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Abstract

Event cameras offer many advantages over traditional
frame-based cameras, such as high dynamic range and low
latency. Therefore, event cameras are widely applied in di-
verse computer vision applications, where event-based key-
point detection is a fundamental task. However, achieving
robust event-based keypoint detection remains challenging
because the ground truth of event keypoints is difficult to
obtain, descriptors extracted by CNN usually lack discrimi-
native ability in the presence of intense noise, and fixed key-
point detectors are limited in detecting varied keypoint pat-
terns. To address these challenges, a novel event-based key-
point detection method is proposed by learning dynamic de-
tectors and contextual descriptors in a self-supervised man-
ner (SD2Event), including a contextual feature descriptor
learning (CFDL) module and a dynamic keypoint detector
learning (DKDL) module. The proposed SD2Event enjoys
several merits. First, the proposed CFDL module can model
long-range contexts efficiently and effectively. Second, the
DKDL module generates dynamic keypoint detectors, which
can detect keypoints with diverse patterns across various
event streams. Third, the proposed self-supervised signals
can guide the model’s adaptation to event data. Extensive
experimental results on three challenging benchmarks show
that our proposed method significantly outperforms state-
of-the-art event-based keypoint detection methods.

1. Introduction
Different from traditional frame-based cameras, event cam-
eras possess a distinctive capability to capture individual
events at their corresponding pixel positions, triggered by
changes in pixel brightness over a temporal resolution.
This unique paradigm offers unique advantages, including
high dynamic range, low latency, microsecond temporal
resolution, low power consumption, and high pixel band-
width [1, 11, 17, 21, 25]. Owing to these inherent charac-
teristics, event cameras are widely applied in diverse com-
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Figure 1. Illustration of our motivation. (a) presents the keypoint
matching results for an event frame pair by applying the Super-
point model trained on conventional image datasets. Correct and
incorrect matches are denoted by green and red stars, respectively.
(b) shows the comparative analysis between our agent-based at-
tention and full attention, where full attention would aggregate ir-
relevant noise from event streams. (c) illustrates the diverse event
keypoint patterns (e.g., bicycles and mountains in the second row)
across different event frames, which can be effectively captured by
our proposed dynamic keypoint detectors ({D}2i=1).

puter vision applications, such as structured light 3D scan-
ning [19], optical flow estimation [3, 32], HDR image re-
construction [26, 28] and Simultaneous Localization and
Mapping (SLAM) [21]. Among these applications, key-
point detection for event data has attracted increasing at-
tention from both academia and industry [1, 13, 15, 17, 18],
due to its fundamental role in 3D scene analysis. Never-
theless, achieving robust event-based keypoint detection re-
mains challenging due to various factors, such as the unique
spatio-temporal data structure, diverse noise patterns, illu-
mination fluctuations, and viewpoint transformations.

To address the above challenges, numerous methods
have been proposed for event-based keypoint detection [1,
7, 15, 18, 29]. Generally, existing approaches can be cate-
gorized into two main classes including hand-crafted meth-
ods [1, 7, 13, 20, 29] and data-driven methods [15, 18].
Hand-crafted methods localize salient keypoints through
detectors designed based on human prior knowledge[1, 7,
29]. For example, evHarris [29] creates a binary frame indi-
cating the event’s occurrence at each pixel. Then, the Harris
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corner detector [14] is applied to the binary frame to classify
events as corners. However, these methods are inherently
constrained by human knowledge and struggle to consis-
tently detect repeatable event keypoints with diverse noise
and motion patterns. To alleviate the problem, several data-
driven methods have been proposed [15, 18]. For instance,
the state-of-the-art method EventPoint [15] transforms the
asynchronous event stream into an artificial frame, referred
to as Tencode. Then, the SuperPoint [8] model is applied to
Tencode to establish supervisory signals. Subsequently, a
Superpoint-like architecture network is trained to learn de-
tectors and descriptors. Despite the success of these meth-
ods, there still exist three notable limitations. (1) Lack of
ground truth annotations. To address this issue, Event-
Point [15] generates supervisory signals by leveraging the
SuperPoint [8] model. Notably, the SuperPoint model is
trained on conventional image datasets rather than event
datasets. (2) Limited feature receptive field. EventPoint
utilizes the Convolutional Neural Network (CNN) for fea-
ture extraction, resulting in a constrained receptive field.
(3) Fixed event keypoint detectors. In [15], keypoint de-
tectors are trained on specific event datasets. During testing,
these detectors keep fixed, potentially facing challenges in
effectively capturing various event keypoint patterns across
different testing datasets.

Based on the above discussions, we find that the design
of supervisory signals, as well as the descriptor and detec-
tor learning are all crucial in event-based keypoint detec-
tion. To enhance the robustness of event-based keypoint
detection against diverse challenges, the following three is-
sues should be considered carefully. (1) How to design
suitable supervisory signals. Owing to the unique sens-
ing paradigm of event cameras, obtaining ground truth key-
points for event streams proves to be challenging. To ad-
dress this challenge, existing methods leverage keypoint de-
tectors for conventional image datasets to generate supervi-
sory signals. Specifically, SILC [18] applies the Harris cor-
ner detector to conventional images provided by the dataset,
which are captured in the same array of pixels as event
data. Differently, EventPoint applies the SuperPoint [8]
model to event frames to establish supervisory signals. It’s
worth noting that SuperPoint is trained on conventional im-
age datasets rather than event datasets. However, due to the
inherent distinctions between event data and conventional
image data, these supervisory signals may introduce poten-
tial limitations to the model’s learning. As shown in Fig-
ure 1 (a), the keypoints extracted by the Superpoint model
exhibit limited repeatability and are not suitable as effec-
tive supervisory signals. Thus, it becomes imperative to in-
troduce novel self-supervised signals to guide the model’s
learning effectively. (2) How to learn feature descrip-
tors with long-range dependencies. The state-of-the-art
method [15] utilizes CNN to extract features from event

frames. However, due to the limited receptive field of CNN,
the extracted features would lack discriminative ability, par-
ticularly in complex scenarios such as high-speed motions.
To address this challenge, attention mechanisms, proven ef-
fective in capturing long-range dependencies in computer
vision [9, 30], offer a potential solution. Nevertheless, due
to the inherent noise characteristics in event streams, tra-
ditional full attention may aggregate irrelevant noise. As
shown in Figure 1 (b), with full attention, the activation ar-
eas corresponding to the event keypoint located on the tree
(marked by a star) exhibit notable noise distributed across
streets, mountains, and buildings. Additionally, the com-
putational burden of full attention hinders the efficiency of
event stream processing. Consequently, there is an urgent
need to propose an effective and efficient attention mecha-
nism to capture long-range dependencies in features while
mitigating the impact of noise. (3) How to learn keypoint
detectors suitable for various event keypoint patterns.
Because of the inherent nature of event data, keypoints in
event streams exhibit diverse patterns in response to diverse
factors such as varying noise levels, motion complexities,
and real-world conditions, as shown in Figure 1 (c). Tra-
ditional methods typically rely on hand-crafted algorithms
to construct keypoint detectors [1, 13, 17, 18, 29], which
are easily constrained by human prior knowledge. To ad-
dress this limitation, data-driven methods have been pro-
posed. However, these methods can only obtain a fixed de-
tector learned from specific datasets [15], which may limit
their adaptability to different event keypoint patterns during
testing. Thus, it is necessary to design dynamic keypoint
detectors, which can flexibly update with the input and cap-
ture diverse keypoint patterns across various event streams.

Motivated by the above observations, we propose a
novel event-based keypoint detection method by learning
dynamic event-based detectors and contextual descriptors
in a self-supervised manner. Our proposed model mainly
consists of a contextual feature descriptor learning module
and a dynamic keypoint detector learning module. In the
contextual feature descriptor learning module, it is de-
signed to capture long-range dependencies effectively and
efficiently. Given the artificial frames transformed from
event streams, the original event features are extracted us-
ing a Multi-Layer Perceptron (MLP). Subsequently, a group
of descriptor agents are introduced to aggregate contextual
information within these original event features via our de-
signed agent-based attention mechanism. Specifically, the
descriptor agents are first applied to interact with event fea-
tures via the attention mechanism. Then, we identify the
updated descriptor agent with the highest similarity score
for each event feature and concatenate them to obtain en-
hanced event features. Considering the noise properties in
event data, agent-based attention can reduce the effect of ir-
relevant noise while capturing the long-range dependencies.
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Finally, we use a MLP to fuse the enhanced features to ob-
tain contextual features. In the dynamic keypoint detector
learning module, it is proposed to generate adaptive key-
point detectors which can identify diverse patterns of event
keypoints across various event frames and lead to robust
keypoint detection. Given the contextual feature descrip-
tors, we first design a set of detector prototypes, which can
interact with the contextual features via the attention mech-
anism to obtain detector agents. Recognizing the noise in-
herent in event data, we propose to refine the detector agents
with the updated descriptor agents, which serve as the clus-
ter center of the event features. Specifically, we first apply
the attention mechanism to model the interaction between
the detector agents and the updated descriptor agents. Each
updated detector agent is concatenated with the updated de-
scriptor agent which exhibits the highest similarity score. In
this way, enhanced keypoint detectors are acquired. Finally,
we use a MLP to fuse the enhanced keypoint detectors to
obtain dynamic keypoint detectors. The generated detec-
tors update with each input during both training and test-
ing dynamically, and can capture diverse patterns of event
keypoints from different event frames. As for the super-
visory signal, we utilize pre-designed transformations as
the reference ground truth to warp the original event frames
and create corresponding event frame pairs. These pairs
are then input into our proposed model to obtain keypoint
heatmaps. Finally, we employ a cosine similarity constraint
on the heatmap pairs, which can guide our model to identify
consistent and repeatable keypoints in event streams.

The main contributions of this work can be summarized
as follows. (1) We propose a novel event-based keypoint de-
tection method by learning dynamic detectors and contex-
tual descriptors for event streams in a self-supervised man-
ner. Our model excels in extracting discriminative feature
descriptors and realizing robust keypoint detection, even
in some extremely challenging scenarios. (2) The pro-
posed supervisory signals can guide the model’s adaptation
to event data. The proposed contextual feature descriptor
learning module can model long-range dependencies effec-
tively and efficiently via our proposed agent-based atten-
tion. And the dynamic keypoint detector learning module
generates dynamic keypoint detectors, which can flexibly
update with the input and detect keypoints with diverse pat-
terns across various event streams. (3) Extensive experi-
mental results on three challenging benchmarks show that
our proposed method outperforms state-of-the-art event-
based keypoint detection methods significantly.

2. Related Work
In this Section, we briefly overview methods that are related
to hand-crafted event-based keypoint detection and data-
driven event-based keypoint detection.
Hand-crafted Event-based Keypoint Detection. Early
methods for hand-crafted event-based keypoint detection

can date back to [7], which classifies incoming events as
corners by considering the optical flow [3] orientation in
their local neighborhood. Recently, an increasing number of
hand-crafted keypoint detection approaches [1, 13, 20, 29]
for event cameras have been proposed. Among these meth-
ods, evHarris [29] creates a binary frame that denotes the
event’s presence at individual pixels. Then, the Harris cor-
ner detector [14] is applied to the binary frame to identify
corner events. Differently, evFast [20] proposes a novel
adaptation of the FAST detector [27] and applies it to the
widely adopted artificial frame known as Time Surface [3].
Building upon [20], Arc [1] introduces an innovative event
filter to alleviate redundancy, which significantly improves
efficiency. In contrast, luvHarris [13] presents a novel adap-
tation of the Harris corner detector for event data. By
reusing convolution results across neighboring pixels in cor-
ner detection, luvHarris mitigates redundant processing and
enhances overall efficiency. Despite their success, the hand-
crafted designs exhibit limitations in adapting to the unique
characteristics of event data, thereby constraining further
advancements. Consequently, recent approaches have be-
gun to focus on data-driven event-based keypoint detection.

Data-driven Event-based Keypoint Detection. Recently,
several methods [15, 18] propose to leverage machine
learning techniques to detect keypoints for event streams.
Among these methods, SILC [18] introduces a novel event
representation which remains invariant to the speed of dy-
namic objects. Based on this representation, SILC employs
a Random Forest [5] as the detector to discriminate corner
events. To derive supervisory signals, the Harris corner de-
tector is applied to conventional images provided by the
dataset, which are captured in the same array of pixels as
event data. Differently, EventPoint [15] proposes a novel
event representation called Tencode by leveraging both po-
larities and timestamps. Then, supervisory signals are de-
rived by applying the SuperPoint model [8] to the Tencode
representation. Notably, the SuperPoint model is trained
on conventional image datasets. Finally, a Superpoint-like
architecture network is trained to learn detectors and de-
scriptors. These data-driven keypoint detectors have proven
success. However, the supervisory signals generated from
keypoint detectors on the conventional image datasets are
not suitable. And the features extracted by CNN with the
limited receptive field may lack discriminability. Besides,
the keypoint detectors maintain fixed after training, pos-
ing limitations on the extraction of repeatable keypoints.
In contrast, our proposed self-supervised signals can guide
the model’s learning effectively. The contextual feature de-
scriptor learning module can capture the long-range depen-
dencies effectively and efficiently. Besides, the designed
dynamic keypoint detector learning module can adaptively
generate keypoint detectors, which excel in capturing di-
verse keypoint patterns across various event streams.
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3. Our Approach
In this section, we present our proposed method by learning
dynamic keypoint detectors and contextual descriptors for
event data in a self-supervised manner. The overall archi-
tecture is illustrated in Figure 2.

3.1. Overview
As shown in Figure 2, our proposed model consists of
a contextual feature descriptor learning (CFDL) module
and a dynamic keypoint detector learning (DKDL) mod-
ule. Given the original event streams, we utilize an event
encoder to obtain event frames, which are then sent into
a Multi-Layer Perceptron (MLP) to extract original event
features. In the CFDL module, we define a set of de-
scriptor agents to interact with event features via our pro-
posed agent-based attention, resulting in updated descriptor
agents and enhanced descriptors. Subsequently, enhanced
descriptors are sent into a MLP to generate contextual fea-
ture descriptors. In the DKDL module, we define a set of
detector prototypes to interact with contextual feature de-
scriptors via traditional attention. The produced detector
agents then engage with updated descriptor agents using our
proposed agent-based attention. These enhanced detectors
are subsequently processed through a MLP to generate dy-
namic keypoint detectors. Upon obtaining contextual fea-
ture descriptors and dynamic keypoint detectors, we lever-
age a dot product operation to generate keypoint heatmaps.
To guide the model’s learning, we impose cosine similarity
constraints on pairs of heatmaps corresponding to original
features and those warped by pre-defined transformations.

3.2. Event Encoder

The output of an event camera is represented as an asyn-
chronous stream of events {ei}i∈N. Each event ei includes
four-dimensional information (xi, yi, ti, pi), where (xi, yi)
refer to the pixel coordinates of the event, ti represents
the timestamp when the event is captured, and polarity
pi ∈ {−1, 1} is the sign of the brightness change. Exist-
ing event-based keypoint detection methods [1, 13, 18, 20]
generally adopt Time Surface [3] as the event stream rep-
resentation. Given a fixed time interval ∆t, a single frame
representation IE is generated according to the latest events
captured at each pixel in the time window (T, T +∆t),

IE[xi, yi] = ti ←− (xi, yi, ti, pi). (1)

Although proven effective, Time Surface ignores informa-
tion provided by polarity, thereby constraining its poten-
tial for further success. To address this problem, Event-
Point [15] proposes an effective event stream representa-
tion named Tencode by incorporating polarities and times-
tamps. Inspired by [15], we propose a novel representation
by coupling polarity and time more tightly. Specifically,

given a fixed time interval ∆t, events falling in the time
window(T, T +∆t) can form a frame IE as follows,

IE[xi, yi] = (255, tiT , 0)←− (xi, yi, ti,+1), (2)
IE[xi, yi] = (0, 255− tiT , 255)←− (xi, yi, ti,−1), (3)

where ti is the timestamp of the latest event occurred at
pixel (xi, yi), and tiT = 127× (T +∆t− ti)/∆t.

3.3. Contextual Feature Descriptor Learning

To efficiently and effectively capture long-range dependen-
cies within event streams, we design an agent-based at-
tention mechanism. After obtaining event features E ∈
Rd×hw, we initialize M descriptor agents AF ∈ Rd×M

with a set of learnable parameters [31]. Then, we utilize
the agent-based attention to model the interaction between
event features E and descriptor agents AF, resulting in en-
hanced descriptors F̃. Finally, we generate contextual de-
scriptors F from F̃ via a MLP. Next, we introduce the de-
tails of agent-based attention.
Agent-based Attention. As shown in Figure 2, we aim to
utilize descriptor agents AF to aggregate contextual infor-
mation from event features E. Specifically, keys and values
arise from event features E, and queries arise from descrip-
tor agents AF,

Q = WQAF,K = WKE,V = WVE, (4)

where WQ ∈ Rdk×d,WK ∈ Rdk×d,WV ∈ Rd×d are
linear projections. Then, the descriptor agents are updated
with the multi-head attention mechanism [30],

A∗
F = Attention (Q,K,V) = V · Softmax(K⊤Q). (5)

In this way, A∗
F can effectively capture long-range depen-

dencies. Considering the noise properties in event data, we
update event features E with the most relevant updated de-
scriptor agents A∗

F. To achieve this, we calculate similarity
scores SF by a dot product operation between them, i.e.
SF = A∗

F
⊤E. Then, we can obtain each enhanced descrip-

tor as follows,

F̃i = [Ei,A
∗
Fj ], where j = argmax

k
SFk,i. (6)

Here, [, ] is a vector concatenation operation. And F̃i, Ei,
A∗

Fj denote the ith enhanced descriptor, the ith event fea-
ture and the jth updated descriptor agent, respectively.

3.4. Dynamic Keypoint Detector Learning

After obtaining the contextual feature descriptors F, we aim
to learn dynamic keypoint detectors, which can capture di-
verse event keypoint patterns across various event streams.
Specifically, we first initialize detector propotypes PD and
model the interaction between PD and contextual features
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Figure 2. The architecture of our SD2Event consists of two major components, including a contextual feature descriptor learning (CFDL)
module and a dynamic keypoint detector learning (DKDL) module. The event stream is first sent into an event encoder to obtain the event
frame IE. We employ a MLP on IE to generate original event features E. Then, in the CFDL module, we define a set of descriptor agents
AF to interact with flattened features E via our proposed agent-based attention, resulting in contextual descriptors F. Next, in the DKDL
module, we define a set of detector prototypes PD to interact with contextual descriptors F via the attention mechanism. The resulting
detector agents AD are refined with updated descriptor agents AF

∗ via our proposed agent-based attention, yielding dynamic detectors D.
Then, the keypoint heatmap SC is calculated with dynamic detectors D and contextual descriptors F. Besides, we utilize the pre-designed
transformation U to warp the event frame IE. The resulting IE

′ is also sent into above modules to obatin heatmap SC
′. Finally, we enforce

a cosine similarity constraint on SC and SC
′ to guide the learning of our model. For more details, please refer to the text.

F to produce detector agents AD. Recognizing the noise
inherent in event data, we propose to refine the detector
agents AD with the updated descriptor agents A∗

F via the
agent-based attention, resulting in enhanced detectors D̃.
Subsequently, we utilize a MLP to fuse enhanced detectors
D̃ to generate dynamic keypoint detectors D. Finally, we
realize heatmap generation with dynamic detectors D and
contextual descriptors F. Below, we introduce the designs
of agent-based attention and heatmap generation in detail.
Agent-based Attention. As shown in Figure 2, we aim to
utilize detector agents AD to aggregate information from
the updated descriptor agents A∗

F via the attention opera-
tion. Formally,

Q = WQAD,K = WKA∗
F,V = WVA∗

F, (7)

A∗
D = Attention(Q,K,V) = V · Softmax(K⊤Q). (8)

Then, we calulate the similarity scores SD between updated
descriptor agents A∗

F and updated detector agents A∗
D by a

dot product operation, i.e. SD = A∗
F
⊤A∗

D. Then, we can
obtain each enhanced detector as follows,

D̃i = [A∗
Di,A

∗
Fj ], where j = argmax

k
SDk,i. (9)

Heatmap Generation. After obtaining the contextual de-
scriptors F ∈ Rd×hw and dynamic keypoint detectors D ∈
Rd×N , multiple score maps SN ∈ RN×hw are generated by
a dot product operation between them, i.e. SN = D⊤F. We
then reshape SN and obtain unflattened multiple heatmaps
SN ∈ RN×h×w. Finally, we average SN along the first
channel to obtain heatmaps SC ∈ R1×h×w.

3.5. Supervisory Signals

To guide the model learning effectively, we design a novel
supervisory signal. For each event frame IE generated from
the event streams, we randomly generate the camera pose
transformation U ∈ SE(3) as the reference ground truth to
warp IE and obtain IE

′. We send the event frame pairs into
our proposed model to obtain keypoint heatmaps SC and
SC

′ . Then, we define the cosine similarity loss as follows,

Lcosim

(
IE, IE

′,U
)
= 1− 1

|O|
∑
o∈O

cosim
(
SC[o],SC

′[o]
)
,

(10)
where O is the set of overlapping patches between IE and
IE

′. Besides, we introduce two other objective functions to
guide our model learning. To guide the proposed detectors
to focus on salient positions, we use the peaky loss,

Lpeaky (IE) = 1− 1

|O|
∑
o∈O

(
max
(i,j)∈o

SCij − mean
(i,j)∈o

SCij

)
.

(11)
For the goal of expanding the discrepancy among updated
descriptor agents A∗

F and updated detector agents A∗
D, we

impose the diversity loss Ldiv = Ldf + Ldd, where

Ldf =
1

M(M − 1)

M∑
j=1

M∑
k=1,k ̸=j

〈
A∗

Fj ,A
∗
Fk

〉
∥A∗

Fj∥2
∥∥A∗

Fk

∥∥
2

, (12)

Ldd =
1

N(N − 1)

N∑
j=1

N∑
k=1,k ̸=j

〈
A∗

Dj ,A
∗
Dk

〉
∥A∗

Dj∥2
∥∥A∗

Dk

∥∥
2

. (13)
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Finally, we combine these loss functions by a weighted sum
to train our model, i.e.,

Ltotal = Lcosim + α1Lpeaky + α2Ldiv, (14)

where α1 and α2 are weight terms to balance these losses.

4. Experiments
In this section, we first introduce implementation details.
Then, we show experimental results and some visualiza-
tions on three public benchmarks. Finally, we conduct a
series of ablation studies to verify the effectiveness of each
component. Please refer to the Supplementary Material
for some discussions and more visualization results.

4.1. Implementation Details

In this work, we implement the proposed model in Py-
torch [23]. We propose a novel event stream representation
inspired by [15]. Then a two-layer MLP network is applied
to extract original event features. In the CFDL module, the
number of descriptor agents M is set to 32. The dimension
of image features d = 128. In the attention operation, cross-
attention heads are set to 8. And dk (the dimension of Q and
K) in Eq. (4)and Eq. (7) is equal to d. In the DKDL module,
the number of detector agents N is set to 16. The weight
terms α1 and α2 in the objective function are set to 0.6 and
0.8. Keypoints can be obtained by applying the local max-
ima filtering and the threshold constraint on the score map
SC . For run-time performance, our proposed model runs at
9ms for a 240×180 event frame. For training, we adopt the
same outdoor training dataset [12] as [15], the same indoor
training dataset from [21] as [18]. All parameters in our
proposed model are randomly initialized and trained from
scratch with the Adam optimizer. The learning rate is set to
10−3, and the weight decay is 5 × 10−4. It converges after
12 hours of training on a single RTX 3090 GPU.

4.2. Datasets and Evaluation Metrics

Event-Camera. The Event-Camera dataset [21] is recorded
by a DAVIS-240C sensor [4], which combines a conven-
tional frame-based camera and an event sensor in the same
array of pixels. The primary challenging factors for Event-
Camera lie in the presence of various camera motions and
intense noise within the scene. To evaluate our model, we
adopt the same subsets as [1, 18]. As for the evaluation
metric, we follow [18] and report the reprojection error.
N-Caltech101. The N-Caltech101 [22] dataset is an event
version of the well-known Caltech101 dataset [10]. It
comprises 101 distinct object categories, with sample sizes
varying between 31 and 800 per category. N-Caltech101
presents a challenge due to its inclusion of diverse object
categories, coupled with substantial variations in viewing
angles, scales, and background textures within each cate-
gory. We follow the same procedure as [16, 24] to evaluate

Table 1. Evaluation results on the Event-Camera dataset. We re-
port the reprojection error in pixels.

Methods Reprojection Error
Arc [1] 2.58
evFast [20] 2.50
evHarris [29] 2.46
SILC [18] 2.16
SD2Event (ours) 1.64

1

Figure 3. Qualitative results on the Event-Camera dataset. Green
stars denote the extracted keypoints.

1

Figure 4. Qualitative results on the N-Caltech101 dataset. Green
stars denote the extracted keypoints.

our method. As for the evaluation metric, we follow [25],
and report the intersection over union (IoU) matching score.
HVGA ATIS Corner. The HVGA ATIS Corner [18] con-
sists of 7 sequences depicting planar scenes. The dataset
is challenging since diverse texture variations exist. Here,
the evaluation metric we adopt is the same as [6, 15, 18].
And we report the reprojection error, which is computed by
estimating a homography from the matched points.

4.3. Comparison with State-of-the-art Methods

Results on Event-Camera dataset. We compare our
model with previous state-of-the-art event-based keypoint
detection methods [6, 15, 18, 20, 29]. As shown in Table 1,
our method excels with a reprojection error of 1.64 pixels,
surpassing all other methods by a significant margin. Com-
pared with SILC [18], our method improves by 0.52 pixels
in reprojection error. Finally, we show some qualitative re-
sults in Figure 3. We attribute the top performance to three
delicate designs. Our proposed novel self-supervised sig-
nals can guide the model’s adaptation to event data. And the
CFDL module can obtain discriminative descriptors under
challenges such as intense noise and violent motion. More-
over, the DKDL module generates dynamic keypoint detec-
tors capable of capturing diverse motion and noise patterns
within various event streams.
Results on N-Caltech101 dataset. We compare our
method with the state-of-the-art event-based keypoint de-
tection method [15]. As shown in Table 2, our method out-
performs Eventpoint [15] by 6% in feature matching IoU.
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Table 2. Evaluation results on the N-Caltech101 dataset. We report
the feature matching IoU in percentage.

Methods IoU
DART (FIFO size=5000) [25] 0.67
DART (FIFO size=2000) [25] 0.72
Eventpoint [15] 0.83
SD2Event (ours) 0.89

Table 3. Evaluation results on the HVGA ATIS Corner dataset.
We report the reprojection error in pixels across event frame pairs
at time intervals of 25ms, 50ms, and 100ms.

Methods 25ms 50ms 100ms

evHarris [29] 2.57 3.46 4.58
Chiberre et al. [6] 2.56 - -
SILC [18] 2.45 3.02 3.68
evFast [20] 2.12 2.63 3.18
Eventpoint [15] 1.27 1.41 1.72
SD2Event (ours) 0.67 0.76 0.93

1

Figure 5. Qualitative results on the HVGA ATIS Corner dataset.
Green dots denote the extracted keypoints.

Finally, we show some qualitative results in Figure 4. The
results demonstrate that our proposed self-supervised sig-
nals can facilitate repeatable event keypoint detection. Our
proposed CFDL module can capture long-range contexts
and generate discriminative descriptors under extreme ap-
pearance changes. Besides, our DKDL module produces
dynamic keypoint detectors, which can update with the cur-
rent input and focus on varying event keypoint patterns
caused by diverse object categories and intense noise.
Results on HVGA ATIS Corner dataset. We compare our
model with previous state-of-the-art event keypoint detec-
tion methods [6, 15, 18, 20, 29]. As shown in Table 3, Our
proposed method obtains the best performance among all
event-based keypoint detection methods. Specifically, com-
pared with Eventpoint [15], our method improves by 0.60,
0.65, and 0.79 pixels in reprojection error for event frame
pairs at time intervals of 25ms, 50ms, and 100ms, respec-
tively. Finally, we show some qualitative results in Figure 5.
It can be seen that our proposed method can realize event
keypoint detection robust to intense noise and varying de-
grees of texture. The reason may be that well-designed su-
pervisory signals can effectively guide our model to per-
ceive unique characteristics of event data. Our designed
DKDL module produces dynamic keypoint detectors that
can identify different patterns of event keypoints across var-
ious degrees of texture. Besides, our proposed CFDL mod-
ule can capture long-range dependencies, resulting in dis-
criminative descriptors even in texture-less regions.

Table 4. Effectiveness of each component on the HVGA ATIS
Corner dataset. We report the reprojection error in pixels across
event frame pairs at time intervals of 25ms, 50ms, and 100ms.

Models DKDL CFDL 25ms 50ms 100ms

[A] ✗ ✗ 5.45 10.34 16.99
[B] ✗ ✓ 1.13 1.27 1.54
[C] ✓ ✗ 0.89 1.01 1.25
[D] ✓ ✓ 0.67 0.76 0.93

4.4. Ablation Studies

To analyze the effects of each component in our proposed
method, we perform a series of ablation studies on the
HVGA ATIS Corner dataset. In Table 4, for the model
[A], We first extract original features E using a MLP, and
the keypoint detector is implemented with a 1 × 1 convo-
lutional kernel. Then, for the model [B], original features
E are processed by CFDL to obtain contextual descriptors,
while the keypoint detector is implemented with a 1 × 1
convolutional kernel. For the model [C], original features
E are not processed by CFDL, and dynamic detectors are
learned by sending E into the DKDL. The model [D] is the
full model of our proposed method.
Effects of the CFDL module. As shown in Table 4, with
the proposed CFDL module, the performance on the HVGA
ATIS Corner is improved notably. In specific, the perfor-
mance of model [B] is improved by 4.32, 9.07, and 15.45
pixels in reprojection error for event frame pairs at time in-
tervals of 25ms, 50ms, and 100ms, compared to the model
[A]. And the model [D] also performs better than the model
[C]. The main reason is that our CFDL module can model
long-range dependencies effectively, which is beneficial to
handling challenging factors such as high-speed moving ob-
jects for robust event-based keypoint detection.
Impacts about the number of descriptor agents in the
CFDL module. Here, we study the performance with dif-
ferent numbers of descriptor agents (M ) in the CFDL mod-
ule. M is picked from the set {2, 4, 8, 16, 32, 64}, and
we evaluate the performance on the HVGA ATIS Corner
dataset. As shown in Table 5, we find that the overall per-
formance of the model improves with the increase of M ,
and the model can get the best performance when M = 32.
There is no performance gain when M continues to in-
crease. The reason may be that the setting M = 32 is able
to adequately capture different contexts in the input event
frames, and more descriptor agents may impede model
training due to a lack of sufficient explicit constraints.
Effects of the DKDL module. As shown in Table 4, when
adding our proposed DKDL module, the performance on
the HVGA ATIS Corner dataset can achieve significant im-
provement. Specifically, the performance of model [C] is
gained by 4.56, 9.33, and 15.74 pixels in reprojection error
for event frame pairs at time intervals of 25ms, 50ms, and
100ms, compared to the model [A]. Besides, the model [D]
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Table 5. Impacts of the number of descriptor agents on HVGA
ATIS Corner. We report the reprojection error in pixels across
event frame pairs at time intervals of 25ms, 50ms, and 100ms.

Models 25ms 50ms 100ms

M=2 0.85 0.96 1.18
M=4 0.77 0.87 1.07
M=8 0.72 0.82 1.01
M=16 0.69 0.78 0.96
M=32 0.67 0.76 0.93
M=64 0.68 0.77 0.95

Table 6. Impacts of the number of detector prototypes on HVGA
ATIS Corner. We report the reprojection error in pixels across
event frame pairs at time intervals of 25ms, 50ms, and 100ms.

Models 25ms 50ms 100ms

N=2 0.96 1.09 1.34
N=4 0.82 0.92 1.11
N=8 0.71 0.81 0.99
N=16 0.67 0.76 0.93
N=32 0.68 0.77 0.94

1

Figure 6. Qualitative comparisons between our proposed agent-
based attention mechanism (the first column) and the standard full
attention (the second column).

also performs much better than the model [B]. The main
reason is that our proposed DKDL module can generate dy-
namic keypoint detectors, which excel in capturing diverse
keypoint patterns across various event streams.
Impacts about the number of detector prototypes in the
DKDL module. To investigate the influences of the number
of detector prototypes (N ) in the DKDL module, we pick N
from the set {2, 4, 8, 16, 32} and evaluate the performance
on the HVGA ATIS Corner dataset. As shown in Table 6,
we find that setting N = 16 yields the best performance. As
N increases beyond 16, there is no discernible improvement
in performance. This observation suggests that the model
with N = 16 is sufficient to capture diverse event keypoint
patterns on the HVGA ATIS Corner dataset.
Effects of the agent-based attention. To demonstrate
the effectiveness of our proposed agent-based attention,
we show some qualitative comparisons between the agent-
based attention mechanism and the standard full atten-
tion [2]. As shown in Figure 6, we can find that the full
attention introduces extra noise from event streams when

Table 7. Effectiveness of self-supervised signals. We report the re-
projection error in pixels across event frame pairs at time intervals
of 25ms, 50ms, and 100ms.

Model 25ms 50ms 100ms

[A] 1.03 1.16 1.42
[B] 0.83 0.94 1.15
[C] 0.67 0.76 0.93

conducting global interactions. For example, in the first
row, we select a pixel from the car to interact with other
pixels. For the full attention, attention scores are elevated
for pixels in numerous irrelevant regions, such as those lo-
cated on roads, which are generally noise from event data.
By contrast, our proposed agent-based attention mechanism
has a clear attention score map, as shown in Figure 6, which
can effectively capture the long-range dependencies while
mitigating the effect of irrelevant noise. Thanks to the well-
designed agent-based attention, our proposed CFDL mod-
ule can generate discriminative descriptors even under com-
plex challenges. And our proposed DKDL module can ad-
equately perceive diverse event keypoint patterns from dif-
ferent event streams and remain impervious to intense noise
from event data, leading to robust keypoint detection.
Effects of the self-supervised signals. As shown in Ta-
ble 7, the effectiveness of our proposed self-supervised sig-
nals is fully demonstrated. For model [A], we follow the
same procedure as EventPoint [15] and utilize the Super-
point [8] model to generate supervisory signals. In the case
of model [B], we utilize pre-defined homography transfor-
mations to generate image pairs for self-supervised learn-
ing. The model [C] is our SD2Event, which leverages
pre-defined camera pose transformations to generate image
pairs for self-supervised learning.

5. Conclusion
In this work, we propose a novel event-based keypoint de-
tection method by learning dynamic detectors and contex-
tual descriptors for event streams in a self-supervised man-
ner. Our method consists of three elegant designs, including
self-supervised signals specifically designed for event key-
points, a CFDL module and a DKDL module. With these
three well-designed components, our proposed method ex-
cels in extracting discriminative feature descriptors and re-
alizing robust keypoint detection for event streams, even
in some extremely challenging scenarios. Extensive ex-
perimental results on three challenging benchmarks demon-
strate the effectiveness of our proposed method.

6. Acknowledgement
This work was partially supported by the “14th Five-Year
Plan” Civil Space Technology Preliminary Research Project
(D040103), National Nature Science Foundation of China
(Grant 12150007), and Youth Innovation Promotion Asso-
ciation CAS 2018166.

3062



References
[1] Ignacio Alzugaray and Margarita Chli. Asynchronous corner

detection and tracking for event cameras in real time. IEEE
Robotics and Automation Letters, 3(4):3177–3184, 2018. 1,
2, 3, 4, 6

[2] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. In Proceedings of the International Conference on
Learning Representations, 2015. 8

[3] Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi
Ieng, and Chiara Bartolozzi. Event-based visual flow. IEEE
Transactions on Neural Networks and Learning Systems, 25
(2):407–417, 2013. 1, 3, 4

[4] Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii
Liu, and Tobi Delbruck. A 240× 180 130 db 3 µs latency
global shutter spatiotemporal vision sensor. IEEE Journal of
Solid-State Circuits, 49(10):2333–2341, 2014. 6

[5] Leo Breiman. Random forests. Machine Learning, 45:5–32,
2001. 3

[6] Philippe Chiberre, Etienne Perot, Amos Sironi, and Vincent
Lepetit. Detecting stable keypoints from events through im-
age gradient prediction. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 1387–1394, 2021. 6, 7

[7] Xavier Clady, Sio-Hoi Ieng, and Ryad Benosman. Asyn-
chronous event-based corner detection and matching. Neural
Networks, 66:91–106, 2015. 1, 3

[8] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages
224–236, 2018. 2, 3, 8

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. In Proceedings of the International Conference on
Learning Representations, 2021. 2

[10] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-
ative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 178–178. IEEE,
2004. 6

[11] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,
Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al.
Event-based vision: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(1):154–180, 2022. 1

[12] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide
Scaramuzza. Dsec: A stereo event camera dataset for driv-
ing scenarios. IEEE Robotics and Automation Letters, 6(3):
4947–4954, 2021. 6

[13] Arren Glover, Aiko Dinale, Leandro De Souza Rosa, Simeon
Bamford, and Chiara Bartolozzi. luvharris: A practical
corner detector for event-cameras. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 44(12):10087–
10098, 2022. 1, 2, 3, 4

[14] Chris Harris, Mike Stephens, et al. A combined corner and
edge detector. In Proceedings of the Alvey Vision Confer-
ence, pages 1–6, 1988. 2, 3

[15] Ze Huang, Li Sun, Cheng Zhao, Song Li, and Songzhi Su.
Eventpoint: Self-supervised interest point detection and de-
scription for event-based camera. In Proceedings of the
IEEE Winter Conference on Applications of Computer Vi-
sion, pages 5396–5405, 2023. 1, 2, 3, 4, 6, 7, 8

[16] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Be-
yond bags of features: Spatial pyramid matching for recog-
nizing natural scene categories. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2169–2178. IEEE, 2006. 6

[17] Ruoxiang Li, Dianxi Shi, Yongjun Zhang, Kaiyue Li, and
Ruihao Li. Fa-harris: A fast and asynchronous corner detec-
tor for event cameras. In Proceedings of the IEEE Interna-
tional Conference on Intelligent Robots and Systems, pages
6223–6229, 2019. 1, 2

[18] Jacques Manderscheid, Amos Sironi, Nicolas Bourdis, Da-
vide Migliore, and Vincent Lepetit. Speed invariant time
surface for learning to detect corner points with event-based
cameras. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 10245–10254,
2019. 1, 2, 3, 4, 6, 7

[19] Nathan Matsuda, Oliver Cossairt, and Mohit Gupta. Mc3d:
Motion contrast 3d scanning. In Proceedings of the IEEE
International Conference on Computational Photography,
pages 1–10, 2015. 1

[20] Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza.
Fast event-based corner detection. In Proceedings of the
British Machine Vision Conference, 2017. 1, 3, 4, 6, 7

[21] Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi Del-
bruck, and Davide Scaramuzza. The event-camera dataset
and simulator: Event-based data for pose estimation, visual
odometry, and slam. The International Journal of Robotics
Research, 36(2):142–149, 2017. 1, 6

[22] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and
Nitish Thakor. Converting static image datasets to spiking
neuromorphic datasets using saccades. Frontiers in neuro-
science, 9:437, 2015. 6

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
6

[24] Bharath Ramesh, Cheng Xiang, and Tong H Lee. Multiple
object cues for high performance vector quantization. Pat-
tern Recognition, 67:380–395, 2017. 6

[25] Bharath Ramesh, Hong Yang, Garrick Orchard, Ngoc Anh
Le Thi, Shihao Zhang, and Cheng Xiang. Dart: distribu-
tion aware retinal transform for event-based cameras. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(11):2767–2780, 2020. 1, 6, 7
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