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Abstract

A major focus of clinical imaging workflow is disease
diagnosis and management, leading to medical imaging
datasets strongly tied to specific clinical objectives. This
scenario has led to the prevailing practice of developing
task-specific segmentation models, without gaining insights
from widespread imaging cohorts. Inspired by the training
program of medical radiology residents, we propose a shift
towards universal medical image segmentation, a paradigm
aiming to build medical image understanding foundation
models by leveraging the diversity and commonality across
clinical targets, body regions, and imaging modalities. To-
wards this goal, we develop Hermes, a novel context-prior
learning approach to address the challenges of data hetero-
geneity and annotation differences in medical image segmen-
tation. In a large collection of eleven diverse datasets (2,438
3D images) across five modalities (CT, PET, T1, T2 and cine
MRI) and multiple body regions, we demonstrate the merit
of the universal paradigm over the traditional paradigm on
addressing multiple tasks within a single model. By exploit-
ing the synergy across tasks, Hermes achieves state-of-the-
art performance on all testing datasets and shows superior
model scalability. Results on two additional datasets reveals
Hermes’ strong performance for transfer learning, incre-
mental learning, and generalization to downstream tasks.
Hermes’s learned priors demonstrate an appealing trait to
reflect the intricate relations among tasks and modalities,
which aligns with the established anatomical and imaging
principles in radiology. The code is available'.

1. Introduction

Medical image segmentation methods generate accurate de-
lineations of anatomical structures which are crucial for dis-
ease diagnosis [15, 55] and treatment planning [18, 20, 47].
To date, the prevailing paradigm for medical image seg-
mentation promotes the development of separate models for
specific medical objects (e.g., organs or tumors) and image
modalities (e.g., CT or MR) [8, 19, 22, 33, 43, 65]. This
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Figure 1. A) Clinical diagnostic workflows typically focus on
specific specialties and diseases, leading to the curation of im-
age datasets that are partially annotated, multi-modal, and multi-
regional. B) Traditional training paradigms involve training sep-
arate models for each segmentation task (or dataset). In contrast,
we emphasize a universal medical image segmentation paradigm
aiming at one model for all, leading to a robust and generalizable
universal model for diverse tasks.

paradigm is often constrained by the limited training data
from the same domain, resulting in compromised model ro-
bustness and generalizability. Further scaling up data size
for specific segmentation tasks is challenging due to the high
cost of data acquisition, collection, and annotation [21, 50].
Moreover, the current paradigm is unable to exploit rela-
tionships among medical imaging tasks that are critical for
disease understanding. These hurdles together confine the
capability and scalability of medical image segmentation
models.

Inspired by radiology residency programs [1, 2, 53], we
recognize that radiologists’ expertise arises from routine
exposure to wide-ranging images across body regions, dis-
eases, and imaging modalities. Despite the fact that the hu-
man body exhibits anatomical variability, it is fundamentally
composed of various types of tissues and structures whose ap-
pearance in images are often statistically similar [54]. These
tissues display specific visual characteristics under differ-
ent imaging modalities [4, 31]. During the training process,
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residents acquire prior knowledge about the regions of inter-

est (ROI) across imaging modalities for interpreting various

types of patterns. Inspired by this observation, we prioritize

a paradigm shift toward universal medical image segmenta-

tion, which seeks to harness the diversity and commonality

of medical images, to build a comprehensive, unified seg-
mentation model. However, addressing the heterogeneity
among medical imaging tasks faces daunting challenges.
First, each image dataset has partial and incomplete ROI
annotations due to their distinct needs and clinical objectives.

As seen in Figure 1, dataset 1 contains annotations for 15

abdominal organs, while dataset 2 is only annotated for the

liver and tumor. Secondly, class definitions can vary depend-

ing on the clinical target. To illustrate this point, in dataset 1,

the liver is annotated as a whole organ, whereas in dataset 2,

the same liver region is divided into two categories of liver

and tumor. Additionally, images from different datasets can
exhibit significant statistical divergence due to factors such

as imaging modalities and body regions (dataset 3 and k).

Given these challenges, intriguing questions remain to be
fully explored. How can segmentation tasks with different
target ROIs mutually benefit from each other? Is the underly-
ing feature representation transferable across different body
regions? Despite the visual difference in imaging modal-
ities, how can a model discern and utilize the meaningful
commonalities between them?

In this paper, we strive to answer the above questions.

Our main contributions are:

* By exploring the universal medical image segmentation
paradigm, we show a single unified model can handle tasks
across various ROIs, anatomical regions, and modalities.

* We introduce a novel context-prior pool to learn two impor-
tant types of prior knowledge, fask and modality, directly
from medical images. Different from using one-hot [63]
or CLIP embeddings [44] to inject task information, Her-
mes’s learned priors are able to capture complex relations
among tasks and modalities that are aligned with estab-
lished anatomical and imaging principles.

* Through a carefully curated eleven datasets, our system-
atic analysis reveals the strong capability of Hermes in
accuracy and model scalability.

¢ With two additional downstream datasets, we show Her-
mes’s superior performance in transfer learning, incremen-
tal learning, and generalization, affirming the efficacy of
the universal paradigm in acquiring robust and generaliz-
able image representations.

2. Related Work

Partially labeled data problem. Disease-specific clinical
workflows often yield datasets with single-modality images
and partial annotations tailored to specific clinical objec-
tives. Early efforts aimed to combine multiple datasets by
conditioning on labels [16], regularizing organ size distri-

bution [66], or generating multi-organ pseudo labels for
co-training [30]. Recent approaches propose different con-
ditioning methods to inject task information. DoDNet [63]
embeds the task index with one-hot vectors as additional
model inputs, but these one-hot task vectors are orthogonal
with no task relations embedded. CLIP-driven universal
model [44] conditions on CLIP text embeddings, but the
CLIP encoder, rarely trained with medical data, struggles
with the semantics and relationships of complex medical con-
cepts (Fig. 4, 5). MultiTalent [58] uses multiple task-specific
heads. Moreover, DoDNet, CLIP-driven and MultiTalent
limit their scope to a single body region or imaging modal-
ity. UniSeg [61] introduces novel learnable task prompts
but does not consider the modality information. In contrast,
our work focuses on learning priors directly from a diverse
array of medical data sources by addressing both task and
modality heterogeneity simultaneously.

Prior knowledge in medical image analysis. Prior knowl-
edge typically involves the understanding of anatomical
structures or specifics of imaging modalities before further
processing. Traditionally, atlas-based techniques [0, 32]
and statistical shape models [14], leverage prior anatomi-
cal knowledge by aligning a predefined atlas or template
to a patient’s image. In deep learning, major methods em-
bed prior knowledge into network architectures or training
strategies. For example, integrating graphical models to
embed spatial and anatomical knowledge [11, 35], or intro-
ducing a shape prior knowledge regularization loss through
an autoencoder [20, 48]. Our work diverges by harnessing
context-prior learning to learn task and modality knowledge
directly from medical data, where this prior knowledge is
injected into the backbone to enhance segmentation during
inference.

Universal image segmentation aims to unify semantic, in-
stance, and panoptic segmentation into one framework [12,
13, 64]. However, in 3D medical imaging, it is uncommon to
find multiple instances of the same object. In addition, fully
annotated medical datasets are rarely available in the com-
munity, making instance and panoptic segmentation highly
unsuitable. As a result, universal medical image segmenta-
tion focuses on the semantic segmentation of medical objects.
While sharing similarities, developing universal medical im-
age segmentation possesses unique challenges, including the
presence of partial annotation, conflicting class definitions,
and heterogeneous medical-image contents [50].

3. Method
3.1. Preliminary

Problem definition. We hereby define universal medical im-
age segmentation as the endeavor to train a universal model
that learns from diverse medical datasets and performs vari-
ous image segmentation tasks. Given a set of K datasets, let
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Figure 2. [llustration of Hermes. A context-prior knowledge pool, including task and modality priors, is learned with the backbone. Through
oracle-guided selection and combination of these priors, Hermes can address a variety of segmentation tasks and image modalities.

Dy, = {(xk, v, mk, t) )%, be the k-th dataset comprised
of N, data pairs, where each data pair (x},, y}.) € (X% % Vk).
my, denotes the imaging modality of Dy, and £, represents
the tasks contained in Dy, where each task represents the
segmentation of a unique clinical target annotated in ), and
|tx| = |Vk|. The collective dataset is given by D = UleDk,
the corresponding collective tasks are 7 = UX_ ¢, and the
collective modalities are M = U< my,. The objective is to
train a single model fy : X — ), parameterized by 6, where
X = Ui(:le and )Y = U{leyk.

3.2. Oracle-guided context-prior learning

In this section, we introduce Hermes, an oracle-guided
context-prior learning approach, as depicted in Fig. 2. Draw-
ing inspiration from radiology residency training, Hermes
explicitly learns context-prior knowledge along with the seg-
mentation backbone from diverse medical imaging sources.
In line with radiologists’ practice for image interpretation,
Hermes uses the tasks to be processed ¢, and the imaging
modality m as guiding oracles during inference. These or-
acles guide the selection and combination of two types of
priors - task and modality - to aid the backbone in addressing
any specified tasks from the collective dataset. As a model-
agnostic approach, Hermes can be seamlessly integrated
with existing segmentation backbones, offering a versatile
solution for universal medical image segmentation.

Task context prior. To learn from varied datasets and han-
dle the incomplete annotation and potential conflict of class
definition, each task in 7 is formed as a binary segmentation
task. For example, if ROIs in different datasets share the
exact same definition, they are considered a single task, oth-
erwise are treated as separate tasks. Each task is associated
with a unique task prior, which is implemented as a learnable
token. For the collective dataset D comprising |7 | tasks, we
initialize a task prior pool p+ € RITIXC where C denotes
the token dimension. Given a training image from Dy, we

use the task IDs %5 as an oracle to guide the selection of
corresponding task priors p, € RIt1XC from the pool, on
which the model is conditioned to complete specified tasks.
This design enables Hermes to flexibly select and combine
task priors based on clinical objectives, accommodating a
wide array of medical segmentation tasks.

Modality context prior. Medical images come with a va-
riety of imaging modalities, each possessing distinct image
attributes, intensity profiles, and noise patterns. To reduce
the modeling difficulty, we introduce a modality prior for
each modality. Similar to the task prior, we initialize a modal-
ity prior pool p ,, € RIMI*XIXC wwhere [ denotes the length
of the token, and C' is the dimension of each token. We
employ multiple tokens of length [ for each modality. When
an image with modality my, is processed, we select the corre-
sponding modality prior token p,,,, € R'*“ and concatenate
it with the task prior tokens: p = [p,, , p,,, ] € RUItIFDxC,
Conditioned segmentation. Given an encoded image fea-
ture map X € REXPXHXW from the segmentation back-
bone, where D, H, W represent the 3D feature map sizes,
a prior fusion module is applied to adaptively fuse context-
prior tokens and image features:

P, X = Fusion(p, X). (1)

Here, p = [Py, , D, ] represents the posterior tokens and and

X is the prior-injected feature map. The prior fusion mod-
ule can be implemented with the attention mechanism. For
CNN backbones, we employ bi-directional cross-attention
modules. For Transformer, we merge the prior tokens into
the attention module (detailed in the supplementary). The
posterior tokens, processed through a multilayer perceptron
(MLP), yield posterior prototypes serving as class classifiers.
The predicted probability distribution for each task is com-
puted via the inner product of these posterior task prototypes
and image features, followed by a sigmoid function:

§=po(yx = Lz, p;,) = o((P,,, X)), (2)
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where p;, € RIt1%C" s the posterior prototypes (overload

the p,, in equation (1)), X € ROXD'XH'XW' g the out-
put feature map of the decoder, § € RIts[xD'xH'xW’ i
the predicted binary probability map for tasks t;. To help
modality knowledge learning, we use auxiliary supervision
on modality priors. Specifically, we predict image modal-
ity using posterior modality prototypes via global average
pooling and a linear layer: §,,,,q = Linear(GAP(ﬁmk)).
During training, Hermes learns class-specific representa-
tions for each task prior token and typical image features for
each modality prior. In inference, context-priors and image
feature maps undergo a bi-directional update, where priors
assimilate instance-specific information from feature maps,
and in turn, feature maps are augmented with learned prior
knowledge. This interactive process is realized by attention
weights, making Hermes a dynamic and adaptive model that
enhances segmentation performance.
Hierarchical modeling. The effectiveness of hierarchical
modeling is well-established in dense prediction tasks [9,
42]. We apply our context-prior approach hierarchically at
multiple scales. The posterior prototypes from each scale are
concatenated together and processed by an MLP as the final
prototypes for segmentation. This design allows Hermes
to learn prior knowledge across different scales, effectively
merging multi-scale contextual information to improve the
segmentation performance.

Algorithm 1 Hermes Training

1: Input: ATraiAnin_g dataset D = Uszle, where D, =
{(x}, Yy, my, ty,) j&l Randomly initialized segmentation

backbone fy, task and modality prior pool p4 and p ,,

2: while not converged do

3 forjin[1, 2, ..., batch size] do

4 Randomly choose a training sample x, y from D

5: Task and modality priors selection: p, and p,,

6 Prior concatenation: p = [p;, P,,]

7 end for

8 Assemble training mini-batch B

9 Predict segmentation and modality: §, §,,,4 = fo(x, p)

10: Compute loss: Lgeg + ALmod

11: Update fo, py and p
12: end while

Training and losses. Hermes employs a joint training
strategy, using mixed batch training that incorporates sam-
ples from multiple datasets within each mini-batch (see
Algorithm 1). The primary segmentation loss is a com-
bination of binary cross-entropy and Dice loss: L., =
Lpee (Y, §) + Laice (Y, §), The auxiliary modality loss uses
cross-entropy loss on the predicted modality §,,,, and
ground truth modality m: Ly,0q = Lee(§,,04, ™). The
backbone and priors are jointly optimized to synergize rep-
resentation learning and context-prior knowledge learning.

4. Results
4.1. Experiments setup

Dataset selection and experiment design. Our collective
training dataset, detailed in Table 1, comprises eleven public
datasets, chosen for their variety in body regions, modalities,
and clinical targets. We assess model scalability by exploring
the effect of model size on performance in both traditional
and universal segmentation approaches. In addition, we fur-
ther evaluate Hermes’ capability in downstream tasks under
the settings of transfer learning, incremental learning and
generalization with two additional datasets. Finally, we show
the priors learned by Hermes are able to accurately capture
the complex relationships between tasks and modalities.
Standardized preprocessing. Training with diverse and
heterogeneous data is a non-trivial problem. We implement
a standardized preprocessing pipeline for all datasets. Firstly,
we align all images to the same coordinate system and re-
sample the spacing to a uniform 1.5 x 1.5 x 1.5 mm. Sub-
sequently, we normalize image intensities; for CT data, we
employ a clipping window of [-990, 500], while for MR and
PET data, we clip at the 2nd and 98th percentiles of the inten-
sity distribution. Finally, we conduct z-score normalization
on each image, ensuring that all data exhibits a zero mean
and unit standard deviation.

Implementation details. We implement Hermes using Py-
Torch and train the model with a batch size of 16 over 200
epochs. We use the LAMB [62] optimizer with a learning
rate of 0.002 and an exponential learning rate decay. Data
augmentations, including random cropping, rotation, scaling,
brightness, contrast, and gamma perturbation, are applied on
the fly during training. We use a patch size of 128 x 128 x 128
for 3D training. The context-prior learning method is applied
at the scales of 4x, 8, and 16 x down-sampling. Given the
variation in annotation styles across datasets, Classes with
identical names across datasets are considered unique ROIs,
except in AMOS CT and AMOS MR, resulting in 71 task
prior tokens. Different MRI sequences are treated as distinct
modalities, leading to a total of five modalities (CT, T1 MRI,
T2 MR, cineMRI, and PET) in the modality prior pool, with
the length [ set to 10. We set A = 0.001 for the auxiliary
modality loss as it is much easier than segmentation. The
details of the datasets and train/val/test split are available in
the supplementary.

4.2. Results

We start initial experiments under the traditional training
paradigm by training individual models for each dataset. We
use several representative medical image segmentation back-
bones, including CNN models nnUNet [33], UNet [52] with
residual building blocks [26]: ResUNet, and Transformer
models SwinUNETR [25] and MedFormer [23]. From Ta-
ble 2, ResUNet and MedFormer demonstrate slightly better
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Table 1. Datasets statistics. The upper datasets are for upstream
training and analysis. The bottom two datasets are for downstream
tasks on transfer learning, incremental learning, and generalization.

Dataset Body Region Modality Clinical Target ~ #Cls Size
BCV [40] Abdomen CT Organs 13 30
LiTS [5] Abdomen CT Liver & Tumor 2 131
KiTS [29] Abdomen CT Kidney & Tumor 2 210
AMOS CT [34] Abdomen CT Organs 15 300
SST[41] Thorax CT Organs 6 50
SSH [41] Head & Neck CT Organs 22 50
AMOS MR [34] Abdomen MRI Organs 13 60
CHAGOS [37] Abdomen  T1 & T2 MRI Organs 4 60
M&Ms [7] Cardiac cineMRI Structures 3 320
DLBS [51] Brain T1 MRI Structures 3 213
AutoPET [24] Whole body PET Lesions 1 1014
SegTHOR [39] Thorax CT Organs 3 40
MSD Pancreas [3]  Abdomen CT Pancreas & Tumor 2 281

results under the traditional paradigm. Therefore, in subse-
quent experiments under the universal paradigm, we employ
ResUNet and MedFormer as representative backbones for
CNN and Transformer to implement Hermes, i.e. Hermes-R
and Hermes-M. We also compare against large-scale self-
supervised pretraining and finetuning (SSL) methods: DeSD
[60] (pretrained on 10,594 CT scans) and UniMiss [59] (pre-
trained with 5,022 CT scans and 108,948 2D images).

Results on target ROIs, body regions, and image modal-
ities. From Table 2, we see that: First, a mutual enhance-
ment in performance is observed across different target ROIs.
Specifically, Hermes-R shows significant gains over Re-
sUNet in tumor and lesion segmentation in the LiTS and
KiTS datasets, increasing by 2.62% and 3.57%, respectively.
Across the other ROIs in eleven datasets, Hermes consis-
tently improves results, with Hermes-R outperforming Re-
sUNet by 2.28%, and Hermes-M surpassing MedFormer by
1.89%. Second, there’s a clear transferability of underlying
representations between different body regions. For example,
in thoracic and head&neck regions represented by SS T and
SS H datasets, Hermes-R enhances segmentation in thoracic
targets by 0.91% in SS T and by 2.5% in SS H compared to
ResUNet. Third, the commonality between imaging modal-
ities can be harnessed to enhance performance, even though
they possess entirely different visual characteristics. For in-
stance, despite the inherent image differences between PET
to other MRI and CT datasets, Hermes-R has a remarkable
improvement of 8.17% with the universal paradigm. Lastly,
although DeSD and UniMiss are pretrained on much larger
datasets than Hermes, they do not transfer well to different
tasks, especially cross-modalities. For example, DeSD is
notably worse in the DLBS with brain T1 MRI images, and
UniMiss underperforms in AutoPET.

Comparison with other methods under the universal
paradigm. We adapt and extend several previous methods to
fit the universal paradigm. Multi-decoder [10] uses a shared
encoder and separate decoders per dataset. DoDNet [63] was

originally designed for organ and tumor segmentation in CT
images with one-hot task vector embeddings; we broaden
it into multi-modality segmentation. CLIP-Driven [44] was
intended for partially labeled CT image analysis using CLIP
text encoder; we adapt it by including modality information
in its text prompt: "A CT/MRI/PET of a [CLS]." MultiTal-
ent [58] uses multiple segmentation heads. UniSeg [61]
uses learnable task prompts. All methods were implemented
using the same ResUNet backbone for fairness.

Figure 3 (A) presents a comprehensive comparison of
traditional and universal paradigms from six perspectives,
detailed numbers are in supplementary. All universal-trained
methods demonstrate consistent improvement over the tra-
ditional paradigm, particularly for difficult classes, under-
scoring the universal paradigm’s potency in deriving robust
representations. Within the universal paradigm, Hermes out-
performs other methods in all six perspectives. For example,
Multi-Decoder’s scalability is limited by the linear growth
of decoders with dataset quantity, and it only allows knowl-
edge sharing at the encoder level. DoDNet’s one-hot task
embedding is incapable of capturing inter-task relationships.
CLIP-Driven, despite incorporating knowledge from text
prompts, can’t effectively encode discriminative information
for medical tasks, as its CLIP text encoder lacks training
on medical texts, leading to subpar performance, especially
for tumors&lesions. MultiTalent demonstrates good perfor-
mance with task-specific segmentation heads, yet it does
not reach the effectiveness of Hermes because it lacks the
integration of prior knowledge during inference. Although
UniSeg incorporates learnable task prompt maps, it over-
looks modality information and learns prompts at the lowest
resolution, missing critical multi-scale information. In con-
trast, Hermes possesses two key advances: (1) It utilizes
versatile task and modality context priors, learned directly
from medical data, which accurately capture the nuances of
task and modality knowledge, as demonstrated in Fig. 4 and
5. (2) It employs hierarchical modeling to help multi-scale
learning of prior knowledge.

Model scalability. In Figure 3 (B), we find that, in contrast
to neural scaling law [17, 26, 36, 45], increasing the model
scale yields marginal performance gain in the traditional
paradigm due to limited size and diversity of individual
dataset. The limited data from the same distribution cannot
fully utilize the larger model’s capacity, potentially leading
to overfitting. On the contrary, the universal paradigm shifts
this dynamic, with an increased backbone scale for Hermes
leading to a remarkable performance gain. This finding sug-
gests the proposed universal paradigm’s ability to harness the
potential of larger models with diverse data and tasks. This
approach paves the way for training large-scale models in
medical imaging, a feat that is challenging under traditional
training paradigms.
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Table 2. Universal segmentation results measured with Dice score (%). The upper table presents models with CNN backbones. The
lower table shows models with Transformer backbones. Hermes-R denotes our method using ResUNet backbone, while Hermes-M uses

MedFormer backbone.
Paradigm Model BCV SST SSH LITST KiTST AMOSCT AMOSMR CHAOS M&Ms AutoPET DLBS AVG
Traditional nnUNet [33] 84.23 8853 78.17 6491 81.72 88.79 85.49 91.34 85.65 65.43 94.22  82.59
Traditional ResUNet 84.36 88.59 78.12 64.87 81.89 88.97 85.43 91.41 85.74 65.52 94.31 82.65
SSL DeSD [60] 83.62 88.11 76.56 64.43 82.52 86.36 82.56 91.55 86.46 69.02 86.81 81.64
Universal Hermes-R 8598 89.50 80.62 67.49 85.46 89.63 86.78 92.01 86.94 73.69 96.21 84.93
Traditional | SwinUNETR [25] 83.32 88.36 7221 64.82 74.32 88.29 83.97 88.34 83.28 64.39 92.01 80.32
Traditional | MedFormer [23] 84.61 89.04 78.71 66.24 82.09 89.45 85.58 91.85 86.02 66.01 95.13  83.39
SSL UniMiSS [59] 8497 8829 7741 6394 61.21 85.82 83.51 91.35 85.75 60.32 95.35 80.64
Universal Hermes-M 86.29 89.61 81.19 68.32 85.98 89.98 87.20 92.22 87.02 74.04 96.54 85.28
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Figure 3. (A) Comparison with other SOTA methods. ROIs with Dice scores lower than 80 under the traditional paradigm are defined as
“difficult classes’. (B) Model scalability analysis. We scale ResUNet down and up to three variants: ResUNet-Small (10.1M), ResUNet-Base
(40.6M), and ResUNet-Large (157.9M), and the same for Hermes. All other experiments use ResUNet-Base as the backbone unless specified.

(C) Generalization from StructSeg to SegTHOR.

4.3. Downstream tasks

In the universal paradigm, the upstream multi-task training
encourages the models to learn robust and generalizable
representations across various tasks. We extend to perform
an analysis of downstream tasks in the following section.

Transfer learning. We perform evaluation on the challeng-
ing MSD pancreas & tumor dataset [3], divided into train-
ing (214 samples), validation (10 samples), and testing (57
samples) sets. To assess the influence of downstream data
volume, models are fine-tuned on 1%, 10%, 50%, and 100%
of the training samples. We report average Dice over 5 runs
to reduce variability from the training samples.

Table 3 compares the efficacy of different transfering
methods. Traditional single-dataset pretraining with AMOS
CT (15 organs) or KiTS (kidney & tumor) shows improved
performance with a small amount of downstream data (1%-
10%), but these gains saturate as the volume of downstream
task data increases (50%-100%). Notably, KiTS pretraining
even lags behind training from scratch when using the full
data. In contrast, the improvements offered by the univer-
sal paradigm, including DoDNet, CLIP-Driven, and Her-
mes, consistently outperform single-dataset transfer. Despite
DeSD’s self-supervised pretraining on a larger dataset, Her-
mes exhibits superior transferability across all data volumes.

Hermes particularly excels in both constrained (1%-10%)
and abundant (50%-100%) data scenarios, demonstrating
the value of upstream task diversity in enhancing transfer
learning for downstream medical image segmentation tasks.
Incremental learning. We test model performance in a
more challenging scenario that requires the model to retain
knowledge from previous tasks while learning new ones.
For all four compared methods, incremental learning is ac-
complished by keeping the backbone fixed and finetuning
only the new task conditions. Table 3 shows that Hermes
excels in this setting, particularly under limited data condi-
tions (1%-10%), even outperforming transfer learning results
from AMOS CT and KiTS. With ample data, Hermes main-
tains competitive performance comparable to that of full
model tuning. This capability highlights the strength of the
backbone’s representation learning, fostered during diverse
upstream universal training, and shows Hermes’ adaptability
to new downstream medical tasks.

Generalization. We directly apply models trained on the
StructSeg to the SegTHOR datasets, both of which contain
thoracic CT scans, and evaluate the performance on three
overlapping categories as seen in Figure 3 (C). Compared to
ResUNet based on the single-dataset training, all methods
trained under the universal paradigm show better generaliza-
tion, with Hermes leading the performance. This outcome
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Table 3. Transfer and incremental learning on the MSD Pancreas & Tumor [3] dataset

Setting Model 1% 10% 50% 100%
Pan Tumor Pan Tumor Pan Tumor Pan Tumor
Scratch ResUNet 44.60 7.67 74.47 23.90 78.89 44.52 80.45 51.06
ResUNet (AMOS CT) 56.08 8.31 77.15 25.53 80.53 46.16 81.23 52.21
ResUNet (KiTS) 52.68 9.28 75.11 27.33 79.07 45.72 79.23 50.64
DeSD [60] (10,594 CT) 67.82 13.89 78.11 35.82 80.95 50.23 81.97 59.11
Transfer DoDNet [63] 66.62 11.97 76.83 31.92 80.82 47.79 81.41 53.62
CLIP-Driven [44] 67.95 12.12 77.49 32.37 80.92 48.92 81.45 54.71
UniSeg [61] 69.05 12.35 77.33 33.87 80.93 49.63 81.96 55.58
Hermes-R 72.71 16.73 79.12 44.31 81.14 55.31 82.73 61.41
DoDNet [63] 64.36 791 65.78 14.39 69.28 21.97 69.87 22.32
Incremental CLIP-Driven [44] 71.52 10.79 75.41 23.22 76.25 29.02 74.72 30.99
UniSeg [61] 71.68 12.31 72.96 19.82 76.95 27.02 74.40 28.22
Hermes-R 72.69 15.52 76.89 28.61 79.44 43.12 79.98 47.12
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Figure 4. Upper: Cosine similarity of Hermes’s learned task priors
and CLIP’s task embeddings. Lower: Example structures that have
high similarity. Hermes’s priors are learned directly from medical
data and are able to capture intricate relationships among tasks,
while CLIP’s embeddings tend to encode all objects into similar
embeddings, resulting in a loss of discriminative details.

suggests that even with StructSeg being the only thoracic
data in our upstream universal training, the inclusion of di-
verse data enhances potential generalization capabilities.

4.4. Analysis

Learned prior analysis. We illustrate how Hermes adeptly
learns task and modality context priors that are consistent
with the established anatomical and imaging principles. In
Fig. 4, we show the cosine similarity between task pri-
ors learned with Hermes and the one of CLIP text embed-
dings used in [44]. Note that this is pure prior knowledge
without considering any image features. The CLIP text en-
coder, rarely trained with medical data, tends to encode all
medical objects with high cosine similarity, offering limited
prior knowledge about tasks. In contrast, Hermes excels
in reflecting the intricate relationships among tasks by

learning directly from medical images. This is evident
in how objects with similar visual features show high sim-
ilarity, and vice versa. For example, liver tumors display a
notable similarity with kidneys, attributable to their shared
visual features with the renal medulla or pelvis. Also, the
duodenum and esophagus, being parts of the digestive sys-
tem, demonstrate similarity in their tubular structures filled
with air. Intriguingly, despite their significant anatomical
and functional differences, the middle ear and stomach are
shown to have comparable densities in CT scans, attributed
to their air-filled hollows. In contrast, fluid-filled structures
like the gallbladder and veins demonstrate higher similar-
ity to each other but differ markedly from hollow organs
such as the esophagus, stomach, or middle ear. Hermes
also captures accurate prior knowledge about imaging
modalities. As illustrated in Fig. 5, Hermes effectively dis-
cerns distinct characteristics of various imaging modalities.
Hermes identifies CT as quite distinct from other modalities
like MRI and PET, due to CT’s unique imaging principle
based on X-ray absorption. Meanwhile, T2 MRI and cine
MRI, which both highlight fluid content, align closely with
each other while PET, focused on metabolic activities, shows
greater similarity to T2 and cine MRI than to T1 MRI and
CT. Further elaboration on these findings is provided in the
supplementary. These findings emphasize the capability of
Hermes to learn meaningful and accurate prior knowledge
from diverse medical images.

Ablation study. We conducted ablation studies using the
ResUNet-Small backbone with Hermes to assess the im-
pact of various configurations. We start with Hermes with
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Figure 5. Cosine similarity of Hermes’s learned modality priors
and CLIP’s modality embeddings. The learned modality prior
knowledge of Hermes is consistent with imaging principles.

only the task prior applied on the 16 x down-sampled scale,
which is the most basic configuration of our method. Hier-
archically integrating the task priors at multiple scales (e.g.,
4x, 8%, and 16x) enhances the average Dice from 81.72%
to 82.98%. In the prior fusion module, we employ a bidi-
rectional attention mechanism to concurrently update both
the prior and image features. To evaluate the effectiveness
of this design, we alter the bidirectional attention to a uni-
directional cross-attention. This modification only allows
the prior to aggregate information while keeping the image
features unchanged, similar to dynamic kernel approaches,
e.g. [63, 64]. This change leads to a decreased Dice from
82.98% to 82.04%. Incorporating modality priors further
improved the model’s capacity to handle complex, heteroge-
neous multi-modality data, increasing the Dice score from
83.11%. Adding an auxiliary loss can slightly boost the
performance to 83.37%.

5. Discussion and Conclusion

Implications of Hermes. Our work introduces a holistic
and universal paradigm in medical image analysis, leverag-
ing the diversity and commonality among medical tasks in
contrast to developing task-specific models [23, 33]. Despite
exhibiting variability, different anatomical structures can
share similar visual cues and enhance each other, evidenced
by our results on in Table 2. Moreover, the interdisciplinary
nature of our paradigm makes it possible to explore into
deeper, more complex relationships within medical imagery,
as initiated in our analysis (Figs. 4 and 5).

Additionally, the universal paradigm is a cost-efficient
approach to scaling medical imaging usage. Given the chal-
lenges in assembling large, fully-annotated datasets, Hermes
adeptly incorporates diverse, partially annotated datasets, ad-
dressing a broad spectrum of clinical targets. This flexibility
enables the training of Hermes on a wide range of datasets
with varying annotations, distinguishing it from conventional
task-specific models and making it also an effective pretrain-
ing method with superior transferability. Such adaptability
not only makes Hermes a practical asset in medical imaging
but also signals a shift towards more versatile, data-inclusive

approaches in the field.

Connection with natural image foundation model. Ad-
vances in foundational segmentation models (e.g., Segment-
Anything Model (SAM) [38]) have demonstrated notable
progress for general vision tasks. Yet general-purpose mod-
els struggle to transfer to medical imaging tasks. For in-
stance, a benchmark study [28] comparing SAM against
12 medical imaging tasks revealed that SAM’s Dice scores
consistently fell behind those of UNet by margins ranging
from 0.1 to 0.5, and even reaching up to 0.6-0.7. Efforts
of finetuning SAM are considerable to enhance its medical-
image performance (e.g. MedSAM [46]). Despite improve-
ments over SAM, MedSAM’s performance remains inferior
to that of our 3D ResUNet baseline, even when the latter
is trained from scratch with a single dataset. For example,
on CT liver: ResUNet: 97.64 vs. MedSAM: 91.42, and
CT pancreas: ResUNet: 80.45 vs. MedSAM: 76.76. The
underperformance of SAM in medical imaging tasks may
originate from: (1) the substantial domain gap [49] and (2)
its inherent 2D design is ill-equipped to harness the 3D in-
formation that is crucial to medical image tasks. Therefore,
building a foundation model for 3D medical images should
be deeply rooted in 3D medical imaging itself. The proposed
universal segmentation paradigm, along with Hermes, offers
a versatile means for utilizing diverse, large-scale medical
image datasets, opening up perspectives for the development
of foundational models in medical imaging.

Limitations. While our model extends to leverages the
breadth of partially labeled data, its performance can be
potentially improved by addressing missing labels with self-
supervised [27] or semi-supervised learning [56, 57]. Inte-
grating more types of medical prior knowledge into model
inference presents an intriguing topic for future investigation.

Conclusion. We introduce a universal medical image seg-
mentation paradigm that learns generalizable and transfer-
able representations from diverse medical image tasks, span-
ning various targets, body regions, and modalities. Following
this paradigm, we propose a context-prior learning approach,
Hermes, to tackle the challenges of annotation and modality
heterogeneity. Hermes can handle multiple tasks by harness-
ing their synergy via our proposed task priors. Extensive
experiments with Hermes underscore the superiority of this
universal paradigm in both upstream and downstream tasks.
Exploratory analysis of the learned priors shows intriguing
relations among tasks and modalities, resonating with the
anatomical and imaging principles in radiology.
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