
Event-based Visible and Infrared Fusion via Multi-task Collaboration

Mengyue Geng1, Lin Zhu2 ∗, Lizhi Wang2, Wei Zhang4, Ruiqin Xiong1, Yonghong Tian1,3,4 ∗

1School of Computer Science, Peking University
2Beijing Institute of Technology

3School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University
4Peng Cheng Laboratory

{mygeng, rqxiong, yhtian}@pku.edu.cn, {linzhu, wanglizhi}@bit.edu.cn, zhangwei1213052@126.com

Abstract

Visible and Infrared image Fusion (VIF) offers a com-

prehensive scene description by combining thermal infrared

images with the rich textures from visible cameras. How-

ever, conventional VIF systems may capture over/under ex-

posure or blurry images in extreme lighting and high dy-

namic motion scenarios, leading to degraded fusion results.

To address these problems, we propose a novel Event-based

Visible and Infrared Fusion (EVIF) system that employs a

visible event camera as an alternative to traditional frame-

based cameras for the VIF task. With extremely low latency

and high dynamic range, event cameras can effectively ad-

dress blurriness and are robust against diverse luminous

ranges. To produce high-quality fused images, we develop

a multi-task collaborative framework that simultaneously

performs event-based visible texture reconstruction, event-

guided infrared image deblurring, and visible-infrared fu-

sion. Rather than independently learning these tasks, our

framework capitalizes on their synergy, leveraging cross-

task event enhancement for efficient deblurring and bi-level

min-max mutual information optimization to achieve higher

fusion quality. Experiments on both synthetic and real

data show that EVIF achieves remarkable performance in

dealing with extreme lighting conditions and high-dynamic

scenes, ensuring high-quality fused images across a broad

range of practical scenarios.

1. Introduction

Visible and Infrared image Fusion (VIF) has attracted sus-

tained research interest due to its wide range of applications

such as robotic vision [21], surveillance [45] and remote

sensing [6]. Visible images contain abundant scene tex-

tures. However, they are sensitive to illumination changes.
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Figure 1. Comparision between conventional VIF system and

our EVIF system. In challenging scenes with extreme light-

ing and rapid motion, conventional VIF systems often produce

over/underexposed or blurry images, leading to poor fusion qual-

ity. Leveraging the high dynamic range and low latency of event

cameras, EVIF excels in capturing visible textures and can effec-

tively mitigating issues of blurriness in such scenarios.

Infrared images, on the other hand, capture thermal infor-

mation that is not affected by light but may lose texture de-

tails. Recognizing this complementarity, the goal of VIF is

to take the best of both modalities and produce a fused im-

age that allows a comprehensive description of the scene.

Studies over the past decades have provided remark-

able progress in the field of VIF [20, 28, 44]. Tradi-

tional approaches typically fall into several categories such

as multiscale transforms-based and sparse representation-

based ones [29]. With the rise of deep learning tech-

niques, a plethora of deep learning-based methods have also

been developed [59]. Alongside algorithmic advancements,

there have been significant data contributions, marked by

the release of increasingly comprehensive and valuable
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datasets [2, 3, 16, 17] in various target scenes.

Despite significant achievements, current VIF systems

can sometimes deliver subpar results in scenarios with ex-

treme lighting or high dynamic motion. A primary con-

straint is the input data quality. Traditional frame-based vis-

ible cameras usually possess a relatively low dynamic range

(e.g., about 60 dB). As shown in Fig. 1, this can lead to over-

exposure or underexposure when scenes have a vast range

of ambient lighting. Moreover, in scenes with rapid motion,

these frame-based cameras might experience motion blur

due to their limited frame rates. Meanwhile, infrared cam-

eras are not immune to motion blur either, especially for un-

cooled microbolometers prevalent in consumer applications

and research domains [14, 35]. Given the compromised in-

put quality, the output from VIF algorithms is inevitably af-

fected. As a result, the capabilities of current VIF methods

are often inadequate for these challenging scenarios.

In this paper, we address the aforementioned problems

by presenting a novel Event-based Visible and Infrared Fu-

sion (EVIF) system. Unlike traditional VIF systems, EVIF

pairs an infrared camera with a visible event camera [24].

Event cameras are biologically inspired sensors that record

rapid changes in light intensity with high dynamic range

(> 120 dB) and low-latency (in the order of µs) event sig-

nals. In EVIF, the recorded events serve a dual purpose: 1)

to unearth visible textures, and 2) to provide motion clues

that aid in transforming blurry infrared images into sharp

ones. Thanks to the high dynamic range and low latency

of the event camera, the extracted visible textures are free

from blurriness and remain robust even under extreme light-

ing conditions. Concurrently, the fine-grained motion per-

ception ability of events significantly bolsters the quality of

sharp infrared image recovery.

With the EVIF system, a pivotal question emerges: How

can we effectively harmonize events with infrared images

to produce high-quality fused images? Examining the sys-

tem design, we delineate three core tasks within EVIF: 1)

event-based visible texture reconstruction, 2) event-guided

infrared image deblurring, and 3) visible and infrared fu-

sion. An intuitive approach might be to tackle each task

separately. However, considering that these tasks cater to

different facets of the very same scene, there is an inherent

notion that they could be complementary.

Building upon the above analysis, we introduce a novel

multi-task collaborative framework designed to synergisti-

cally tackle the three delineated tasks, thereby optimizing

the visible and infrared fusion quality. Within our frame-

work, three networks are assigned to the three tasks. Rather

than allowing each network to learn in isolation, we em-

phasize their interplay and mutual reinforcement. To real-

ize this, we first propose a cross-task event enhancement

method aimed at the efficient deblurring of infrared images.

Intuitively, event features for texture reconstruction mainly

capture fine scene details, while those for motion deblurring

tend to focus on edge motion. In light of this, the cross-task

event enhancement module extracts the appearance details

in the former with a bi-directional recurrent adaptor and

fuses with the latter to compensate for the appearance in-

formation loss, yielding improved results for more precise

infrared image recovery.

Another collaborative aspect of our framework lies in

the fusion mechanism, where we diverge from existing so-

lutions and embrace a bi-level min-max mutual informa-

tion optimization approach. Specifically, after reconstruct-

ing the visible image and deblurring the infrared one, we

fuse them in the decoded feature space, enriching the rep-

resentation of both modalities. We minimize mutual infor-

mation between filtered modality features to decrease re-

dundancy and increase complementarity, while maximizing

it between the fused feature and original modality feature

before filtering to prevent information loss. This min-max

optimization balances feature distinctiveness and complete-

ness, improving fusion quality.

Extensive experiments on both synthetic data and real

data captured by a prototype hardware system verify the ef-

fectiveness of our approach. To summarize, the contribu-

tions of this paper are as follows:

• We propose an Event-based Visible and Infrared Fusion

(EVIF) system, which leverages an event camera to ad-

dress the limitations of traditional VIF systems in extreme

lighting and high dynamic motion scenarios. To the best

of our knowledge, this is the first work that utilize events

to address VIF tasks under such challenging conditions.

• We design a multi-task collaborative framework for EVIF

to obtain high-quality fused images. By exploiting cross-

task event enhancement and bi-level mutual information

optimization, the performance of individual tasks in EVIF

can be elevated to achieve better fusion quality.

• We build a prototype system to verify the effectiveness

of our method and contribute real data to promote further

research.

2. Related Work

Visible and Infrared Image Fusion. Visible and In-

frared image Fusion (VIF) techniques have garnered sig-

nificant attention over the past decades [29]. Traditional

methods typically extract suitable representations from both

images [5, 13, 18, 26, 52]. The fusion process then in-

volves combining these representations using well-designed

fusion strategies. With the rise of deep learning in various

computer vision domains, many deep learning-based VIF

methods have also emerged, promising enhanced fusion

quality [59]. Most of these methods leverage CNNs [20,

22, 27, 31]. More recently, GAN-based [25, 30, 57] and

Transformer-based [36, 50] methods have also gained trac-

tion. While these advancements have pushed the bound-
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Figure 2. Overall framework of the EVIF system involving three interleaved tasks. To achieve multitask collaboration, EVIF adopts cross-

task event enhancement to reinforce useful texture information from the texture reconstruction task into the deblurring task. Meanwhile,

the decoded features from both tasks are further involved in the fusion process. Finally, the two modality features are fused with bi-level

min-max mutual information optimization to highlight complemented features from both modalities and obtain robust fused images.

aries of VIF, challenges intrinsic to the data quality per-

sist. Due to the hardware limitations of frame-based vis-

ible and infrared cameras, VIF systems might capture

over/underexposed or blurry images in scenarios with ex-

treme lighting or high dynamic motion, resulting in a no-

table performance drop.

Event Cameras. Event cameras [15, 24] operate

by monitoring changes in per-pixel intensity in an asyn-

chronous manner, as opposed to capturing fixed pixel val-

ues. During capturing, event cameras generate an event for

a pixel whenever its logarithmic intensity shift surpasses

a certain threshold. Due to the unique sampling mecha-

nism and circuit design, event cameras can achieve a sig-

nificantly higher temporal resolution than traditional frame-

based cameras with a broad dynamic range. These ad-

vantages make them suitable for many applications, such

as high frame rate, high dynamic range video reconstruc-

tion [38, 51] and synthetic aperture imaging [60]. Simi-

larly, events are especially useful for VIF systems, as it can

recover blurry-free visible textures and provide motion cues

for restoring potential sharp infrared images from the cap-

tured blurry ones. Therefore, we are motivated to use event

cameras to build the EVIF system, aiming to overcome the

challenges posted by extreme light conditions and high dy-

namic motion scenes.

Multi-task Learning. Multi-task Learning (MTL)

involves the simultaneous learning of multiple related

tasks [48, 62]. By leveraging shared information among

tasks, MTL can potentially improve the performance of

individual tasks while reducing overall model complexity.

MTL has attracted considerable attention due to its versa-

tility, encompassing diverse task combinations and learning

paradigms [61, 62]. For EVIF, we dissect the fusion process

into three interlinked tasks, thereby addressing the three im-

portant questions inherent in MTL [62]:

“When to share”: We evaluate the trade-offs between

single-task and multi-task models, and confirm the benefits

of cross-task collaboration in EVIF.

“What to share”: We identify the mode of knowledge

transfer among tasks as a hybrid feature and instance-based

one, where we transfer useful features across tasks for better

learning along with shared data instances (e.g., event signals

of the same time interval).

“How to share”: We design cross-task event enhance-

ment and bi-level mutual information minimization meth-

ods to specify concrete ways to share knowledge among

tasks, resulting in improved performance.

3. Methodology

3.1. Problem Definition

Suppose we have a continuous event stream E within a time

interval [t0, t1] and a set of M potentially motion-blurred

infrared frames Iir = {Iiir | i = 1, 2, . . . ,M}. Each Iiir has

an exposure time window [ti, ti+δ] ∈ [t0, t1], where δ is the

exposure time length of the infrared camera. The objective

of EVIF is to produce sharp infrared-visible fusion images

Iif for each infrared frame Iiir. The task involves extracting

synchronized visible textures and motion clues from E , and

integrating them with Iir to create a clear, comprehensive

depiction of the scene. The fusion process aims to over-

come the limitations of motion blur and extreme lighting

conditions, leveraging the unique strengths of both infrared

and visible event data.

3.2. Framework Overview

Fig. 2 illustrates the over all framework of our proposed

EVIF system. The framework jointly addresses three inter-

leaved tasks, each achieved by a specific task-related net-

work. Since the first two tasks (i.e., event-based visible tex-
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Figure 3. Details of the cross-task event enhancement. LN denotes

layer normalization, Conv stands for a 1×1 convolution layer, and

CTCA denotes the cross-task channel attention.

ture reconstruction and event-based image deblurring) are

well-studied in literature [33, 39, 42, 55], we adopted the

state-of-the-art E2VID [39] and EFNet [42] as their task-

related networks and put our focus on their synergy1. To

achieve this, a cross-task event enhancement method is de-

signed to exploit useful texture features from the event re-

construction task. These features are then used to assist in-

frared image deblurring. Finally, the decoded features from

the first two tasks are sent to a fusion network, which em-

ploys a bi-level min-max mutual information optimization

mechanism to achieve robust fusion.

For each input blurry infrared image Iiir, its correspond-

ing event segment Eti+δ
ti

captured within the exposure time

window of Iiir is treated as input event data. The deblur-

ring network directly takes Eti+δ
ti

as input, while the event

texture reconstruction network equally divide Eti+δ
ti

into K

segments over time and process them recurrently, resulting

a set of K event features and reconstructed visible images.

During fusion, only the middle K+1

2
-th visible image is

used, while all K event features are participated in cross-

task event enhancement. Further details on these processes

and their integration in our framework are discussed in the

subsequent sections.

3.3. Crosstask Event Enhancement

Since the primary aim of the event-based deblurring net-

work is to uncover potential motion clues from events, the

texture features inherent in the events might not be fully

exploited within it. Considering this, we develop a cross-

task event enhancement method. This method is designed to

enhance the event features within the event-based infrared

image deblurring network, effectively leveraging the tex-

ture information learned from the event-based visible tex-

ture reconstruction task. As shown in Fig. 3, Given K event

features {F i
rec | i = 1, 2, . . . ,K} from the event recon-

1Note that the EVIF system is inherently flexible and also allows the

usage of other task-specific networks.

struction network, we need to summarize the spatial tex-

tures within each F i
rec while considering the temporal cor-

relation between them. To achieve this, two ConvGRUs [4]

are used to extract spatial-temporal features from F i
rec in a

bi-directional recurrent manner:

Si+1

f , F i+1

f = ConvGRU1(S
i
f , F

i
rec),

Si−1

b , F i−1

b = ConvGRU2(S
i
b, F

i
rec),

(1)

where Si
f and Si

b are forward and backward hidden states,

F i
f and F i

b are output features of GRUs. The endpoint fea-

tures FK
f and F 1

b are then stacked along channel dimension

to form a single feature F ′

rec, which contains abundant tex-

ture information over time.

After obtaining F ′

rec, the next key step is to merge the

texture information in F ′

rec into the event feature Fde of

the deblurring network. A direct solution would be add,

multiply, or concatenate F ′

rec with Fde, as adopted in some

previous MTL works [9, 47]. However, these approaches

overlook the drastically different feature distributions be-

tween the two tasks, which may compromise the original

motion cues in Fde. To avoid this issue, we instead design a

Cross-Task Channel Attention (CTCA) to merge F ′

rec with

Fde. Different from the vanilla attention mechanism [49]

that generates queries, keys, and values from a single input,

CTCA calculates the query feature F
Q
de from Fde, while the

key feature FK
rec and value feature FV

rec are obtained from

F ′

rec. All three features are reshaped to (hw)×c. The output

of CTCA is then calculated by performing attention along

channel dimension:

Fattn = FV
recSoftmax(

(FQ
de)

TFK
rec)√

hw
). (2)

Finally, Fattn and Fde are added to get the enhanced event

feature Fen for further processing in the deblurring network.

3.4. Fusion by Mutual Information Optimization

The goal of visible and infrared fusion is to acquire images

that contain abundant visible texture scene details while

highlighting salient targets captured in the infrared modal-

ity. Therefore, effectively harnessing the complementary

information contained in the two modalities is a key factor

in determining the performance of the fusion process.

To encourage complement feature discovery, a proper

strategy must be used to balance feature distinctiveness

and completeness. Intuitively, the ideal features for fu-

sion should highlight distinct information in each modal-

ity while reducing redundancy information that is common

across modalities. On the other hand, the fused results must

retain the original modality information as much as possible

to avoid potential information loss. Based on this analysis,

we propose to optimize the mutual information between the

two modality features in a bi-level min-max fashion. As
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Figure 4. The process of mutual information minimization to high-

light distinct modality-specific features, coupling with the process

of mutual information maximization to retain original information

and avoid potential information loss.

shown in Fig. 2, after obtaining the reconstructed visible

image and deblurred sharp infrared image, we pass them

into convolution layers and concatenate them with the de-

coder outputs of the previous task networks. The concate-

nated results consist of both shallow and deep representa-

tions, yielding reliable features Fvis and Fir for visible and

infrared modality, respectively. We then impose mutual in-

formation optimization over the two modality features to

encourage complementary information learning.

Specifically, we adopt transformer blocks that apply

multi-headed self-attention over spatial locations [12] as our

learnable information filter that exploit long-range spatial

dependency. After passing the two modality features Fvis

and Fir into transformer blocks and getting the output fea-

tures F ′

vis and F ′

ir, they are imposed with mutual informa-

tion minimization to reduce their redundancy and highlight

modality-dintinct information. The whole process is illus-

trated in Fig. 4. As shown in the figure, F ′

vis and F ′

ir are

adaptively pooled into one-dimensional vectors and passed

through MLP layers to obtain two variational latent embed-

dings z′vis and z′ir. Then, the mutual information between

z′vis and z′ir can be expressed as:

MI(z′vis, z
′

ir) = H(z′vis) +H(z′ir)−H(z′vis, z
′

ir), (3)

where H(z′vis) and H(z′ir) denotes the marginal entropy of

z′vis and z′ir, and H(z′vis, z
′

ir) is their joint entropy. To cal-

culate MI(z′vis, z
′

ir), We follow previous works [58, 65]

and leverage Kullback-Leibler (KL) divergence to calcu-

late the marginal entropy and obtain the mutual information

minimization loss:

LMI(z
′

vis, z
′

ir) = Ĥ(z′ir, z
′

vis) + Ĥ(z′vis, z
′

ir)

− (KL(z′vis||z′ir) +KL(z′ir||z′vis)),
(4)

where Ĥ(z′ir, z
′

vis) is the cross-entropy from z′vis to z′ir.

By minimizing the mutual information between F ′

vis and

F ′

ir, the modality distinct features are highlighted. We then

concatenate F ′

vis and F ′

ir and fuse them using another trans-

former block to get the fused feature Ff . However, solely

minimizing mutual information may cause potential infor-

mation loss, as the network may learn to discard important

features to force a lower LMI . To alleviate this issue, we

further impose mutual information maximization between

Ff and original modality features Fvis and Fir. As shown

in Fig. 4, three latent embeddings zf , zvis and zir are ob-

tained from Ff , Fvis and Fir, respectively. To maximize

the mutual information, we take inspiration from [41, 46]

and optimize the InfoNCE [32] objective by treating each

{zvis, zf} as positive and other samples in the same batch

as negative:

Lvis
NCE = −

N∑

i=1

log
exp(zTfizvisi)∑N
j=1

exp(zTfizvisj )
, (5)

where N is the batch size, zvisi and zfi are the i-th corre-

sponded embeddings in the batch. The Lir
NCE for infrared

modality can be defined similarly. Note that the loss for MI

minimization (Eq. 4) and maximization (Eq. 5) are different

since the MI optimization is usually done by adjusting MI

bounds and not MI itself [1]. Therefore, −LMI can not be

used to replace LNCE and vise versa.

By optimizing mutual information in a bi-level min-max

manner, the EVIF framework effectively enhances the dis-

tinctiveness of features while maintaining a comprehensive

representation of each modality. This approach ensures that

the fused features capture essential characteristics from both

modalities, balancing uniqueness and completeness.

3.5. Progressive Training

Overall, the training of EVIF follows a three-staged man-

ner, in which the three tasks are learned sequentially and

progressively. At each stage, we keep training tasks in pre-

vious stages, together with the new task at the current stage.

For the first two tasks, L2 loss is applied as the training ob-

jective. After the event reconstruction network has finished

training, the deblurring network is further trained along with

cross-task event enhancement. Finally, the fusion network

is trained with the following objective:

Lfuse = γ1LSSIM + γ2LMI + γ3(Lvis
NCE + Lir

NCE),
(6)

where LSSIM is the SSIM loss between the fused image

and the output images of the previous tasks. γ1, γ2 and γ3
are balancing weights of different loss terms.

4. Experiments

4.1. Dataset and Hardware System

Dataset To thoroughly verify the effectiveness of our EVIF

system, we conduct experiments on both synthetic data and
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Figure 5. Qualitative comparison of EVIF with nine state-of-the-art frame-based VIF methods on synthetic data. For each test sample, we

show in the first row the groundtruth and blurry images, the event data, and the three task outputs of EVIF. We then show fusion results of

other methods in the next two rows. Methods with ∗ denotes applying NAFNet deblurring as a preprocessing step before fusion.

real captured data. For the synthetic data, we use the KAIST

multi-spectral dataset [10]. This dataset encompasses a

wide variety of driving environments and provides consec-

utive visible and infrared frames. To simulate blurry data to

mimic highly dynamic scenes, we average every 7 frames

to form one blurry infrared and visible frame. The events

are generated using ESIM simulator [37]. For the real data,

we build a hybrid camera system as shown in Fig. 6, which

consists of a DAVIS346 event camera and an infrared cam-

era. The data are then captured under various challenging

scenes (e.g., late night low-light environments and on-board

captures on a high-speed vehicle). Since DAVIS346 can

also output grayscale APS frames, we use them as visible

images for comparison with conventional VIF methods.

4.2. Experimental Settings

Model Training. We use the training split of the KAIST

dataset provided in [10] to train our model. For the event

data, we use the standard event voxel representation [38]

that splits and merges the event sequence into ten channels.

Adam [19] optimizer is used with a learning rate of 1 ×
10−4 and [γ1, γ2, γ3] in Eq. 6 are set to [1.0, 0.1, 0.01]. The

training lasts for 100K, 20K and 10K iterations for the three

Infrared Camera

Event Camera

Figure 6. The hybrid camera system used to capture real data.

The two cameras are temporally synchronized with a customized

circuit and spatially aligned by manual keypoint matching.

stages on a server equipped with an RTX4090 24GB GPU.

Evaluation Protocols. To evaluate and compare methods,

we apply six standard VIF metrics, including Cross Entropy

(CE)[5], Entropy (EN) [40], Mutual Information (MI) [34],

Average Gradient (AG) [11], Structural Similarity Index

Measure (SSIM) [53], and Chen-Blum metric (QCB) [8].

For the synthetic data, we randomly select 1000 test sam-

ples from the test split of KAIST. During testing, the sim-

ulated blurry visible and infrared frames are directly used

as input to conventional VIF methods, while the metrics are
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Table 1. Quantitative comparison of EVIF with state-of-the-art conventional VIF methods. For each comparative method, we present two

values: one for directly fusing blurry inputs and another for utilizing NAFNet deblurring as a preprocessing step prior to fusion. ↓ indicates

smaller is better, and ↑ vice versa. The best results are indicated in bold, and the second best are indicated with an underline.

CE↓ EN↑ MI↑ AG↑ SSIM↑ QCB↑

DenseFuse 2.321 / 2.302 6.568 / 7.034 1.416 / 1.526 1.423 / 1.574 1.274 / 1.283 0.251 / 0.359

YDTR 2.714 / 2.732 6.751 / 6.562 1.729 / 1.468 1.603 / 1.714 1.253 / 1.258 0.234 / 0.274

U2Fusion 1.678 / 1.696 6.772 / 6.716 1.391 / 1.741 1.498 / 1.688 1.265 / 1.275 0.316 / 0.251

DIDFuse 1.462 / 1.492 7.103 / 6.775 1.511 / 1.445 2.244 / 2.565 1.041 / 1.064 0.369 / 0.338

LRRNet 2.173 / 2.289 7.245 / 7.122 1.740 / 1.535 2.105 / 2.285 1.202 / 1.216 0.356 / 0.382

SwinFuse 2.328 / 2.392 7.217 / 7.148 1.489 / 1.767 2.267 / 2.542 1.245 / 1.250 0.285 / 0.349

CDDFuse 2.431 / 2.444 7.211 / 7.192 1.930 / 1.939 2.238 / 2.397 1.245 / 1.265 0.282 / 0.304

HMSD GF 2.298 / 1.865 7.300 / 7.160 1.416 / 1.881 3.128 / 3.069 1.134 / 1.224 0.330 / 0.300

GFCE 2.650 / 2.586 7.314 / 7.267 1.396 / 1.561 3.325 / 3.645 1.086 / 1.087 0.327 / 0.366

EVIF (ours) 1.986 7.326 1.978 2.120 1.285 0.377

calculated against the groundtruth sharp images. To further

ensure a fair comparison, we additionally test these VIF

methods by first using a powerful state-of-the-art frame-

based deblurring network NAFNet [7] trained on KAIST

data to deblur their input. The real data are directly tested

using the model trained on synthetic data without any fur-

ther finetuning. Due to the lack of groundtruth, we only

perform qualitative comparisons on the real data.

4.3. Comparison with Stateoftheart Methods

We first compare our approach on the synthetic

KAIST dataset with nine state-of-the-art VIF meth-

ods, including SwinFuse [54], DenseFuse [20],

YDTR [43], U2Fusion [56], DIDFuse [63], LRR-

Net [23], CDDFuse [64], HMSD GF [66] and GFCE [66].

The quantitative results are given in Table 1. Our EVIF

system obtains three best values, in which two of them

are information theory-based metrics (EN and MI). This

suggests that the fused images generated by EVIF contain

more information about the input, indicating the effective-

ness of our mutual-information optimization mechanism.

Moreover, the qualitative results in Fig. 5 also clearly

demonstrate the advantage of EVIF. From the first sample

in the figure, we see that conventional VIF systems tend to

obtain blurry results even with strong input pre-processing

(i.e., deblurring with NAFNet). In addition, the unique

sampling mechanism of events also makes EVIF suffer less

from overexposure issues, as shown by the second sample.

To demonstrate the advantage of our approach under

practical scenarios, we further compare different methods

on the real-captured data. The qualitative results are given

in Fig. 7. We can see that blurry and over/under exposure

issue is even more pronounced in the real setting, which

severely jeopardizes the performance of conventional VIF

methods. Conversely, our EVIF system exhibits superior re-

silience against these issues, maintaining clarity and detail

in the fused imagery. The results in Fig. 7 clearly demon-

strate how our approach effectively mitigates the challenges

in extreme lighting and high dynamic motion scenarios, of-

Table 2. Comparison of various infrared image deblurring meth-

ods. The cross-task event enhancement notably enhances results.

Method Blurry NAFNet EVIF w/o Enhance EVIF

PSNR 28.750 31.230 33.320 33.940

fering a significant advancement in VIF technology.

4.4. Ablation Study

Effectiveness of Cross-task Event Enhancement. We first

perform ablation study to verify the impact of the cross-

task event enhancement method to the infrared image de-

blurring performance. Speficially, we report the deblurring

PSNR values of different methods on the synthetic data in

Table 2. From the table, we have a few observations. First,

events can indeed provide valuable motion cues to facilliate

infrared image deblurring, as evidenced by the large perfor-

mance gap between EVIF and frame-based NAFNet. Sec-

ond, our cross-task event enhancement method can further

boost the performance of the deblurring task. This demon-

strates the effectiveness of our cross-task collaborative de-

sign, which utilizes the complementary feature across tasks

to promote model robustness. To provide more intuitive ev-

idence, we demonstrate some data samples produced by dif-

ferent methods in Fig. 8. As shown in the figure, the sample

generated with cross-task event enhancement exhibits richer

details, thanks to the additional texture features drawn from

the event reconstruction task.

Effectiveness of Bi-level MI Optimization. The bi-

level min-max mutual information (MI) optimization in

EVIF aims to highlight the complementary information re-

side in both visible and infrared modalities while reducing

information loss. To verify the rational of such design, we

provide a qualitative comparison of different MI optimiza-

tion settings in Fig. 9. As shown in the figure, if no MI

optimization is used, the resultant fused image tend to ap-

pear like the average of two input images. When only MI

minimization is applied, the quality of the fused image be-

come worse due to the potential information loss caused by

forcing smaller MI loss. When only MI maximization is

applied, the network tend to retain as much information in
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Figure 7. Qualitative comparison on the real-captured data. Please read similarly as in Fig. 5.

Blurry NAFNet EVIF w/o Enhance EVIF

Figure 8. Qualitative assessment of the effectiveness of the cross-

task event enhance method.

No MI optimization MI Minimization only

MI Maximization only Bi-level MI optimization

Rec. VIS

Deblurred IR

Figure 9. Qualitative assessment of the effectiveness of different

MI optimization settings.

the fused image as possible, but this increases redundancy

and making salient targets less perceivable. Different from

these settings, the proposed bi-level MI optimization clearly

enhances the modality-inconsistent regions, while keeps a

comprehensive descripsion of the scene.

5. Conclusion

In this paper, we proposed a novel Event-based Visible and

Infrared Fusion (EVIF) system. Characterized by the low

latency and high dynamic range of event cameras, EVIF is

able to handle blurry and over/underexposure issues in ex-

treme lighting and high dynamic motion scenarios. More-

over, we developed a multi-task collaborative framework to

obtain robust fusion results from EVIF. Benefiting from the

cross-task event enhancement and the bi-level mutual infor-

mation optimization, our framework can make the most of

the event data and provide a comprehensive scene descrip-

tion. Extensive experiments on both synthetic and real data

demonstrate that EVIF can effectively handle more extreme

conditions than conventional VIF systems, ensuring clearer

and more reliable fusion results.
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