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Abstract

The boundless possibility of neural networks which can
be used to solve a problem – each with different perfor-
mance – leads to a situation where a Deep Learning expert
is required to identify the best neural network. This goes
against the hope of removing the need for experts. Neu-
ral Architecture Search (NAS) offers a solution to this by
automatically identifying the best architecture. However,
to date, NAS work has focused on a small set of datasets
which we argue are not representative of real-world prob-
lems. We introduce eight new datasets created for a series of
NAS Challenges: AddNIST, Language, MultNIST, CIFAR-
Tile, Gutenberg, Isabella, GeoClassing, and Chesseract.
These datasets and challenges are developed to direct at-
tention to issues in NAS development and to encourage au-
thors to consider how their models will perform on datasets
unknown to them at development time. We present experi-
mentation using standard Deep Learning methods as well
as the best results from challenge participants.

1. Introduction
One of the main appeals of Deep Learning (DL) was its

ability to democratise Machine Learning. No longer would
you require a domain expert to develop an optimal solu-
tion to a given problem since DL models are capable of
learning the required patterns and features from the data
themselves and would not need the domain expert to iden-
tify and extract the required features. Unfortunately, rather
than removing the need for an expert, the new paradigm
has just shifted where the expert is required. These experts
now spend their time identifying the most optimal neural
network architecture for a given problem. Those who are
not that proficient would select between pre-existing off-
the-shelf networks such as ResNet [10], VGG [23] or In-
ception [25]. However, to get the best results for a particu-
lar problem, one should search across all possible solutions,

*These authors performed equal contribution.

not just those which may have shown good results in other
problem domains, as no network is optimal for all prob-
lems. This idea of the ‘no free lunch’ [34] is backed up
by our findings here, with some networks giving far poorer
performance than what would be expected.

A DL problem can be seen as the combination of a par-
ticular task – such as classification – one wishes to apply
in a particular data domain. The data domain is normally
realised as a dataset for training the DL network.

Neural Architecture Search (NAS) is a fast-developing
field of DL – which can be seen from the increase of pub-
lished papers in the domain over the last few years [3]. The
aim of NAS is to remove the need for an expert’s time and
knowledge to generate state-of-the-art competitive Neural
Networks from a particular dataset [40]. NAS methods
search through millions (if not billions) of candidate archi-
tectures from a pre-defined search space to find optimum
networks. These search spaces comprise not only different
network topologies but also the types of nodes which make
up these networks – such as fully connected layers, convo-
lutions and pooling. Although NAS can be applied to any
data modality, the majority of work to date has focused on
image-based datasets, with modern NAS methods achieving
this feat in a few GPU hours [19, 37]. In addition to a pre-
defined search space, a NAS approach will have a search
strategy. In terms of the task, the majority of work in NAS
has focused on classification problems.

NAS techniques are often evaluated by their ability to
find networks that perform well on benchmark datasets,
such as CIFAR-10 [12] and ImageNet [5]. These datasets,
combined with standard search spaces such as NAS-Bench
[6], fill an important role, allowing a direct comparison be-
tween NAS methods. While there is a clear benefit in using
common benchmark datasets, we argue this is against the
ethos of NAS – removing the need for domain experts, re-
quired to develop optimal architectures for a given problem.

Developing against common datasets can be seen as
over-engineering a process to reach a solution we already
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know. For example, for datasets such as CIFAR-10, exten-
sive experimentation with various neural network architec-
tures has led to extremely high levels of accuracy [1, 8, 20],
rendering this dataset easily solvable. In essence, since we
already know what achieves high performance, NAS strate-
gies may be optimised to reach these solutions, which may
not generalise to other datasets. Prior work [18] has found
that just because NAS methods perform well on bench-
marks such as NAS-Bench-101 [38], this does not mean
they will match other benchmarks.

If NAS is to truly replace architecture design experts, it
must be able to find optimal networks for datasets that it
has never seen before – the unseen data challenge. There is
a dichotomy here in that proposing a new ‘unseen’ dataset
for NAS may lead to that dataset being adopted as one of
the core datasets for NAS. We, therefore, see our work as
having two values. In the first case, we are diluting the ef-
fect of overfitting to the core datasets – having more core
datasets is less likely to create a NAS approach, which can
overfit to all of them. For the second case, we see this as a
‘call to arms’ to encourage the development and use of more
datasets for NAS, which we will continue to do ourselves.

In this work, we present eight new datasets created and
used for unseen dataset NAS challenges. We define how
these datasets were constructed and illustrate benchmark
performance metrics that have been achieved, with the in-
tention of encouraging others in the NAS community to de-
velop approaches that will work on more general datasets.

2. Motivation
To understand how well NAS methods might generalise

to novel datasets and drive the direction of NAS research
towards more impactful real-world applications, we organ-
ised a challenge tasking participants with creating NAS
methods that perform well on unknown datasets. Partic-
ipants were provided with a small number of “develop-
ment” datasets to develop and test their NAS algorithm(s).
After development, the algorithms were submitted to the
competition servers, where the algorithms would be run
over novel “evaluation” datasets. The datasets were created
bespoke for the challenge and withheld from the partici-
pants throughout its duration, such that no participant could
gain an advantage by knowing or guessing the evaluation
datasets. As such, the participants are encouraged to create
NAS approaches that generalise well to multiple problems
rather than ones specifically targeted at one dataset.

These unseen datasets explore one of two concepts:
• Type-1: A problem an expert could solve themselves

or create a program, which may include basic DL,
that can outperform a naive DL approach on the raw
datasets. An example of this type of data is the
AddNIST dataset Sec. 4.1, one of the datasets outlined
later in this paper, which consists of images with three

channels, with each channel being an image from the
MNIST dataset [14] having the class label as the sum
(the numbers are chosen so the sum is less than twenty)
of the individual MNIST digits. With prior knowledge
of this dataset, a solution that attains the highest ac-
curacy is splitting the colour channels into three sepa-
rate images, using a model trained on MNIST to iden-
tify the individual numbers, and then hardcoding in the
necessary arithmetic to get the final answer.

• Type-2: A problem that would be almost impossible
for a human to solve or create a program without task-
specific tools. An example is the Language dataset
Sec. 4.2, which encodes words from ten languages into
an image. The models needs to identify which letter
frequency is attributed to the correct language. With-
out prior knowledge of what is encoded within the im-
ages and which language is represented by each class
label, correctly labelling each image to the correct lan-
guage would be nearly impossible. The motivation for
using a type 2 dataset is to see if bespoke models can
perform better than random guesswork over datasets
that appear human-impossible at face value.

We believe that both types of tasks are essential for NAS
algorithms to make a meaningful impact in real-world ap-
plications. First, if NAS remains incapable of solving prob-
lems that are effortlessly solvable by humans, it would be
premature to assert that NAS can remove the requirement
for expert knowledge. The second type relates to how ma-
chine learning is often deployed to find solutions to prob-
lems humans find complicated. Essentially, NAS methods
should be able to perform at a level at least commensurate
with other conventional machine learning techniques to ef-
fectively supplant manually designed models.

To further obfuscate the true nature of the datasets from
the challenge participants, within our datasets, data shapes
were deliberately chosen that appeared to correlate to nor-
mal images or well-known datasets, such as 3×64×64,
and data split sizes to align with well-known benchmark
datasets, such as 50,000 training images to align with CI-
FAR. We also asked participants for their guesses as to what
each development dataset was: most participants correctly
described the Type-1 datasets. In contrast, none of the Type-
2 datasets have been correctly identified.

3. Related Work

We consider related work within the NAS literature and
the datasets commonly used in NAS research.

3.1. Neural Architecture Search

NAS aims to automate the process of neural network ar-
chitecture design. Traditional network design requires ex-
tensive human expertise and significant time investment.
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NAS seeks to streamline this process by employing algo-
rithms that efficiently identify architectures tailored to spe-
cific tasks and datasets from a vast search space.

Initially, the work by Zoph and Le [40] applied NAS us-
ing reinforcement learning to CIFAR-10, achieving an ar-
chitecture slightly outperforming manually designed mod-
els. NASNet [41] addressed the challenge of learning archi-
tectures directly on large datasets by transferring a building
block designed for a small dataset to a larger one using Im-
ageNet. ENAS [21] focused on computational efficiency
by learning to search for an optimal sub-graph within a
large graph, thus reducing computational resources. Evo-
lutionary algorithms [22] have emerged, providing com-
parable results but with a distinct evolutionary overview.
Weight-sharing methods [15] define over-parameterised
super-networks (one-shot models), reducing computational
costs, allowing the training of one super-network encom-
passing many different sub-architectures rather than train-
ing numerous networks independently.

Differentiable NAS [9, 16] marks another significant ad-
vancement, allowing gradient-based optimisation methods
to explore the neural architecture search space efficiently.
Each of these developments in NAS represents a significant
stride towards the more efficient, automated and effective
design of neural network architectures; however, the effec-
tiveness of these approaches is often only tested on common
benchmark datasets, some of which we will briefly cover in
the following sections. The real-world applicability of these
approaches needs to be tested on “unseen” datasets, which
better simulate what is needed of NAS in practice.

3.2. Common NAS datasets

Although any dataset can be used to evaluate NAS meth-
ods, CIFAR-10 [12], and ImageNet [5] are highly popular.

CIFAR-10 [12] comprises 60,000 images from ten
classes evenly distributed in training and testing sets. Ac-
curacy on CIFAR-10 is often used to evaluate performance,
and it is also used in NAS, with the very first NAS algorithm
[40] highlighting the potential power of NAS by demon-
strating its ability to achieve better CIFAR-10 performance
than human-designed models. While CIFAR-10 is a good
dataset for comparing performance, it is an easy problem,
with modern architectures and NAS methods easily achiev-
ing accuracies over 90%. Furthermore, since CIFAR-10 is
used as a standard benchmark, new methods are encouraged
to focus on this dataset, which may come at a cost of gener-
alisability across other datasets.

ImageNet [5] is another popular dataset for evaluation
and benchmarking. It contains 1,000 classes and presents a
more challenging problem, with the results often presented
in tandem with CIFAR-10 results to demonstrate model
performance. ImageNet poses similar issues to CIFAR-10
due to its similar prevalence in benchmarking DL methods.

While including ImageNet and CIFAR-10 as datasets for
NAS comparison demonstrates that the NAS approach is
not overfitting to just one dataset, it does not solve the prob-
lem of generalisation. We argue that both more datasets and
datasets that the developers are unaware of are needed.

3.3. NAS Benchmark Suites

To make NAS development more comparable and eas-
ier, benchmark suites such as NAS-Bench-101 [38], NAS-
Bench-201 [7], and NATS-Bench [6] have been developed.
In these benchmarks, the performance achieved for each
network in the search space has been pre-computed, thus
removing the model training step in NAS approaches.

Benchmark suites allow developers to focus on the de-
velopment of search strategies and allow for easy compari-
son between different approaches as they work directly on
the same search space. Thus, performance gains over other
methods cannot be attributed to different search spaces.

These benchmark suites suffer from the same issues of
reliance on CIFAR-10 and ImageNet. The search spaces
used by these benchmarking tools have been fully explored
on CIFAR-10 and ImageNet. These results are stored so a
NAS method can look up an architecture’s final result with-
out having to retrain fully. These lookup tables do not exist
for other datasets, meaning that NAS methods developed
using these tools can quickly generate results for CIFAR-10
and ImageNet but not easily for other datasets.

4. Dataset Descriptions

The code to generate our datasets is available at our
GitHub page1. Each dataset comprises six NumPy files, X
(images) and Y (labels) files for the training, validation, and
testing sets, and a metadata file. This metadata file includes
the shape of the training data, the ResNet-18 [10] bench-
mark result, and the number of classes in the data. Further
details and examples are provided in the Appendices.

4.1. AddNIST

AddNIST [27], is a Type-1 dataset of 70,000 images with
an image shape of 3×28×28 (channels first). The training,
validation, and testing split is 45,000, 15,000, and 10,000,
respectively. Each colour channel is an image from MNIST
[14]. An example AddNIST image is depicted in Fig. 1
(left), the larger image, shows the image as is, with the three
channels laid on top of each other, and three images to the
right show each channel more clearly.

AddNIST has twenty classes (0 - 19), with the class
derived from the MNIST label of each channel, such that
l = (r+ g+ b)− 1, where l is the image label and r, g, and
b are the respective MNIST labels of each colour channel.

1github.com/Towers-D/NAS-Unseen-Datasets
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Figure 1. Left: AddNIST image - the sum of the channels adds up to 15 (r = 2, g = 9, b = 4), implying a label of 14. Middle MultNIST
image - the product of the channels equals 35 (r = 5, g = 7, b = 1), which implies a label of 5 (35 %10 = 5). Right CIFARTile image - two
deer, one aeroplane, and one horse, meaning there are three unique labels among the sub-images, which equates to a final label of 2

AddNIST adds complexity to the MNIST data. In
MNIST, the goal is to identify what numerical digit is seen
within the image, while in AddNIST, not only does the
model have to identify the digit in each channel, but it
must also learn to sum up these values in a specific man-
ner to identify the class correctly. In this manner, AddNIST
was designed around the research question of whether NAS
could “figure out” a calculation was required and apply it.

While the task this dataset puts forward is still rather sim-
ple, which is expected for a Type 1 dataset, it requires high-
level inference capabilities within the model, which would
mean the NAS algorithm searching for the optimal archi-
tecture would have to consider the capacity of the model to
encompass the required function.

4.2. Language

Using the open-source, public spell checker ASPELL,
which can be found at aspell.net, we created Language [32],
a Type-2 dataset.

Using dictionaries from 10 languages that use the Latin
alphabet (English, Dutch, German, Spanish, French, Por-
tuguese, Swedish, Zulu, Swahili, and Finnish), all six-letter
words within each language are extracted, and any words
with letters that use diacritics (such as é or ü) or include ‘y’
or ‘z’ are subsequently removed.

Each image is generated by first selecting one of the ten
languages. We then randomly select four words that we fil-
ter from the selected dictionary and concatenate them into
a 24-character string. Since we eliminated letters with dia-
critics and y and z, we have a remaining alphabet of twenty-
four letters. This allows for a 24×24-grid encoding the
string as a 1×24×24 image. Using the y-axis to denote
the index of the string and the x-axis to denote the charac-
ter, we construct the image so each black pixel denotes the
letter used in that position. See Fig. 2 (top) for an example.
The training, validation, and testing split is 50,000, 10,000,
and 10,000 images, respectively.

The Language research question pertained to whether a
linguistic character encoding contained enough information
for DL to correctly identify the original language, requiring
the model to perform linguistic analysis. To ensure no leak-

Figure 2. Top: An example of a Language image with a read-
able axis included. The right-hand axis contains the four six-letter
words “Uvulas”, “Minted”, “Suckle”, and “Debits”, which are all
English words given the label 0. Bottom: An example Gutenberg
image, the words “their”, “spring”, and “their” have been encoded
from one of Shakespeare’s works which give the label 4

age between the training and testing data, when selecting a
word for the training data, we ensure that this word does not
appear in the validation or testing data and vice versa.

4.3. MultNIST

MultNIST [33] is a Type-1 dataset similar in concept
to AddNIST (Sec. 4.1), originating from the same re-
search question. Like AddNIST, MultNIST images have a
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Figure 3. Left: An example of an Isabella generated using a piece of music labelled as “20th Century”(0). Middle An example of the
GeoClassing dataset showing a photo taken over Portugal (9). Right: An example rendering of a board position in the Chesseract dataset
wherein white goes on to eventually win and is thus given a label of White Wins (0)

3×28×28 channel first shape, and each channel is an image
from the MNIST dataset [14]. See Fig. 1 (middle) for an ex-
ample. The training, validation, and testing split is 50,000,
10,000, and 10,000 images, respectively.

MultNIST has only ten classes (0 - 9). The label of each
MultNIST image is calculated such that l = (r ∗ g ∗ b)
mod 10 where l is the image label and r, g, and b are the
respective MNIST labels of each colour channel.

In AddNIST, the class was directly affected by how large
the numbers were in each channel. The only way for an im-
age to have a label of 0 was if one colour channel contained
an MNIST with label 1 and the remaining channels con-
tained MNIST images for 0. MultNIST introduces the ad-
ditional complexity over MNIST by retaining a calculation
but removes the bias of larger numbers to higher classes.

4.4. CIFARTile

CIFARTile is a Type-1 dataset where each image in the
CIFARTile [29] dataset is a compilation of four CIFAR-
10 [12] images tiled together in a grid resulting in images
which are of size 3×64×64. See Fig. 1 (right) for an ex-
ample. The training, validation, and testing split is 45,000,
15,000, and 10,000 images, respectively.

There are four classes (0 - 3), which represent the num-
ber of CIFAR-10 classes in each grid minus one. For ex-
ample, a grid consisting of CIFAR-10 images with labels
[horse, horse, frog, car] has three distinct classes, and thus
a label of 3−1 = 2. As such, CIFARTile is a Type-1 dataset;
any human should be able to identify and solve this task.

CIFARTile requires a model to identify multiple CIFAR-
10 classes simultaneously and determine which are similar
and which differ. Whether models could adequately do this
is the driving research question behind this dataset.

4.5. Gutenberg

Gutenberg [31] is a Type-2 dataset named after
the source of the data, Project Gutenberg, found at
www.gutenberg.org, which provides free ebooks of liter-
ary works that are no longer under US copyright protec-
tion. We selected six authors (Thomas Aquinas, Confucius,
Hawthorne, Plato, Shakespeare, and Tolstoy) and down-

loaded several books from each author – see the Appendices
for further details and examples.

The selected works are English translations that repre-
sent a variety of cultures and time periods. We perform
basic text preprocessing, including removing punctuation,
converting letters with diacritics to the base letter, and re-
moving “structure” words (e.g., ‘Chapter’, ‘Scene’, ‘Pro-
logue’). We then extracted consecutive sequences of three
words between 3 and 6 letters long. In each sequence, the
three words were padded up to 6 characters with spaces.
Then, the three words were concatenated together to pro-
duce an 18-character string. These strings were used as
the base for image creation. Training, test, and validation
sequences were chosen such that there was no overlap be-
tween any sequence across any data split.

Similar to the Language dataset (Sec. 4.2), we converted
these strings into images. On a 27×18 grid, we created a
mapping of each character in the string. See Fig. 2 (bottom)
for an example. The x-axis represents the position in the
string, and the y-axis represents the alphabetical letter (or
space) located at that position. This results in the shape be-
ing 1×27×18. The task is then to predict which of the orig-
inal six authors the original word sequence came from. The
training, validation, and testing split is 45,000, 15,000, and
6,000, respectively, to prevent participants from exploiting
the standard distribution we used for the other datasets.

The research question behind this dataset was whether
specific spatial patterns of letters were sufficient informa-
tion for a neural network to identify the authors from which
they originated, which seems impossible from face value.

4.6. Isabella

Isabella2 is a Type-2 dataset that uses musical recordings
from the Isabella Stewart Gardner Museum, Boston.

The four classes of this dataset refer to the era of com-
position (Baroque, Classical, Romantic, and 20th Century)
attributed by the museum. The recordings are split into five-
second snippets converted into 64-band spectrograms, cre-
ating a dataset of 1×64×128 shaped images. See Fig. 3

2Code to generate Isabella is available at github.com/Towers-D/NAS-
Unseen-Datasets.
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Dataset ResNet-18 AlexNet VGG16 ConvNext MNASNet DenseNet ResNeXt Random
AddNIST 92.08% 94.87% 92.06% 38.06% 90.51% 93.52% 91.42% 5%
Language 87.00% 85.71% 84.54% 83.40% 84.63% 84.57% 93.97% 10%
MultNIST 91.55% 94.01% 90.43% 64.20% 87.70% 92.81% 90.57% 10%
CIFARTile 45.56% 48.88% 24.43% 31.06% 48.49% 51.28% 46.23% 25%
Gutenberg 40.98% 45.53% 44.00% 31.93% 38.00% 43.28% 40.30% 16.6̇%
Isabella 62.02% 61.37% 58.13% 57.18% 60.69% 63.27% 60.46% 25%
GeoClassing 80.33% 92.49% 83.67% 72.76% 86.00% 94.21% 89.99% 10%
Chesseract 57.83% 57.45% 55.69% 52.74% 56.26% 59.60% 55.15% 33.3̇%

Table 1. Experiments on commonly-used CNN-based classification models [10, 11, 13, 17, 23, 26, 35] using the presented datasets.

(left) for an example. The training, validation, and testing
split is 50,000, 10,000, and 10,000 images, respectively.

The task for the models is to predict the era of compo-
sition from the spectrogram. No recording used in a train-
ing snippet appeared in the validation or test sets. The re-
search question behind this dataset was to explore whether
era-defining characteristics appear at the spectrogram level
and whether CNNs could reliably identify such patterns.

4.7. GeoClassing

GeoClassing [30], known as Sadie in the competition, is
a Type-2 dataset that takes advantage of the BigEarthNet
dataset [24] as a foundation. The BigEarthNet dataset, as
originally published, consists of satellite photography with
ground-cover classification labels, i.e., “airports” or “vine-
yards”. An example image is shown in Fig. 3 (middle).

The GeoClassing dataset uses these images, but instead
of using the given ground-cover labels, we identified the
European Space Agency Sentinel patch from which the
BigEarthNet image was sourced. We cross-referenced the
coordinates of that patch within a map of Europe to identify
the corresponding country depicted in the image. This gave
us ten classes (Austria, Belgium, Finland, Ireland, Kosovo,
Lithuania, Luxembourg, Portugal, Serbia, and Switzerland).

Each image has a shape of 3×60×60, and the train-
ing, validation, and testing split contains 43,821, 8,758,
and 8,751 images, respectively. The research question is
whether NAS can find models that identify countries from
differences in topology and ground coverage, which, with-
out specific knowledge of geography and vegetation type,
would be extremely difficult for a human to do manually.

4.8. Chesseract

Chesseract [28], a Type-1 dataset wherein we ac-
cessed public chess games from eight grandmasters (Bobby
Fischer, Garry Kasparov, Magnus Carlsen, Viswanathan
Anand, Hikaru Nakamura, Anatoly Karpov, Fabiano Caru-
ana, and Mikhail Tal) extracting the final 15% of board
states. These positions were then one-hot encoded by piece
type and colour, creating a 12×8×8 image. As a 12-channel
image is hard to render, we provided a flattened 2D image

of one of the chess boards we used Fig. 3 (right). A 3D
visualisation can be seen in the Appendices.

The training, validation, and testing split is 49,998,
9,999, and 9,999 images, respectively. Each image in the
Chesseract dataset is one of three classes (White wins,
Draw, Black wins). No individual positions from the same
game appeared across the data splits. This dataset requires
the model to identify the game’s final result from the po-
sition. Chesseract presented a problem for some partici-
pants of the challenge. This was because Chesseract uses
twelve instead of the usual 1 or 3 channels applied for im-
age datasets, which often caused errors for hardcoded algo-
rithms that only accepted 1 or 3 channel dimensions.

Machine learning is already prominent in chess, with
competing learning-based chess engines that beat grand-
master players, such as AlphaZero [4]. Our research ques-
tion for this dataset was based on the understanding that any
position can be analysed to show whether black or white
has the advantage. Is NAS able to develop a DL network to
identify this from just an encoding of the board position?

5. Baseline Experimentation

Here, we provide some baseline results for our datasets
to motivate future NAS experimentation. We provide a set
of baseline results across several well-known CNNs and
three NAS methods across two search spaces.

5.1. CNN Experiments

To generate baseline results of our datasets for future
work comparison, we have performed experiments using
commonly used off-the-shelf CNNs, which can be seen in
Tab. 1. In all our CNN experiments, we have followed a
similar experimental setup. We use stochastic gradient de-
scent as our optimiser with an initial learning rate of 0.01,
momentum of 0.9, and a weight decay of 3×10−4. We have
used a Cosine Annealing Learning rate with the max num-
ber of iterations equaling 64, the number of epochs. Cross
Entropy is used as the Loss function.

ResNet-18 is used as the baseline throughout our com-
petition, and any NAS method would be expected to eas-
ily outperform this architecture. As you can see in Tab. 1,
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Random Search
Dataset PC-DARTS DrNAS Bonsai-Net DARTS Bonsai Random
Addnist 96.60% 97.06% 97.91% 97.07% 34.17% 5%
Language 90.12% 88.55% 87.65% 90.12% 76.83% 10%
MultNIST 96.68% 98.10% 97.17% 96.55% 39.76% 10%
CIFARTile 92.28% 81.08% 91.47% 90.74% 24.76% 25%
Gutenberg 49.12% 46.62% 48.57% 47.72% 29.00% 16.6̇%
Isabella 65.77% 64.53% 64.08% 66.35% 58.53% 25%
GeoClassing 94.61% 96.03% 95.66% 95.54% 63.56% 10%
Chesseract 57.20% 58.24% 60.76% 59.16% 68.83% 33.3̇%

Table 2. Experimental results on PC-DARTS [36], DrNAS [2], Bonsai-Net [9] as well as random search.

ResNet-18 produces competitive results across our datasets,
though it does not excel on any particular dataset. ResNet-
18 particularly struggles with the GeoClassing dataset com-
pared to the others, only beating ConvNext in our trials.

AlexNet [13] shows decent performance across all
datasets, achieving the highest accuracy on three of the eight
datasets (AddNIST, MultNIST, and Gutenberg). AddNIST
and MultNIST are similar, both being derived from MNIST.
This may suggest that AlexNet is particularly good at work-
ing with MNIST Images. AlexNet captures spatial hierar-
chies in images well and is thus suitable for the clear, struc-
tured layouts of MNIST digits. VGG16 [23], on the other
hand, does not achieve particularly impressive levels of ac-
curacy on any of the datasets, though it does not perform
badly, either. The only exception is the CIFARTile dataset,
where VGG suffers and only achieves roughly the same ac-
curacy as random chance, as seen in Tab. 1.

ConvNext [17] performs poorly across our datasets, most
likely since our datasets may not exhibit the specific spa-
tial complexity that ConvNext is optimised for. However,
it is important to note that for purposes of generating our
CNN baselines, we have kept the experimental setup the
same across CNNs. Thus, hyperparameter tuning may be
beneficial to ConvNext. We have used the base version of
ConvNext in our experiments.

We also perform the same experiments on MnasNet
[26] using a depth multiplier of 1.0. Despite being a
lightweight architecture designed for mobile efficiency,
MnasNet achieves competitive results across our datasets.
It has strong generalisation capabilities since it uses a re-
inforcement learning approach to automate architecture de-
sign, thus performing well on unseen datasets [26].

DenseNet [11] performs significantly well on the latter
three datasets (Isabella, GeoClassing, and Chesseract) as
well as CIFARTile, achieving the highest accuracy of the
CNNs over these datasets. With the exception of Chesser-
act, the datasets that DenseNet excels on are the most
memory-intensive datasets. This is due to the DenseNet
mechanism allowing efficient re-use of features through
dense connectivity and ensuring maximal information flow
between layers in the network [11]. For memory-intensive

datasets, which often contain complex and rich information,
this feature reuse allows DenseNet to exploit the data more
thoroughly and efficiently, leading to better performance.
The DenseNet-161 architecture is used in our experiments.

Finally, ResNeXt [35] performs fairly well across our
datasets, but especially well on the Language Dataset, scor-
ing almost 7% higher than the other methods. The par-
ticular version of ResNeXt we used is ResNeXt-50 (32 x
4d), which has a high level of cardinality (the size of the
set of transformations) [35]. This high cardinality allows
ResNeXt to learn more complex and diverse representa-
tions, which is crucial for distinguishing subtle patterns in
the Language Dataset, such as the frequency and arrange-
ment of characters encoded in images.

Our analysis across these CNN architectures reveals
distinct performance trends tied to the nature of each
dataset. ResNet-18 serves as a versatile baseline, while
AlexNet is especially capable of handling structured pat-
terns. VGG16’s mixed results and ConvNext’s overall un-
derperformance emphasise the need within conventional
deep learning for matching architectural strengths to dataset
characteristics, which is not desirable for evaluating gen-
eralisation capabilities in general and NAS algorithms in
particular. DenseNet and ResNeXt are good at handling
memory-intensive datasets and those with nuanced patterns,
respectively. These insights confirm that the effectiveness
of a CNN architecture is highly contingent on the specific
demands of the dataset, which underscores the need for un-
seen datasets for effective evaluation of NAS methods.

5.2. NAS Experiments

In addition to the experiments performed on the CNNs,
we have also applied the NAS methods of PC-DARTS [36],
DrNAS [2] (DARTS-space), and Bonsai-Net [9] to our
datasets. Furthermore, as a baseline of comparison, we per-
form a random search in both the DARTS and Bonsai search
spaces, using the provided methods from PC-DARTS and
Bonsai-NET. These results can be found in Tab. 2.

During our random search experiments using the
DARTS search space, it is noted that random search of-
ten outperforms either PC-DARTS or DrNAS and outper-
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Dataset CNN NAS Competition
AddNIST 94.87% 97.91% 95.06%
Language 93.97% 90.12% 89.71%
MultNIST 94.01% 98.10% 95.45%
CIFARTile 51.28% 92.28% 73.08%
Gutenberg 45.53% 49.12% 50.85%
Isabella 63.27% 65.77% 61.42%
GeoClassing 94.21% 96.03% 96.08%
Chesseract 59.60% 60.76% 62.98%

Table 3. Results on each dataset from our CNN and NAS experi-
ments, and Competition Submissions

forms both models on AddNIST, Chesseract and Isabella,
tying PC-DARTS on Language while outperforming Dr-
NAS. These results support findings by Yu et al. [39] that
searches using these search spaces often do not significantly
outperform random search.

We can see in Tab. 2 that PC-DARTS [36] performs well,
scoring the highest accuracies over four of the eight datasets
and gives competitive results over the others. DrNAS [2],
however, scores the highest on two of the eight datasets but
struggles with CIFARTile, where it scores 10% lower than
the other methods. We used the DARTS search space dur-
ing our DrNAS experiments; while DrNAS is also available
to work on the NAS-Bench-201 [7] search space, it employs
the NAS-Bench API to look at the performance of architec-
tures fully trained on CIFAR-10, which would not reflect
the performance these architectures found on our datasets.
In most cases, Bonsai-Net [9] outperforms random search,
with the exception of Chesseract. It returns the best re-
sults on AddNIST and Chesseract (though it is significantly
beaten by random search on the latter dataset).

The varied performance of these NAS methods across
our datasets highlights their ability to challenge and assess
the adaptability and effectiveness of different architecture
search strategies. This underscores the strengths of our
datasets in providing a comprehensive benchmark for eval-
uating NAS methods’ capability to generalise across a di-
verse range of tasks and complexities.

6. Discussion
Tab. 3 shows the best-reported performance of the CNN

and NAS experiments on each dataset, as well as the best
result found by competition participants; for further infor-
mation, see the Appendices. From these results, we can
see that NAS found the best model for seven datasets, sup-
porting the usage of NAS methods in finding good models
for given datasets. Three of these architectures were found
by competition submissions, NAS methods designed for un-
seen data; given the competition’s time restrictions this may
suggest that methods designed in this way can generalise to
other datasets better.

It is important to mention that we did not test the deepest

versions of these CNN architectures or perform hyperpa-
rameter optimisation. Similarly, while we allowed the tradi-
tional NAS methods to run in their preset configuration, the
competition participants were only given twenty-four hours
to evaluate across three datasets. However, even with these
limitations, CNNs and NAS architectures from the compe-
tition outperformed traditional NAS methods across several
datasets, reinforcing our belief that current NAS methods
do not necessarily generalise properly to unseen datasets.

7. Rights and Reproduction
These datasets have been created under the licence

agreements of the original data. Where available, we have
made the datasets publicly accessible under an CC BY 4.0
Licence. The Isabella dataset uses data from the Isabella
Stewart Gardner Museum, which withholds the right to
share modifications to the music they have made available.
Instead of providing the dataset, we provide a Python script
to convert music files obtained from the Museum3 into the
format of the competition dataset on our GitHub 4.

8. Conclusion
Machine learning is a valuable and fast-growing tool that

is quickly becoming part of the tools we use daily. For small
businesses to stay competitive, they need to be able to eas-
ily include machine learning techniques in their products or
business strategy. NAS promises to be a tool that removes
the cost of an expert’s time and knowledge to create bespoke
neural networks while remaining competitive. NAS is cur-
rently evaluated primarily on a few benchmark datasets and
developed based on these datasets as well. This does not
reveal how generalisable NAS methods are when given a
dataset, especially when the problem is distinctly different.

This paper introduces eight new datasets to be used when
testing NAS methods. These datasets represent problems
that are either simple or difficult for humans to solve and
provide difficulty outside of normal image classification.
While we believe using these datasets will improve the gen-
eralisability of NAS methods, the problem of not knowing
whether NAS is good in general or only good on bench-
mark datasets is a rolling problem. Simply including these
datasets for upcoming NAS works will mean they become
part of the datasets developed in mind. To solve this prob-
lem, more datasets will be continually needed.

In the future, we seek to develop further datasets to en-
able people to work on ‘unseen’ data for NAS. We will also
evaluate these datasets against pre-existing, and NAS ap-
proaches we are developing.

For a video overview of the paper, please follow this link:
youtu.be/YdYHdxNZUIw

3Available here https://www.gardnermuseum.org/experience/music
4github.com/Towers-D/NAS-Unseen-Datasets
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