverse render ẑ(img)
0,n to the texture space using

R−1 and update z
(bg)
n :

z
(tex)
i−1,n = R−1(ẑ

(img)
0,n ),

z(bg)n =
√
αi−1ẑ

(img)
0,n +

√
1− αi−1 − σ2

i · ϵ̂i,n
(4)

In the denoising stage, we repeat the above process T − 1
times. After each denoising step, we impose consistency

constraints on latent texture z
(tex)
i−1,n, which will be intro-

duced in Sec. 3.3. Notably, differing from DDIM where
the latent includes noise, the latent texture in our method
is an estimate of the noise-free version. This is because R
and R−1 in the denoising process require interpolation of
the latent, which may distort the noise.
Decoding Stage. To recover the texture map Tsampled,
we first decode each viewpoint’s latent separately to ob-
tain multi-view rendering. Subsequently, we inverse render
the renderings into the texture space. After obtaining multi-
view texture maps, we merge them into a single texture map
as the output. Similar to [2, 6, 33], we aim for each pixel
on each texture map to come from the viewpoint where the
corresponding point on the mesh is observed most directly.
Therefore, our merge is defined as follows:

Tsampled =

N∑
n=1

Softmax(R−1(Nn))× x(tex)
n (5)

Nn is the similarity mask at viewpoint Cn, where each pixel
represents the cosine similarity between the normal vectors
of the visible faces and the reversed view direction. We use
Softmax instead of Max because Softmax can result in more
natural transition in the texture maps.

3.3. Consistency between Latent Texture Maps

3.3.1 Dynamic Alignment

During sampling in texture space, we maintain N latent tex-
ture maps, now we introduce an alignment approach to en-
sure their local consistency. Firstly, we directly reduce these
latent texture maps to obtain a uniform latent texture map:

z
(unitex)
i−1 =

N∑
n=1

Softmax(R−1(Nn))× z
(tex)
i−1,n (6)
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Next, we blend each viewpoint’s latent texture map z
(tex)
i−1,n

with the uniform latent texture map z
(unitex)
i−1 . We do not

enforce strict alignment among the N latent texture maps
at every step. Since a latent pixel gains full meaning
only when combined with the surrounding context, which
is viewpoint-dependent, the latent texture map from each
viewpoint should contain some independent information.
Moreover, the content generated at different timestamps
varies, so the alignment constraints should adapt flexibly.
We introduce a signal c(t) for dynamically regulating the
variations in consistency during the sampling process:

z
(consistex)
i−1,n = c(ti)× z

(unitex)
i−1 +(1− c(ti))× z

(tex)
i−1,n (7)

We empirically find that maintaining strong local consis-
tency in the mid-term of denoising, while keeping weak lo-
cal consistency in the early and late stages, leads to higher
quality generation results.

3.3.2 Style Consistency

In texture space sampling, we use the noise estimation net-
work ϵθ to estimate noise for the multi-view latents, which
is responsible for content generation. So we adapt ϵθ to
ensure style consistency of estimated noise across differ-
ent views. Inspired by video diffusion models [16, 49] and
multi-view diffusion model [37], we modify all the self-
attention layers and group normalization layers in the noise
prediction network to align the style of multi-view content.
Adapted Self-Attention. In Stable Diffusion, self-attention
facilitates long-range interactions among features within an
image. We transform self-attention into cross-view atten-
tion to establish style consistency across multiple view-
points, by using the key K′ and value V′ from all view-
points,

K′ = WK [z
(img)
i,1 ; ...; z

(img)
i,n ],

V′ = WV [z
(img)
i,1 ; ...; z

(img)
i,n ].

(8)

where WK , WV are pretrained parameters.
Adapted Group Normalization. Stable diffusion adopt
group normalization as the normalization layer. Group nor-
malization divides the channels into groups and computes
within each group the mean and variance for normalization.
We convert 2D group normalization to 3D by connecting
all different views in the group normalization layer, i.e., the
mean and variance are calculated within the channel group
of all pixels across all viewpoints.

By adjusting self-attention layer and group normaliza-
tion layer, we achieve multi-view style consistency without
any additional training. In addition to the noise prediction
network ϵθ, we apply the same modifications to the decoder
D to further ensure style consistency in the multi-view de-
coded RGB images.

3.4. Texture Map Refinement

3.4.1 Post-processing: Inpainting

Since the memory cost of texture space sampling increases
with the number of viewpoints of Csampling , the number of
viewpoints N is limited. Some regions in the texture map
Tsampled may not be observed in any of the viewpoints in
Csampling . Therefore, after texture space sampling, we in-
troduce an inpainting epoch to fill texture in areas not ob-
served in C.

Firstly we define a denser set of viewpoints
C(inpainting) = {C1, .., CN1

} as compared to C(samping),
where N1 > N . We use a mask M

(blank)
C to indicate

the rendered areas with blank textures at the viewpoint
C. The entire inpainting epoch comprises N1 itera-
tions. In each iteration, we first compute the viewpoint
Cn = argmaxC M

(blank)
C with the largest blank area.

Then, we perform inpainting on the rendering x
(img)
n

using the pretrained depth conditioned Stable Diffusion
model as described in [6, 33]. During inpainting, Stable
Diffusion utilizes regions with textures as conditions to fill
in blank areas without textures. To enhance the robustness
of inpainting, we render an image using a viewpoint C0

from the set C(sampling). We then concatenate this image to
the image requiring inpainting as a additional condition for
inpainting. Compared to naive inpainting, reference-based
inpainting provides a more comprehensive condition. To
ensure a natural and smooth transition between blank areas
and textured regions, we apply Gaussian blur to the mask
M

(blank)
Cn

. Finally the inpainted rendering x
(img)′
n is used

to update the texture map:

Tn = Tn−1 × (1−R−1(M(blank))

+R−1(x(img)′
n )×R−1(M(blank))

(9)

We start withT0 = Tsampled and iterate for N1 times. Fi-
nally we get Tinpainted = TN1 .

It’s worth noting that, unlike [2, 6, 33], which relies
heavily on inpainting to maintain multi-view consistency,
in our method inpainting is performed only to patch small
areas. Therefore, the inpainting’s performance does not sig-
nificantly affect the final quality of the generated texture.

3.4.2 Post-processing: Img2Img

So far our generated texture map Tinpainted may still con-
tain unnatural transitions in some regions due to multi-view
conflicts and inpainting artifacts. To further improve the
generation quality, we introduce an Img2Img epoch.

In Img2Img epoch, we also define a set of viewpoints
C(img2img) include N2 viewpoints and iterate through
viewpoint from C(img2img). In each iteration, we encode
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the rendering image x(img)
n to the latent space using the en-

coder E and add some noise to the latent rendering. Then
we perform denoising using the pretrained depth condi-
tioned Stable Diffusion model. And finally we decode the
denoised latent back to image space using D. However,
D(E(·)) is not an identity transformation because of the re-
construction distortion of the autoencoder. So we apply the
color histogram matching to the foreground of the decoded
image to alleviate the color distortion. Finally we update
the texture map using the img2img result x(img)′

n based on
view similarity Nn :

Tn = Tn−1 × (1−R−1(Nn))

+R−1(x(img)′
n )×R−1(Nn)

(10)

We start withT0 = Tinpainted. After N2 iterations we get
Trefined = TN2

.

4. Experiments
4.1. Setup

Implementation Details. Our experiments are con-
ducted on an NVIDIA A10 GPU. We utilize the offi-
cial Stable Diffusion-v1.5 model with the ControlNet-v1.1
(depth). For Inpainting epoch and Img2Img epoch, we
use DDIM [39] as the sampler. For all samplers, we set
the number of iterations to 20 steps and the CFG scale
(classifier-free guidance scale) to 7.5. We implement the
rendering function using nvdiffrast [17] and make modifi-
cations to nvdiffrast to support inverse rendering. Texture
space sampling takes about 3 minutes to generate textures
for a single object. For more detailed parameter settings,
please refer to the supplementary materials.
Dataset. Similar to TexFusion [2], we utilize 35 meshes
to test the texture generation performance, including 11 ob-
jects from Objaverse [10], 17 from ShapeNet [5], 1 from
Text2Mesh [26], 2 from Turbosquid [1], 2 from Stanford
3D Scans [9, 45] and 2 from Three D Scans [18]. Each
object has 1-4 text descriptions, resulting in a total of 80
(mesh, prompt) pairs in this collection.
Baselines. We conduct comparisons with state-of-
the-art methods for generating textures from text: 1)
Text2Mesh [26], a method that stylizes a 3D mesh by pre-
dicting color and local geometric details which conform to
a target text prompt, harnessing the representational power
of CLIP. 2) Latent-Paint [25], an approach leveraging SDS
to obtain texture gradients from the Stable Diffusion model.
3) Text2Tex [6], a method that uses a depth-aware image
inpainting diffusion model to incrementally produce partial
textures from various viewpoints. 4) TEXTure [33], sim-
ilar to Text2Tex, but utilizes a different region segmenta-
tion strategy. 5) TexFusion [2], a method sequentially in-
painting latent texture. As TexFusion does not have publicly

Method FID (↓)
KID (↓) User study (%)

(×10−3)
Visual

Quality (↑)
Align with
Prompt (↑)

Latent-Paint 110.14 10.64 5.15 4.28
Text2Mesh 121.61 15.13 3.15 4.86
Text2Tex 101.38 8.35 18.28 19.72
TEXTure 100.47 9.22 23.42 24.86
Ours 74.58 2.89 50.00 46.28

Table 1. Quantitative comparisons with baseline methods.

texture space
sampling

Inpainting
Round

Img2Img
Round

FID(↓)
KID(↓)

(×10−3)

" % % 86.25 3.79
" % " 82.05 3.67
" " % 76.30 3.29
" " " 74.58 2.89

Table 2. Effectiveness of texture refinement.

available source code, we extract some rendered images of
generated results from their paper for comparison.

4.2. Qualitative Analysis

Fig. 3 and Fig. 5 presents visual comparisons between our
method and baseline approaches. Textures produced by
Text2Mesh are notably lacking in detail. Latent-Paint yields
textures with greater intricacy compared to Text2Mesh, but
they still exhibit considerable blurriness due to SDS lim-
itations. Inpainting-based approaches like Text2Tex and
TEXTure introduce artifacts with unnatural transitions at
inpainting mask boundaries, struggling to maintain consis-
tency across multiple views because they depend heavily
on inpainting. The output of TexFusion is compromised by
blurry details, likely a consequence of repeated noise ad-
dition during sequential sampling. In contrast, our method
stands out by producing textures that are not only clear but
also remarkably coherent.

Fig. 4 presents more results of our method. Benefiting
from the powerful prior of Stable Diffusion, our method can
generate textures of diverse styles for different geometries.

4.3. Quantitative Comparisons

FID & KID. Similar to TexFusion, we sample from pre-
trained image diffusion model to create ground truth labels.
For each mesh, we generate depth maps from the five most
common canonical viewpoints: front, back, top, and both
sides. These depth maps, along with textual descriptions,
serve as inputs to condition the Stable Diffusion model. To
ensure the focus remains on the texture of the objects, we
modify the background of the ground truth images to be
white. We visualize the textures created by various methods
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Figure 3. Qualitative comparisons with Text2Mesh [26], Latent-Paint [25], Text2Tex [6] and TEXTure [33]. In comparison with the
baselines, our GenesisTex exhibits richer details and fewer artifacts.

wine barrel

new screwdriver, 
wooden handle

green applemedieval celtic House, 
stone bricks, wooden roof

white handbag

red volkswagon beetle, 
cartoon style

golden piggy bank candle holder, 
white candles

Figure 4. Texturing results with GenesisTex.

from the same five viewpoints and evaluate their quality by
calculating the Fréchet Inception Distance (FID) and Ker-
nel Inception Distance (KID). FID and KID measure the
feature dissimilarity between two image collections, with
feature extraction performed using the Inception V3 [41].
The results in Tab.1 demonstrates that the textures gener-

Ours

TexFusion

crocodile skin 
handbag

linen fabric 
handbag

blue handbag 
with silver trims

Figure 5. Qualitative Comparisons with TexFusion [2]. Images
are extracted from their original paper.

ated by GenesisTex are closer to the ground truth compared
to those produced by baselines, indicating a superior syn-
thesis quality.
User Study. We conduct a user study to compare the qual-
ity of textures generated by our method versus those pro-
duced by baseline methods. We render all textured mesh re-
sults into videos to facilitate the presentation to users. Each
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video contains a rotating textured mesh along with the cor-
responding prompt. For each questionnaire, we randomly
show the users 10 groups of rendered videos. Each group
displays results for a specific (mesh, prompt) pair, compar-
ing outputs from baseline methods and our approach. Each
volunteer is required to answer two questions for a single
group, including which one has the highest visual quality
and which one aligns best with the prompt. Additional in-
formation about the questionnaire is available in the supple-
mentary. Finally, we received 35 valid responses from the
questionnaires, which included the results of comparisons
from 350 groups. The results of the user study are shown in
Tab. 1. In terms of both visual quality and alignment with
the text prompt, our method is preferred by the most par-
ticipants, with percentages reaching 50.00% and 46.28%,
respectively. Furthermore, we conduct a pairwise compari-
son study and the results are included in the supplementary.

4.4. Ablation Studies

Consistency in Texture Space Sampling. Our Gen-
esisTex employs style consistency and dynamic align-
ment for maintaining multi-view consistency during tex-
ture space sampling. To investigate the impact of these
two consistency strategies, we visualize the decoded
multi-view images. We set C(elevation, azimuth) =
{(0◦, 0◦), (0◦, 15◦), (0◦, 35◦), (0◦, 45◦)} to ensure that
multiple viewpoints share sufficient content. Fig. 6 illus-
trates an example with the prompt penguin toy. We can ob-
serve that without any consistency constraints, the color of
the toy varies significant across different viewpoints. After
introducing style consistency, consistency for the toy color
improves, but there are still inconsistencies in the hair and
ears. Further we use dynamic alignment and we can see the

+ Style
Consistency

+ Dynamic 
Alignment

w/o Consistency
Constrain

Figure 6. Ablation results on consistency in texture space sam-
pling. Style Consistency + Dynamic Alignment
(bottom row) achieves the best multi-view consistency.

rusty kettle

farm truck 
from cars movie, 

brown, rusty

metal 
CD player

Texture Space Sampling +Inpainting +Img2Img

Figure 7. Ablation results on texture refinement. Inpainting fills
the blank regions, while Img2Img enhances the quality of details.

consistency of details has significantly improved. We in-
clude more results in the supplementary to further demon-
strate the effectiveness of these two consistencies.
Effectiveness of Texture Refinement. After texture space
sampling, we conduct refinement on the texture, including
Inpainting and Img2Img. We validate the effectiveness of
these two modules and the results are presented in Fig. 7
and Tab. 2. Inpainting fills in areas lacking texture obtained
during texture space sampling, contributing significantly to
the improvement in visual quality. Img2Img further repairs
artifacts and enhances details, leading to a certain improve-
ment in visual quality as well.

5. Conclusion and Limitations

In this work, we propose a novel method for text-based tex-
ture generation, named GenesisTex. GenesisTex leverages
the prior of the pre-trained Stable Diffusion model by in-
troducing texture space sampling. Texture space sampling
concurrently generates multi-view content without relying
on a predefined sequence of views. Our approach can gen-
erate high-quality textures for a given 3D model in several
minutes. The primary limitation of our method is the signif-
icant memory cost associated with maintaining style con-
sistency, caused by cross-view attention. This limitation
restricts the number of viewpoints and necessitates post-
processing steps, such as inpainting and img2img. Future
work could investigate hierarchical style consistency ap-
proaches to reduce the computational costs of cross-view
attention by iterating over a smaller set of viewpoints.
Acknowledgement: This work is supported by the
Young Elite Scientists Sponsorship Program by
CAST (China Association for Science and Tech-
nology) and IEG Moonshot Program by Tencent.
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