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Figure 1. Visualization of failure modes in NeRF and MPI. (a) MPI models scenes only in each single camera frustums and performs
homography warping to render novel views. Insufficient sampling leads to incorrect depth and thus results in an overlapping ghosting effect.
Large camera movement leads to cropped corners. However, high-frequency details seem to be successfully preserved. (b) NeRF models
scenes in a continuous volumetric manner. If only sparse views with large camera movement are provided, some parts of the scene may be
sampled very little or even never. Insufficient sampling leads to collapsed details and unexpected floaters. (¢) Our approach combines the
capabilities of NeRF with the perspective-friendly nature of MPI in aerial scenes to achieve photorealistic novel view renderings.

Abstract

Neural Radiance Fields (NeRF) have been successfully
applied in various aerial scenes, yet they face challenges
with sparse views due to limited supervision. The acquisi-
tion of dense aerial views is often prohibitive, as unmanned
aerial vehicles (UAVs) may encounter constraints in perspec-
tive range and energy constraints. In this work, we introduce
Multiplane Prior guided NeRF (MPNeRF), a novel approach
tailored for few-shot aerial scene rendering—marking a pio-
neering effort in this domain. Our key insight is that the in-
trinsic geometric regularities specific to aerial imagery could
be leveraged to enhance NeRF in sparse aerial scenes. By
investigating NeRF’s and Multiplane Image (MPI)’s behav-
ior, we propose to guide the training process of NeRF with
a Multiplane Prior. The proposed Multiplane Prior draws
upon MPI’s benefits and incorporates advanced image com-
prehension through a SwinV2 Transformer, pre-trained via
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SimMIM. Our extensive experiments demonstrate that MPN-
eRF outperforms existing state-of-the-art methods applied
in non-aerial contexts, by tripling the performance in SSIM
and LPIPS even with three views available. We hope our
work offers insights into the development of NeRF-based
applications in aerial scenes with limited data.

1. Introduction

Neural Radiance Field (NeRF) [33] has succeeded in render-
ing high-fidelity novel views and many 3D applications by
modeling 3D scenes as a continuous implicit function. In con-
trast to indoor or synthetic scenes capturing simple objects
using cell phones, aerial images provide a unique bird’s-eye
view and overview of a landscape. Based on NeRF, many ap-
plications in aerial scenes have been developed, such as nav-
igation, urban planning, data augmentation, autonomous ve-
hicles, and environmental mapping [1, 7, 21, 29, 32, 40, 59].

In many real-world scenarios, unmanned aerial vehicles
(UAVs) encounter constraints such as limited perspectives,
energy limitations, or adverse weather conditions, which re-
strict their ability to acquire dense observational data. While
NeRF forms a foundational technology for many aerial ap-
plications, it is prone to overfitting on sparse training views
[13, 17, 34]. This limitation of NeRF becomes particularly
salient in the context of aerial imagery. Alleviating this prob-

5009



lem could save resources and may benefit numerous applica-
tions.

As the first to explore few-shot NeRF for aerial imagery,
we stand at the forefront of this emerging field. The land-
scape of few-shot neural rendering to date has been predom-
inantly shaped by its application to indoor and synthetic
scenes. Transfer learning based methods [3, 46, 47, 56]
aim to pre-train the model on a large number of scenes.
Yet, these approaches necessitate extensive datasets for pre-
training. This is not only resource-heavy but also impractical
to fulfill for varied aerial scenarios. Another line of works
[10, 13, 15,17, 34,38, 54, 55] seeks to impose regularization
on NeRF by exploring the universal attributes of 3D scenes
like local continuity and semantic consistency. Yet, in situa-
tions where available data is significantly sparse relative to
the complexity of the scene, these methods might struggle to
maintain their effectiveness. And the last is depth-prior-based
methods [8, 45] gain additional supervision from the scene’s
depth. These methods can be problematic in aerial images
due to the frequent occurrence of ambiguous depth cues and
the high cost of obtaining accurate depth maps. Despite their
efficacy in controlled environments, these methods fall short
of addressing the unique complexities of aerial scenes, leav-
ing a gap that our work aims to fill. We therefore ask: Can
we harness the intrinsic geometric regularities specific to
aerial imagery to broaden the capabilities of NeRF under
sparse data conditions, thereby easing the data collection
constraints?

To answer this question, we turn to earlier works on
2.5D representations such as Multiplane Image (MPI)
[23, 43, 50, 58]. MPI typically operates by extracting mul-
tiple RGB and density planes from a single image input by
an encoder-decoder style MPI generator to represent scene
geometry within the camera’s frustum. Although NeRF pro-
vides a continuous representation of a scene, MPI offers dis-
crete, frustum-confined layers that can be particularly advan-
tageous in the context of aerial imagery. This is due to UAVs
frequently capturing images from overhead perspectives that
align well with MPI’s planar representation. Additionally,
the encoder-decoder architecture of the MPI generator can
exploit the inductive biases inherent in advanced convolu-
tional and self-attention-based image processing compared
to the simple multi-layer perceptron (MLP) of NeRF, thus
enhancing the rendering of local and global scene details.
However, while MPIs present certain benefits in terms of
their adaptability to aerial perspectives, their partial scene re-
covery and limitation to individual frustums pose challenges
in creating a comprehensive 3D understanding.

In this work, we present Multiplane Prior guided NeRF
(MPNeRF), a novel method for enhancing NeRF models
in few-shot aerial scene rendering. We guide NeRF’s learn-
ing process by using a multiplane prior—a concept drawn
from the strengths of MPI and refined with cutting-edge im-

age understanding from a Swin TransformerV2 pre-trained

with SimMIM [28]. This approach unites the capabilities of

NeRF with the perspective-friendly nature of MPI, tailored

for the unique vantage points of aerial scenes. Concretely,

our approach updates the NeRF branch using pseudo labels
generated from the MPI branch. As training proceeds, NeRF
can effectively pick up finer details from the MPI branch and
the advantage of the MPI branch is implicitly distilled into

NeRF. This strategy implicitly folds a multiplane prior to

NeREF, boosting its performance in handling sparse aerial im-

agery data. Our contributions can be summarized as follows:

1. We introduce Miltiplane Prior guided NeRF (MPNeRF), a
novel framework that synergistically combines NeRF and
MPIs for enhanced few-shot neural rendering in aerial
scenes. To the best of our knowledge, this is the first
method specially designed for this task.

2. Through an investigation, we pinpoint and analyze the
typical failure modes of NeRF and MPI in aerial scenes.
We devise a simple yet effective learning strategy that
guides the training process of NeRF by learning a mul-
tiplane prior, effectively circumventing NeRF’s typical
pitfalls in sparse aerial scenes.

3. We compare MPNeRF against a suite of state-of-the-art
non-aerial scene methods, rigorously testing its adaptabil-
ity and performance in aerial scenarios. Our experiments
demonstrate MPNeRF’s superior performance, showcas-
ing its significant leap over methods previously confined
to non-aerial contexts.

2. Related Work
2.1. Scene Representations for View Synthesis.

Earlier works on light fields [6, 11, 22] achieve view synthe-
sis by interpolating nearby views given a dense set of input
images. Later works utilize explicit mesh [4, 24, 26, 44], or
volumetric [12, 16, 19, 37, 39, 49] representation to represent
the scene. More recently, layered representations have gained
attention due to their efficiency in modeling occluded content.
One such layered representation is the MPI [23, 43, 50, 58].
An MPI consists of multiple planes of RGB and « values at
fixed depths. Given an input image, an encoder-decoder net-
work typically generates the MPI within the camera frustum.
This MPI is then homography warped to the target camera
position and integrated over the planes to produce novel
views. It’s important to note that the generated MPI only
models the geometry within each camera frustum at given
depths, and the complete 3D scene is not fully recovered.
Recently, NeRF [33] has shown significant potential in
novel view synthesis. NeRF works by modeling the scene
with a continuous function of 3D coordinates and viewing
directions to output the corresponding RGB and volume
density values. Following NeRF, many methods have been
proposed. mip-NeRF [2] introduces a more robust representa-
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tion that uses a cone tracing technique and samples the cone
with multivariate Gaussian. NeRF-W [31] and Ha-NeRF[5]
have extended the applicability of NeRF to in-the-wild photo
collections through object decomposition and hallucination
techniques. For large-scale scenes, BungeeNeRF [51] pro-
poses a multiscale progressive learning method to recon-
struct cities from satellite imagery, while Block-NeRF [41]
leverages individual NeRFs for each component of the scene
to achieve large-scale scene rendering. ShadowNeRF [9] and
Sat-NeRF [30] address the issue of strong noncorrelation be-
tween satellite images taken at different times by modeling
solar light and transient objects. However, these NeRF-based
methods are still limited by the need for densely sampled
views of the scene.

2.2. NeRF with Sparse Input

Many approaches have been developed to train a NeRF from
sparse input in different directions. One straightforward di-
rection [3, 27, 42, 46, 47, 56] is to learn the general ap-
pearance of a scene or object from a large number of data.
PixelNeRF [56] adopts a CNN feature extractor to condition
each input coordinate with image features. MVSNeRF [3]
uses 3D CNN to process cost volume acquired by image
warping. These methods often require a large number of
multi-view images to be pre-trained on, which is sometimes
hard to acquire in aerial imagery. Some other techniques
[10, 17, 20, 34, 38] find it is more data-efficient to regularize
NeRF with common properties of the 3D geometry. InfoN-
eRF [17] regularizes NeRF by putting a sparsity constraint
on the density of each ray. RegNeRF [34] regularizes NeRF
by local smoothness. Other works [8, 13, 45, 48] aim to take
advantage of supervision from other sources, such as depth
or appearance. DS-NeRF [8] supervises the geometry with
sparse point cloud generated with structure from motion.
DietNeRF [13] regularize NeRF by ensuring perceptual con-
sistency within different views. ManifoldNeRF [15] builds
upon DietNeRF and takes into account viewpoint-dependent
perceptual consistency to refine supervision in unknown
viewpoints. However, we noticed none of these methods is
designed for aerial scenes and thus left a gap our work aims
to fill.

3. Method

Our objective is to train a standard NeRF model to create
highly realistic novel views of an aerial scene from a limited
number of captured perspectives. To address the challenges
of training NeRF with sparse aerial views, we introduce a
novel training approach that leverages a Multiplane Prior.
The proposed Multiplane Prior harnesses the strengths of
MPI and is enriched by advanced image understanding ca-
pabilities derived from a SwinV2 Transformer pre-trained
using SImMIM[52]. An overview of our approach is pre-
sented in Figure 2.

In Sec. 3.1, we briefly review the background related to
our method. Sec. 3.2 provides an investigation into NeRF
and MPI’s behavior in sparse aerial scenes. Sec. 3.3 describe
our overall framework.

3.1. Preliminaries

Neural Radiance Field. Given a 3D coordinate x =
(,y,2) and a 2D viewing direction d = (6, ), NeRF
aims to model the scene by solving a continuous func-
tion f (x,d) = (c, o) using multi-layer perceptron (MLP)
network, where ¢ and o represent the emissive color and
volume density at the given coordinate. NeRF cast rays
r (t) = o + td from the camera origin o along the direction
d to pass through a pixel. NeRF then samples M points
along this ray and computes its color by volume rendering:

M
C(r) =) Ti(1—exp(—0id)) i,
=1
i (1)
T’i =exp | — Z Jjéj y
j=1

where c; and o; are the color and volume density of i-th
sample along the ray and J; is the distance between adjacent
samples. C (r) denotes the final color of that pixel rendered
by NeRF. In NeRF, a dense 3D scene is recovered implicitly
in the form of neural network weights.

Multiplane Image. Multi-plane Image (MPI) represents the
scene by dividing the 3D space into a collection of planes
with RGB and density values in one camera frustum. In
training, each batch consists of a pair of images I, I; €
RI*WX3 with corresponding camera intrinsic K, K¢ €
R3*3 and relative pose Po; = [Raar € R3%3,t59, € R?]
denoted as {(Is,Ky), (I, K¢, ), P}, subscripts s and ¢ rep-
resent source and target viewpoint respectively. Depth for
each plane is sampled {z = zx|k = 1,2,3,--- , N} uni-
formly according to the scene bounds. An encoder-decoder
based MPI-generator denoted as Gypy is adopted to generate
multiple planes of RGB and density at discrete depth as:

{(ek, o) [k =1,2,3,--- N} =Gur (L) . (D)
Here the subscript k£ denotes the k-th plane. The rendering
of MPI is performed in two steps: First, establish the corre-
spondence between the pixel coordinates in the source and

target plane through homography warping as:

ts2tnT

[Utﬂ)ta 1}T =K; (RSZt -
2k

) K;l [us, vs, 1}T.

3)
Second, similar to NeRF, apply differentiable rendering to
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Figure 2. Overall pipeline for training Multiplane Prior guided NeRF (MPNeRF). Our novel MPNeRF architecture integrates a standard
NeRF branch with an MPI branch, informed by a pre-trained SwinV2 Transformer. This design introduces a multiplane prior to guide the
NeRF training, addressing the common challenges of rendering with sparse aerial data. The process begins by sampling three distinct views:
a source and target view for training with known ground truth, and an unseen view from a novel viewpoint. The NeRF model is then refined
using pseudo labels produced by the MPI branch, which are especially crucial for synthesizing views from previously unseen angles, as

shown in the pipeline.

get target view 2D images I:

N

I, = ZT’“ (1 — exp (—01d%)) ck,
k=1

k—1
T; = exp (— Z 0@) .
=1

3.2. A Closer Look at The Behavior of NeRF & MPI

To better understand the behavior of NeRF and MPI, we
conducted an investigation into their failure modes. In Figure
1, we visualize the rendering results of NeRF and MPI when
encountering large camera movements. Our findings reveal
that NeRF often produces blurry renderings, while MPI tends
to exhibit overlapping ghosting effects and cropped corners.

Recall that NeRF represents the whole 3D scene con-
tinuously by encoding the volume density and color into
an 8-layer MLP’s weights. In other words, NeRF utilizes a
learning-based approach by forcing correct rendering from
every angle of the scene with multi-view consistency. Such
a model is highly compact when supervised with sufficient
training views. When the supervised angle is limited, areas
covered less (as in the non-overlapped camera frustum in
Figure 1 (b)) are uncontrolled and may exhibit high-density
values [25, 34, 55], leading to blurry or even collapsed re-
sults. Considering the structured nature of 3D aerial scenes,
we recognize two key factors of aerial scenes: aligned per-
spectives with predominant planarity, and consistent geomet-

“

ric appearance. First, the typical flight paths of UAVs over
these scenes predominantly capture landscapes aligned with
the XY planes, providing a unique geometrical consistency.
Second, objects in aerial scenes contain common visual char-
acteristics, offering additional cues for scene interpretation
and analysis.

In contrast to NeRF, MPI models the scene within each
camera frustum and decomposes it into an explicit set of
discrete 2D planes at fixed depths. This mirrors the over-
head views and planar surfaces commonly found in aerial
scenes. Also, the convolution-based or self-attention-based
MPI-generator is inherently suited to carry prior knowledge
of the scene. However, with insufficient supervision pro-
vided, the MPI for different camera frustums may not be
properly calibrated. As a consequence, we observe the oc-
currence of overlapping ghosting effects in rendered unseen
views. Additionally, when there is substantial camera move-
ment, the corners of the target views may be excluded from
the source views, resulting in invalid renderings. However,
MPI is successful in preserving high-frequency details in the
rendered image. We attribute this capability to the power of
CNNs and the implicit encoding of prior knowledge in the
MPI generator.

Due to the distinct failure mode of MPI and its favorable
properties, we explore a strategy to enhance NeRF in a sparse
aerial context.
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3.3. Guiding NeRF with a Multiplane Prior

Based on the investigation of the different properties shown
in NeRF and MPI when encountering sparse input. We turn
to the task of few-shot aerial scene rendering and propose a
simple yet effective strategy that treats the MPI as a bridge
to convey information that is hard to learn by the traditional
NeREF pipeline.

We formulate the proposed MPNeRF with a NeRF branch,
and an MPI branch denoted as Gy, and Gy, . Given a batch
contains images from source and target viewpoints alongside
the corresponding camera parameters. To train the NeRF
branch, we cast rays for the source viewpoints pixels us-
ing the camera parameters following [33]. The MSE loss is
adopted to supervise the NeRF branch with the ground truth
color C (r):

2

Ly =Y [[C @) - c ), 5)

rcB

where, B is the set of input rays during training. For the MPI
branch, the encoder-decoder style MPI generator takes in
images from the source view and outputs the corresponding
MPI representation. In order to incorporate prior knowledge,
we adopt a frozen Swin Transformer V2 model pre-trained
with SimMIM [28] as a feature extractor to extract multi-
scale features from aerial images. These features are fused
to generate the final MPI representation. The loss function to
optimize the MPI branch contains three components: L1 loss
to match the synthesized target image I, to ground truth I, at
a pixel level, SSIM loss to encourage structure consistency,
and LPIPS loss [57] for perceptual consistency.

L= T, -1,

)
1

Lssin = 1 — SSIM (it, It) : (6)

Lypps = Hﬁb(it) — o(It)

.
The overall loss function to optimize the MPI branch would
then be a sum of these three losses:

Lvpr = L1 + Lssv + LLpps- @)

These conventional loss functions train both branches
to give predictions based on training views. Based on the
investigation in Sec. 3.2, we aim to guide the training process
of the NeRF with a multiplane prior learned by the MPI
branch. An intuitive choice is sampling a random number
of pixels from an unseen view and matching the predicted
color of two branches with an MSE loss.

2

Ly = Z HC (rij) — L

1, 7 denotes the sampled pixel coordinates in the unseen view-
point. In practice, this intuitive choice works surprisingly

®)

) .

well and the advantage of MPI is implicitly learned by NeRF.
We give a further analysis of our design choice of Ly in
Sec. 4.5.

To summarize, the final objective functions of the NeRF
branch Gy, and MPI branch Gy, are given as follows:

Lg,, = LnerF + ALy,
©))

Lg,, = Lyvpr-

In this way, the training experience of the MPI branch serves
as a multiplane prior that guides the training process of NeRF.
Even if the learned MPI is not entirely accurate, the NeRF
branch benefits from this multiplane prior and thus avoids
collapse during training.

4. Experiment
4.1. Implementation Details

Our method is implemented using PyTorch, and all exper-
iments are conducted on a GeForce RTX 3090 GPU. For
the NeRF branch, we use the original NeRF in [33]. Dur-
ing training, we randomly sample unseen views following
the strategy proposed by [13]. The batch size is set to 1024
pixel rays in both source and unseen views. For each ray,
we perform 64 coarse sampling and 32 fine sampling along
the ray. For the MPI branch, we sample 16 layers of planes
for each viewpoint. The optimization of the two branches of
MPNEeRF is performed using the Adam optimizer [18] with
a learning rate of 5 x 10~%. The hyperparameter ) in Eq. 9
issetto 1.

4.2. Datasets and Evaluation Metrics

The main experiments are conducted on 16 scenes collected
by LEVIR-NVS [50]. These scenes contain various scenarios
in common aerial imagery, including mountains, buildings,
colleges, etc. 3 and 5 views are used for training and the
rest for testing. Additional experiments and discussions can
be found in the Appendix. In line with previous studies of
few-shot neural rendering [13, 17, 34, 55], we report PSNR,
SSIM and LPIPS [57].

4.3. Baseline Methods

We compare MPNeRF against various state-of-the-art meth-
ods including NeRF [33], Mip-NeRF [2], InfoNeRF [17],
DietNeRF [13], PixeINeRF [56], RegNeRF [34] and FreeN-
eRF [55]. Among these methods, NeRF and Mip-NeRF are
designed for dense view training, we mainly explore the
performance gain achieved by MPNeRF. PixeINeRF aims
to learn a generalized NeRF representation for all scenes
and is pre-trained on the DTU dataset [14]. Since a large
domain gap might exist when applied in aerial imagery, we
report PixelNeRF’s results with and without additional fine-
tuning per scene. Other methods are designed for few-shot
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NeRF[33] 1364 1206 1445 1860 1840 1456 14.10 1498 1502 13.18 2088 14.11 1428 1544 1468 1367 15.13

Mip-NeRF[2] 12.19  10.57 1239 1726 1693 13.06 1253 13.11 1422 11.89 20.11 1225 1325 1395 1259 11.67 13.62
InfoNeRF[17] 13.09 1153 1442 1643 1643 13.68 13.99 15.00 14.87 1285 1726 12.89 14.87 1554 13.83 1259 1433
DietNeRF[13] 13.44 1220 1486 1934 18.67 15.27 1373 1578 16.68 1421 20.66 1473 16.73 16.55 1497 13.61 15.71
PSNR | PixelNeRF[56] 6.07 626 7.68 12.09 1024 6.77 6.19 735 574 6.02 1247 689 496 653 452 5.88 723
PixelNeRF ft[56] | 1244 11.76 11.74 1742 17.15 14.44 11.18 15.86 19.65 16.09 2399 1524 13.02 1570 13.86 13.86 1521
RegNeRF[34] 12.07 1079 12.60 1639 17.36 13.04 1192 1294 1349 1159 1937 1221 12,66 1398 1271 11.21 13.40
FreeNeRF[55] 13.56  11.01 1393 20.03 19.74 15.29 13.00 1629 1547 1321 2159 13.15 1891 1823 1335 11.87 1554
Ours 18.81 17.93 20.71 2550 24.92 19.56  18.64 2159 22.08 21.20 28.57 21.41 2261 2357 2071 19.73 21.72

NeRF[33 0.16 0.12  0.17 0.30 0.24 0.16 0.15 0.14 020 0.17 0.34 022 022 020 023 0.22 0.20
Mip-NeRF[2] 0.12 0.09 0.16 0.30 0.24 0.14 0.14 0.13 021 0.15 0.35 0.17 024 017 021 0.12 0.18
InfoNeRF[17] 0.15 012 0.17 0.26 0.21 0.14 0.15 015 022 0.5 0.28 0.17 030 024 021 0.11 0.19
DietNeRF[13] 0.16 0.15 0.23 0.34 0.24 0.21 0.17 0.18 028 021 0.35 026 036 026 0.28 0.19 0.24
SSIM | PixelNeRF[56] 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00  0.01 0.01 0.01
PixelNeRF ft[56] | 0.14 020  0.16 0.29 0.30 0.29 0.16 030 051 047 0.48 034 025 026 029 0.25 0.29

RegNeRF[34] 0.12 0.11 0.16 0.28 0.27 0.14 0.13 0.13 020 0.13 0.34 0.16 020 0.16 0.21 0.11 0.18

FreeNeRF[55] 024  0.11 0.21 0.37 0.33 0.26 0.17 028 027 023 0.38 021 051 042 024 0.14 0.27

Ours 0.73 072 0.79 0.82 0.81 0.73 0.71 081 080 0.84 0.89 084 0.86 085 0.79 0.76 0.80

NeRF[33] 0.59 0.62  0.60 0.56 0.58 0.58 0.61 059 0.60 0.59 0.53 059 053 057 055 0.66 0.58
Mip-NeRF[2] 0.64  0.66 0.66 0.60 0.64 0.64 0.62 0.62  0.61 0.63 0.60 0.64 056 0.62 0.63 0.65 0.63
InfoNeRF[17] 0.60  0.60  0.60 0.57 0.59 0.59 0.61 0.68 058 0.60 0.57 0.61 053 055  0.60 0.62 0.59
DietNeRF[13] 0.59 0.61  0.59 0.56 0.59 0.56 0.61 058 052 0.56 0.56 058 048 054 057 0.59 0.57
LPIPS | PixelNeRF[56] 074 073 0.75 0.74 0.74 0.74 0.74 073 074 074 0.72 073 074 074 074 0.74 0.74
PixelNeRF ft[56] | 0.70  0.61  0.72 0.59 0.59 0.58 0.67 059 048 0.52 0.56 0.61 0.67 065 0.67 0.58 0.61

RegNeRF[34] 0.65 0.65 0.67 0.61 0.62 0.63 0.63 062 063 0.64 0.59 0.65 058 0.62 0.64 0.66 0.63

FreeNeRF[55] 0.61 0.67  0.64 0.55 0.58 0.58 0.63 0.58  0.61 0.61 0.57 0.64 048 054 0.61 0.65 0.60

Ours 0.21 024  0.18 0.20 0.18 0.25 0.24 0.18 020 0.16 0.12 0.17 012 0.14 0.20 0.19 0.19

Table 1. Quantitative comparison with different baseline methods in 3 views. Our MPNeRF achieves the best results compared to prior
arts for few-shot neural rendering in indoor and synthetic scenes. The best, second-best, and third-best entries are marked in R ,and
, respectively.
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NeRF[33] 1344 12,64 1562 1991 19.39 15.79 15.11 16.69 1644 1490 22.06 1344 13.76 1525 13.67 13.31 15.71

Mip-NeRF[2] 12421094 1291 18.13 17.24 14.14 1274 13.65 15.08 1240 20.79 1321 1433 1478 13.08 11.94 1424
InfoNeRF [17] 1331 1230 1532 1882 18.63 15.90 1477 1594 1592 1320 21.57 15.17 16.05 1590 14.87 1322 15.68
DietNeRF [13] 13.82 13.01 1635 2035 19.67 16.13 1545 16.84 1731 1503 2249 1630 17.86 17.59 15.66 1477 16.79
PSNR PixeINeRF [56] 6.07 6.31 7.81 12.03  10.22 6.84 6.29 7.41 580 603 1245 685 504 659 458 592 727
PixeINeRF ft [56] | 15.67 15.05 1584 21.17 21.01 16.26 1527 1658 17.18 1521 2265 16.03 1490 1652 1536 14.83 16.85
RegNeRF[34] 1220 12,57 14.09 22.16  19.00 17.02 13.79  14.07 14.16 1248 20.67 1276 1623 1447 1294 11.82 15.03
FreeNeRF([55] 16.83 16.66 19.54 2197 2144 18.28 17.93 1981 16.63 1790 23.95 2037 2142 1790 1825 1577 19.04
Ours 20.50 19.56 23.08 26.02 24.88 21.29 2099 2192 23.07 2157 29.00 22.19 2258 2359 21.72 2050 22.65

NeRF[33] 0.16 0.12  0.17 0.30 0.24 0.16 0.15 0.14 020 0.17 0.34 022 022 020 023 0.22 0.20
Mip-NeRF[2] 0.12 0.09 0.15 0.30 0.23 0.17 0.14 0.3 021 014 036 017 025 018 021 0.12 0.19
InfoNeRF[17] 0.15 0.12  0.17 0.26 0.21 0.14 0.15 0.15 022 0.5 0.28 0.17 030 024 021 0.11 0.19
DietNeRF[13] 016  0.15 0.23 0.34 0.24 0.21 0.17 0.18 028 021 0.35 026 036 026 028 0.19 0.24
SSIM PixelNeRF[56] 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 001 001 0.02 001 001 000 001 0.01 0.01
PixeINeRF(ft)[56] | 0.14 020  0.16 0.29 0.30 0.29 0.16 030 051 0.47 0.48 034 025 026 029 0.25 0.29

RegNeRF[34] 0.12 024 0.26 0.54 0.36 0.40 0.25 0.17 020 0.I5 0.35 0.17 044 0.17 020 0.11 0.26

FreeNeRF([55] 0.47 044 044 0.44 0.39 0.35 0.41 047 033 048 0.44 054 065 041 046 0.37 0.44

Ours 0.81 0.80 0.87 0.87 0.83 0.81 0.81 0.84 085 0.87 0.90 087 087 086 0.83 0.81 0.84

NeRF[33] 0.59 0.62  0.60 0.56 0.58 0.58 0.61 059 060 0.9 0.53 059 053 057 055 0.66 0.58
InfoNeRF[17] 0.60  0.60 0.60 0.57 0.59 0.59 0.61 068 058 060 0.57 061 053 055 0.60 0.62 0.59
Mip-NeRF([2] 0.63 0.65  0.65 0.59 0.63 0.60 062 061 060 0.62 058 063 055 060 0.62 0.64 0.61
DietNeRF[13] 0.59 0.61 0.59 0.56 0.59 0.56 0.61 058 052 056 0.56 0.58 048 054 057 0.59 0.57
LPIPS PixelNeRF[56] 074 073 0.75 0.74 0.74 0.74 074 073 074 074 072 073 074 074 074 0.74 0.74
PixelNeRF(ft)[56] | 0.70  0.61 0.72 0.59 0.59 0.58 0.67 059 048 052 0.56 0.61 0.67 0.65 0.67 0.58 0.61

RegNeRF[34] 064 056 058 0.43 0.55 0.47 0.58 058 062 061 0.57 063 046 060 0.62 0.65 0.57

FreeNeRF([55] 052 050 0.52 0.52 0.55 0.53 0.53 050 056 048 0.55 047 043 055 051 0.56 0.52

Ours 0.17 020 0.14 0.18 0.18 0.21 019 0.16 0.17 0.15 0.12 015 010 0.2  0.17 0.14 0.16

Table 2. Quantitative comparison with different baseline methods in 5 views. Our MPNeRF achieves the best results compared to prior
arts for few-shot neural rendering in indoor and synthetic scenes. The best, second-best, and third-best entries are marked in s , and
, respectively.
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Figure 3. Visual comparisons on 3 selected scenes with 3 and 5 views. MPNeRF achieves photo-realistic quality in different scenes compared

with ground-truth images on novel views.

neural rendering, and we conduct comparative experiments
to investigate their performance when encountering aerial
imagery.

4.4. Comparative Results Analysis

Table 1 and Table 2 report the performance of MPNeRF
and baseline methods in the 3-view and 5-view settings.
Additionally, a qualitative comparison can be observed in
Fig. 3. A very significant improvement can be found in all
three metrics and rendering fidelity. The results demonstrate
that PixeINeRF tends to produce blurry renderings, which
we attribute to the poor localization of the CNN features.
InfoNeRF and RegNeRF use local smoothness and spar-
sity to regularize NeRF explicitly. However, in scenarios
with substantially limited information compared to the scene
complexity, the performance of these methods could be com-
promised. DietNeRF implicitly distills the prior knowledge
encoded in CLIP [36] and achieves better results. FreeN-
eRF investigates the frequency in NeRF training. By pro-
gressively learning each frequency component, FreeNeRF

has demonstrated remarkable effectiveness. Nonetheless, the
progressive frequency regularization leads to relatively flat
results, favoring PSNR but not metrics that consider local
structures such as SSIM and LPIPS.

In fact, NeRF’s representation makes recovering 3D
scenes from sparse inputs ill-posed. MPNeRF acquires supe-
rior results by the guiding of a multiplane prior to gaining a
stronger understanding of local structures and semantics. In
the more challenging scenes, such as Building in Figure 3,
MPNeRF successfully avoids collapse during training.

4.5. Ablation Studies and Further Analyses

Ablation Analysis. We ablate the proposed multiplane prior
to our method, and the results are shown in Table 3. In-
tuitively, it seems better to use MPI as a guide after fully
training it, we first construct experiments where a two-stage
training strategy is employed. We then assess the impact
of SwinV2’s pre-trained weights on performance by remov-
ing them. Next, we evaluate the contribution of multi-scale
features by disconnecting the skip connections in the MPI
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generator. Finally, we integrate the multiplane directly within
NeRF’s sampling space, omitting the separate MPI branch,
to examine the inductive biases’ influence on performance.
Employing MPI concurrent branch during training leads to
slight improvements. We believe this is because the MPI’s
training experience itself carries information. The exclusion
of SwinV2’s pre-trained weights declines performance, af-
firming the value of the encoded prior knowledge. Similarly,
omitting the multi-scale feature connection diminishes the
fidelity of the rendered images. Most significantly, the ab-
sence of the MPI generator results in a marked decrease in
all metrics. This suggests that uncalibrated MPI generated
by self-attention and convolution is important to avoid de-
generate solutions. Collectively, these findings demonstrate
that each element of the proposed multiplane prior is crucial
for the superior performance of MPNeRF.

Methods PSNR SSIM LPIPS
Ours 21.72  0.80 0.19
training MPI beforehand 21.49  0.76 0.20
w/o pre-trained weights 2046  0.75 0.24
w/o multi-scale feature 20.05 0.71 0.25
w/o MPI generator 16.38 0.42 0.52
Baseline NeRF 15.13  0.20 0.58

Table 3. Ablation analysis on the proposed Multiplane Prior.

Further Analyses on the design choice of the £;;,;. One
intuitive thought of designing £, is that geometry recov-
ered by the MPI branch may provide more information than
color alone. So we design two experiments, one is to match
the expected depth of both branches as an auxiliary depth
loss, and another is to model density on each ray as a distribu-
tion [17] and minimize the KL divergence. Another intuitive
thought is that the choice of L£j;,; should reflect the local
or nonlocal relationships within the pixels. Therefore, we
adopt the recently proposed S3IM loss [53] to measure this
relationship.

PSNR SSIM LPIPS
21.34  0.75 0.20
w/t ray matching 21.11 0.71 0.21
w/t relation matching  21.19  0.70 0.21
Ours 2172 0.80 0.19

Design Choice
w/t depth matching

Table 4. Design choice of the £asvi

However, as shown in Table. 4, the result suggests that
these intuitive designs worsen the results. The first two de-
sign involves direct supervision of the depth generated by
the MPI generator. The last involves capturing the non-local
relationships between the predictions of the NeRF and the
MPI branch. Since the learned MPI is not entirely accurate,
we believe the noise within pseudo-labels may compromise
performance with these enhanced supervisions applied.

Data Efficiency

26

N N
N S

PSNR on Test Set (dB)

3 4 5 7 9 10 1

6 8
Number of Input Views

Figure 4. We investigate the data efficiency achieved by our method.
Our method requires up to 63.5% training images to achieve a
similar performance compared to a vanilla NeRF model.

Impact of Different Pre-trained Models. We perform a
comparison study on three pre-trained vision transformers,
i.e., CLIP [36], DINOV2 [35], and SimMIM [52]. We adopt
the base model in our experiment. As shown in Table 5, all
of these methods provide comparable results. The results
show that the Swin Transformer pre-trained via SimMIM
[52] outperforms others. We believe this can be attributed to
the rich global and local details learned by SimMIM and the
hierarchical structure of the Swin Transformer.

Pre-trained Image Encoder PSNR SSIM LPIPS

20.15  0.70 0.25
20.01  0.68 0.25
21.72  0.80 0.19

CLIP [36]
DINOV?2 [35]
SimMIM (Ours) [52]

Table 5. Impact of different pre-trained models.

Data Efficiency Since we aim to improve the capability of
NeRF in aerial scenes when only sparse views are available,
we investigate how much data MPNeRF can save to achieve
similar rendering results compared to the original NeRF that
requires dense view supervision. As shown in Fig. 4, the
results show that our method requires up to 63.5% training
images. This may help save energy and establish resource-
efficient applications for UAVs based on NeRF.

5. Limitations and Conclusion

In this work, we introduce Multiplane Prior guided NeRF
(MPNEeRF), the first approach designed for few-shot aerial
scene rendering. Through the guiding of the multiplane prior,
MPNEeRF effectively overcomes the typical pitfalls in spare
aerial scenes. We hope our work can provide insight into fu-
ture NeRF-based applications in aerial scenes. However, fur-
ther exploration of the guiding strategy design is needed. In
particular, incorporating uncertainty prediction mechanisms
or implementing grid-based representations holds promise
for future research directions.

5016



References

(1]

(2]

(3]

(4]

[5

—

(6]

[7

—

(8]

(9]

(10]

(11]

[12]

[13]

Brendan Alvey, Derek T Anderson, Andrew Buck, Matthew
Deardorft, Grant Scott, and James M Keller. Simulated photo-
realistic deep learning framework and workflows to accelerate
computer vision and unmanned aerial vehicle research. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3889-3898, 2021. 1

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5855-5864, 2021. 2,
5,6

Anpei Chen, Zexiang Xu, Fugiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14124-14133, 2021. 2, 3
Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko
Lehtinen, Alec Jacobson, and Sanja Fidler. Learning to predict
3d objects with an interpolation-based differentiable renderer.
Advances in neural information processing systems, 32, 2019.
2

Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng,
Xuan Wang, and Jue Wang. Hallucinated neural radiance
fields in the wild. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
12943-12952, 2022. 3

Abe Davis, Marc Levoy, and Fredo Durand. Unstructured
light fields. In Computer Graphics Forum, pages 305-314.
Wiley Online Library, 2012. 2

Celso M de Melo, Antonio Torralba, Leonidas Guibas, James
DiCarlo, Rama Chellappa, and Jessica Hodgins. Next-
generation deep learning based on simulators and synthetic
data. Trends in cognitive sciences, 2022. 1

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan.
Depth-supervised nerf: Fewer views and faster training for
free. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12882-12891,
2022. 2,3

Dawa Derksen and Dario 1zzo. Shadow neural radiance fields
for multi-view satellite photogrammetry. Computer Vision
and Pattern Recognition, 2021. 3

Thibaud Ehret, Roger Mari, and Gabriele Facciolo. Regular-
ization of nerfs using differential geometry. arXiv preprint
arXiv:2206.14938,2022. 2, 3

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F. Cohen. The Lumigraph. Association for Comput-
ing Machinery, New York, NY, USA, 1 edition, 2023. 2
Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learning
a neural 3d texture space from 2d exemplars. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8356-8364, 2020. 2

Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthesis. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5885-5894, 2021. 1,2, 3, 5,6

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

5017

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola,
and Henrik Aanas. Large scale multi-view stereopsis evalu-
ation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 406—413, 2014. 5
Daiju Kanaoka, Motoharu Sonogashira, Hakaru Tamukoh,
and Yasutomo Kawanishi. Manifoldnerf: View-dependent
image feature supervision for few-shot neural radiance fields.
In 34th British Machine Vision Conference 2023, BMVC 2023,
Aberdeen, UK, November 20-24, 2023. BMVA, 2023. 2, 3
Abhishek Kar, Christian Héne, and Jitendra Malik. Learning
a multi-view stereo machine. Advances in neural information
processing systems, 30, 2017. 2

Mijeong Kim, Seonguk Seo, and Bohyung Han. Infonerf: Ray
entropy minimization for few-shot neural volume rendering.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12912-12921, 2022. 1,
2,3,5,6,8

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

Kiriakos N Kutulakos and Steven M Seitz. A theory of shape
by space carving. International journal of computer vision,
38:199-218, 2000. 2

Minseop Kwak, Jiuhn Song, and Seungryong Kim. Geconerf:
Few-shot neural radiance fields via geometric consistency.
arXiv preprint arXiv:2301.10941, 2023. 3

Obin Kwon, Jeongho Park, and Songhwai Oh. Renderable
neural radiance map for visual navigation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9099-9108, 2023. 1

Marc Levoy and Pat Hanrahan. Light field rendering. Pro-
ceedings of the 23rd annual conference on Computer graphics
and interactive techniques, 1996. 2

Jiaxin Li, Zijian Feng, Qi She, Henghui Ding, Changhu Wang,
and Gim Hee Lee. Mine: Towards continuous depth mpi
with nerf for novel view synthesis. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 12578-12588, 2021. 2

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge
sampling. ACM Transactions on Graphics (TOG), 37(6):
1-11, 2018. 2

Zhemin Li, Hongxia Wang, and Deyu Meng. Regularize
implicit neural representation by itself. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10280-10288, 2023. 4

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft raster-
izer: A differentiable renderer for image-based 3d reasoning.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 7708-7717, 2019. 2

Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng
Wang, Christian Theobalt, Xiaowei Zhou, and Wenping Wang.
Neural rays for occlusion-aware image-based rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 7824-7833, 2022. 3

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al.



[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12009-12019, 2022. 2, 5
Dominic Maggio, Marcus Abate, Jingnan Shi, Courtney
Mario, and Luca Carlone. Loc-nerf: Monte carlo localiza-
tion using neural radiance fields. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 4018—
4025. IEEE, 2023. 1

Roger Mari, Gabriele Facciolo, and Thibaud Ehret. Sat-NeRF:
Learning multi-view satellite photogrammetry with transient
objects and shadow modeling using rpc cameras. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1311-1321, 2022. 3

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7210-7219, 2021. 3

Christopher Maxey, Jachoon Choi, Hyungtae Lee, Dinesh
Manocha, and Heesung Kwon. Uav-sim: Nerf-based synthetic
data generation for uav-based perception. arXiv preprint
arXiv:2310.16255,2023. 1

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 1,2,5,6

Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,
Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-
nerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5480-5490, 2022. 1,2,3,4,5,6

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo,
Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel
Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2:
Learning robust visual features without supervision. arXiv
preprint arXiv:2304.07193, 2023. 8

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PMLR, 2021. 7, 8

Steven M Seitz and Charles R Dyer. Photorealistic scene
reconstruction by voxel coloring. International Journal of
Computer Vision, 35:151-173, 1999. 2

Seunghyeon Seo, Yeonjin Chang, and Nojun Kwak. Flipnerf:
Flipped reflection rays for few-shot novel view synthesis.
arXiv preprint arXiv:2306.17723,2023. 2,3

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
NieBner, Gordon Wetzstein, and Michael Zollhofer. Deepvox-
els: Learning persistent 3d feature embeddings. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2437-2446, 2019. 2

Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davi-
son. imap: Implicit mapping and positioning in real-time. In

(41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

5018

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 6229-6238, 2021. 1

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-NeRF: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8248-8258, 2022. 3

Alex Trevithick and Bo Yang. Grf: Learning a general radi-
ance field for 3d scene representation and rendering. 2020.
3

Richard Tucker and Noah Snavely. Single-view view synthe-
sis with multiplane images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 551-560, 2020. 2

Michael Waechter, Nils Moehrle, and Michael Goesele. Let
there be color! large-scale texturing of 3d reconstructions. In
Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V 13, pages 836-850. Springer, 2014. 2

Guangcong Wang, Zhaoxi Chen, Chen Change Loy, and Zi-
wei Liu. Sparsenerf: Distilling depth ranking for few-shot
novel view synthesis. arXiv preprint arXiv:2303.16196, 2023.
2,3

Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venu-
gopalan, Zhangyang Wang, et al. Is attention all nerf needs?
arXiv preprint arXiv:2207.13298, 2022. 2, 3

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srini-
vasan, Howard Zhou, Jonathan T Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4690-4699, 2021. 2, 3

Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu,
and Jie Zhou. Nerfingmvs: Guided optimization of neural
radiance fields for indoor multi-view stereo. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 5610-5619, 2021. 3

Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a single
image. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7467-7477, 2020.
2

Yongchang Wu, Zhengxia Zou, and Zhenwei Shi. Remote
sensing novel view synthesis with implicit multiplane repre-
sentations. IEEE Transactions on Geoscience and Remote
Sensing, 60:1-13, 2022. 2, 5

Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,
Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
BungeeNeRF: Progressive neural radiance field for extreme
multi-scale scene rendering. 2021. 3

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9653-9663, 2022. 3, 8

Zeke Xie, Xindi Yang, Yujie Yang, Qi Sun, Yixiang Jiang,
Haoran Wang, Yunfeng Cai, and Mingming Sun. S3im:



[54]

[55]

[56]

(571

(58]

[59]

Stochastic structural similarity and its unreasonable effec-
tiveness for neural fields. In International Conference on
Computer Vision, 2023. 8

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey
Shi, and Zhangyang Wang. Sinnerf: Training neural radiance
fields on complex scenes from a single image. In European
Conference on Computer Vision, pages 736—753. Springer,
2022. 2

Jiawei Yang, Marco Pavone, and Yue Wang. Freenerf: Im-
proving few-shot neural rendering with free frequency regu-
larization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8254-8263,
2023. 2,4,5,6

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4578-4587, 2021. 2, 3,
5,6

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
586-595,2018. 5

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: learning view syn-
thesis using multiplane images. ACM Transactions on Graph-
ics (TOG), 37(4):1-12, 2018. 2

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun
Bao, Zhaopeng Cui, Martin R Oswald, and Marc Pollefeys.
Nice-slam: Neural implicit scalable encoding for slam. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12786-12796, 2022. 1

5019



