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Abstract

Redundancy is a persistent challenge in Capsule Net-

works (CapsNet), leading to high computational costs

and parameter counts. Although previous studies have

introduced pruning after the initial capsule layer, dy-

namic routing’s fully connected nature and non-orthogonal

weight matrices reintroduce redundancy in deeper layers.

Besides, dynamic routing requires iterating to converge,

further increasing computational demands. In this paper,

we propose an Orthogonal Capsule Network (OrthCaps)

to reduce redundancy, improve routing performance and

decrease parameter counts. Firstly, an efficient pruned

capsule layer is introduced to discard redundant capsules.

Secondly, dynamic routing is replaced with orthogonal

sparse attention routing, eliminating the need for iterations

and fully connected structures. Lastly, weight matrices

during routing are orthogonalized to sustain low capsule

similarity, which is the first approach to use Householder

orthogonal decomposition to enforce orthogonality in Cap-

sNet. Our experiments on baseline datasets affirm the

efficiency and robustness of OrthCaps in classification

tasks, in which ablation studies validate the criticality of

each component. OrthCaps-Shallow outperforms other

Capsule Network benchmarks on four datasets, utilizing

only 110k parameters – a mere 1.25% of a standard

Capsule Network’s total. To the best of our knowledge, it

achieves the smallest parameter count among existing Cap-

sule Networks. Similarly, OrthCaps-Deep demonstrates

competitive performance across four datasets, utilizing only

1.2% of the parameters required by its counterparts.

1. Introduction

While convolutional Neural Networks (CNNs) excel in

computer vision tasks, certain challenges remain, which

include information loss in pooling layers, low robustness,

and poor spatial feature correlation [8, 30]. To address

† Corresponding authors.

Figure 1. Dynamic routing mechanism. ui, vj are the lower-level

capsule, and higher-level capsule, respectively. W is the weight

matrix to produce the pose prediction ûi of ui for next level. bij

is a temporary variable to calculate the coupling coefficient cij .

these limitations, Capsule Network (CapsNet) was pro-

posed, using capsule vectors instead of traditional neurons.

In CapsNet, each capsule vector’s length represents the

presence probability of specific entities in the input image,

and its direction encodes the captured features [30]. This

setup allows the capsule vectors to capture features related

to corresponding entities. CapsNet’s architecture includes

a primary capsule extraction layer, a digit capsule layer,

dynamic routing, and class-conditioned reconstruction. As

a key component of CapsNet, dynamic routing aligns lower-

level capsules with higher-level ones, which is described

in Fig. 1. First, lower-level capsules Ul (in matrix form)

predict poses Ûl for higher-level capsules Vl+1 via weight

matrix W . Then, the routing process iteratively clusters

to adjust the coupling coefficients cij of each lower-level

capsule ul,i to all higher-level capsules, with more crucial

capsules receiving larger cij .

Recent studies have mentioned that CapsNet contains

redundant capsules [1, 28, 31]. As evidence, Fig. 2 shows

48.2% of primary capsule pairs exhibit cosine similarities

above 0.65, indicating significant redundancy. Although

certain studies have implemented pruning techniques at

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Left: In the primary capsule layer of CapsNet, 48.2% of

capsule pairs have cosine similarities greater than 0.65, indicating

significant redundancy among capsules. Right: After introducing

the Pruned Layer, capsule similarities effectively decrease.

the primary capsule layer [29], deeper layers still show

considerable over-similar issues, as shown in Fig. 6. We

attribute this persistent redundancy in deeper layers to

dynamic routing. On the one hand, since vl+1,j =
g(
∑

i cij ûl,i), each higher-level capsule is essentially a

weighted sum of lower-level capsules, indicating a fully

connected relationship between lower and higher layers in

CapsNet [14]. This full connection leads to a potential

transmission of redundant information. On the other hand,

considering Ûl = WUl, we can express higher-level

capsules as Vl+1 = g[(C∗W )Ul]. Non-orthogonal matrices

C ∗W in routing may increase the capsule similarity, which

impairs routing performance and reintroduces redundan-

cies in subsequent layers. Additionally, dynamic routing

requires multiple iterations to repeatedly update cij until

convergence, further straining computational resources.

Inspired by the successful use of orthogonality in

CNNs [38] and Transformer [10] to reduce filter overlaps,

we introduce the Orthogonal Capsule Network(OrthCaps),

which has two versions: the lightweight OrthCaps-Shallow

(OrthCaps-S) and the OrthCaps-Deep (OrthCaps-D).

OrthCaps addresses the above problems of the fully

connected structure of dynamic routing, increasing

similarity in deep layers, and the need for iteration,

detailed as follows:

Firstly, we introduce a pruned capsule layer after the

primary capsule layer, which eliminates redundant capsules

and retains only essential and representative ones. Here,

capsules are firstly ordered by importance, then their cosine

similarity is calculated to identify redundant capsules.

Beginning with the least important, the process consistently

prunes capsules that exceed the similarity threshold, pro-

ceeding through the entire set of capsules.

Secondly, to solve the iteration issue, dynamic routing is

replaced with attention routing, which is a straightforward

routing mechanism. To solve the fully connected problem,

we leverage sparsemax-based attention [3] to produce an

attention map, which selectively amplifies relevant feature

groups corresponding to specific entities while downplay-

ing irrelevant ones. For OrthCaps-S, a simplified attention-

routing is adopted, optimizing parameter counts.

Thirdly, to address the issue of increased capsule similar-

ity in deeper layers, we introduce orthogonality into capsule

networks. By applying Householder orthogonal decom-

position, we enforce orthogonality in the weight matrices

during attention routing. Orthogonal weight matrices sus-

tain low inter-capsule correlation, which encourages fewer

capsules to represent more features during backpropagation,

thereby enhancing accuracy while effectively reducing the

number of parameters.

Contributions. To summarize our work, we make the

following contributions:

1) To our knowledge, this approach addresses the issue

of deep redundancy of capsules for the first time. A

novel pruning strategy is implemented to alleviate capsule

redundancy and an orthogonal sparse attention routing

mechanism is proposed to replace dynamic routing.

2) It is the first time that Householder orthogonal

decomposition is used to enforce orthogonality in CapsNet.

This simple, penalty-free orthogonalization method is also

adaptable to other neural networks.

3) Two OrthCaps versions are created: OrthCaps-S and

OrthCaps-D. OrthCaps-S sets a new benchmark in accuracy

with just 1.25% of CapsNet’s parameters on datasets of

MNIST, SVHN, smallNORB, and CIFAR10. OrthCaps-D

excels on CIFAR10, CIFAR100 and FashionMNIST while

keeping parameters minimal.

2. Related Work

Capsule Networks. Dynamic routing was first introduced

by Sabour et al.[30]. Though numerous studies have

used attention strategies to improve dynamic routing, the

issue of the fully connected structure and reintroduction

of redundancy remains unaddressed [9, 21, 23]. Choi

et al. incorporated attention into the capsule routing via

a non-iterative feed-forward operation [2]. Tsai et al.

introduced a parallel iterative routing, which did not address

the complexity of iterative requirements [35]. Furthermore,

many works focused on pruning but did not mention new

redundancies introduced by dynamic routing. Jeong et al.

established a ladder structure, using a pruning algorithm

based on encoding [14]. Sharifi et al. created a pruning

layer based on Taylor Decomposition [31]. Renzulli et al.

used LOBSTER to create a sparse tree [29]. Different from

existing works, we incorporate pruning, orthogonality and

sparsity to effectively reduce redundancy.

Orthogonality. Various methods are proposed to in-

troduce orthogonality into neural networks, which can

be categorized into hard and soft orthogonality. Hard

orthogonality maintains matrix orthogonality throughout

training by either optimizing over the Stiefel manifold

[11, 19], or parameterizing a subset of orthogonal matrices

[33, 34, 37]. These methods incur computational overhead
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Figure 3. (a): In CIFAR10 classification task, the OrthCaps-D model comprises seven capsule blocks, each with three capsule layers,

interconnected via shortcut connections and orthogonal sparse attention routing. (b): The OrthCaps-S model contains two capsule layers

coping with CIFAR10 and does not use any capsule layer with MNIST. These layers are linked through simplified attention routing.

and result in vanishing or exploding gradients. Soft

orthogonality, on the other hand, employs a regularization

term in the loss function to encourage orthogonality among

column vectors of weight matrix without strict enforcement

[12, 16, 26]. Yet, strong regularization overshadows

the primary task loss, while weak regularization fails

to encourage orthogonality. We leverage Householder

orthogonal decomposition [20, 36] to achieve strict matrix

orthogonality, minimizing computational complexity and

obviating the need for additional regularization terms.

3. Methodology

3.1. Overall Architecture

We introduce OrthCaps, offering both shallow

(OrthCaps-S) and deep (OrthCaps-D) architectures to

minimize parameter counts while exploring the potential

for deep multi-layer capsule networks.

As illustrated in Fig. 3a, OrthCaps-D comprises five

key components: a convolutional layer, a primary capsule

layer, a pruned capsule layer, seven capsule blocks and a

flat capsule layer. Given input images x ∈ R
(B,3,W,H),

initial features Φ0 ∈ R
(B,Cn,W

0,H0) are extracted through

a convolutional layer. The primary capsule layer generates

initial capsules u1 ∈ R
(B,n,d,W 1,H1) with a kernel size

of 3 and stride of 2. B, n, d, Cn represent the batch size,

number of capsules, capsule dimensions and channels, re-

spectively. A pruned capsule layer is then placed to remove

redundant capsules. OrthCaps-D has seven capsule blocks,

each containing three depthwise convolutional capsule

layers(ConvCaps Layers) linked by shortcut connections to

prevent vanishing gradient. Within each block, lower-level

capsules ul are routed to the next layer vl+1 via orthogonal

sparse attention routing. Blocks are also connected through

routing, allowing for stacking to construct deeper capsule

networks. The flatcaps layer is employed to map capsules

into classification categories for final classification tasks.

OrthCaps-S, as illustrated in Fig. 3b, replaces the

complete attention routing with a simplified version and

has a single block within capsule layers. The number of

layers can be adjusted as needed. Convolutional capsules

in the primary layer utilize a 9x9 kernel with a stride

of 1, and other layers are consistent with OrthCaps-D.

The subsequent introduction of the network’s components

follows the order of data flow.

3.2. Pruned Capsule Layer

The generation of capsules starts with the primary

capsule layer. At this initial stage, it is crucial to

generate low-correlated capsules, which ensures efficient

feature representation and reduces feature overlap during

subsequent layers. Therefore, we introduce an efficient

capsule pruning Algorithm 1, including the following parts:

Redundancy Definition. Redundancy occurs when two

capsules capture identical or similar features. Given that the

direction of each capsule vector encodes specific features,

capsules with closer directions(or angles) indicate that they

capture similar features and entities. Thus, we employ the

cosine similarity of capsule angles to measure redundancy.

Capsule Importance Ordering. For redundant capsule
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Figure 4. Orthogonal self-attention routing.

pairs, random pruning may result in losing capsules vital

for accurate classification. To ensure that the less crucial

capsule is pruned first when the similarity between a pair

is high, capsules are sorted in an order based on ∥uflat∥2.

We employ L2-norm as it calculates the length of capsule

vectors, indicating the existence probability of encoded

entities, which shows the activeness of capsules [14].

Pruning. After ordering, a mask matrix M ∈ R
(1,n,1)

is initialized to all-ones. Starting with the least active

capsule, the process computes the cosine similarity between

less active capsule uordered,i with more active capsule

uordered,j . When the similarity exceeds the threshold θ, the

corresponding column in the mask for uordered,i is set to 0,

indicating that less active capsule is pruned. In this way,

only the active capsules are retained all along. The final step

is applying M to uordered, producing pruned capsules upruned.

n′ is the number of remaining capsules after pruning.

Algorithm 1 Efficient Capsule Pruning

Require: Capsules u ∈ R
(B,n,d,W,H), threshold θ

Ensure: upruned ∈ R
(B,n,d,W,H)

1: Reshape u → uflat ∈ R
(B,n,(d×W×H))

2: Compute L2-norm: ∥uflat∥2
3: Order capsules by L2-norm: uflat → uordered

4: Initialize M : all-ones matrix

5: for i < j do

6: tij = cosine similarity(uordered,i, uordered,j)
7: mi = 0 where tij > θ

8: Prune using M : upruned = uordered »M

9: Reshape upruned to upruned ∈ R
(B,n′,d,W,H)

10: return upruned

Notably, we compute the cosine similarity matrix T by

broadcasting, which avoids explicit for-loop iteration and

reduces computational complexity. The 5D capsule tensor

of ul with dimensions d and number n, [B, n, d,W,H], is

reshaped to [B, n, d×W ×H] to suit for broadcasting.

3.3. Routing Algorithm

We introduce the orthogonal sparse attention routing to

replace dynamic routing. This approach eliminates the

need for iteration and leverages sparsity to reduce redundant

feature transmission.

Let ul,i and vl+1,j represent capsules at layer l and l +
1 respectively, each with dimension d. We employ three

weight matrices WQ, WK , WV ∈ R
d×d to derive queries

Q, keys K, and values V from ul,i, Q = WQ × ul,i,K =
WK × ul,i, V = WV × ul,i. Specifically, WQ, WK , and

WV are designed as orthogonal matrices, enabling them to

project ul,i into a d-dimensional orthogonal subspace.

As shown in Fig. 4a, attention routing aims to produce

coupling coefficient cij , which serves as the weight during

routing from lower-level to higher-level capsules. The

coupling coefficient matrix C is derived from the attention

map, generated through the dot product of Q and K, C =
α-Entmax(QKT /

√
d). Here, we replace the softmax of

the original attention mechanism with α-Entmax in Eq. (1),

enhancing the sparsity of the attention map. α-Entmax

adaptively sets small cij to zero, thereby encouraging rout-

ing to prioritize more important capsules while minimizing

irrelevant information transfer.

α-Entmax(x)i = max

(

xi − τ

α
, 0

)
1

α−1

(1)

τ is a self-adaption threshold and α is a hyperparameter

controlling the sparsity of the attention map.

The vote sl+1,j is computed as the product of V and C.

In Eq. (2), higher-level capsule vl+1,j is generated by sl+1,j

from a multi-head self-attention mechanism with 16 heads,

using the nonlinear activation function g.

vl+1,j = g(sl+1,j) = g(α-Entmax(QKT /
√
d)× V ) (2)

For simplified attention-routing in Fig. 4b, we condense

prediction matrices W from three to one and replace

K,Q, V with ul,i [7]. The ûl,i is the prediction for

vl+1,j . The attention map C is obtained using α-entmax

with the dot product to produce the vote sl+1,j = ûl,i ×
C = ûl,i × (α-Entmax(ûl,iu

T
l,i/

√
d)). sl+1,j is processed

through g to produce vl+1,j . Notably, standard convolutions

are supplanted by depthwise convolutions to minimize

parameter count. Without any iteration, attention routing

reduces computational complexity.
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3.4. Orthogonalization

In Sec. 3.2, we reduce redundancy by pruning highly

similar capsules. To preserve pruning effect in subsequent

layers, it’s vital to maintain low similarity among capsules

all along. Here, capsules with diverse angles span a broader

multi-dimensional feature subspace, enabling the network

to capture a wider array of features with fewer capsules,

which boosts accuracy and reduces parameter count.

We utilize orthogonalization to achieve this. An orthog-

onal matrix, signifying a rotation or reflection transforma-

tion, keeps vector lengths and inter-vector angles constant

during multiplication with a vector set. Considering

that cosine similarity quantifies angles between vectors,

applying an orthogonal matrix W to a vector set retains the

mutual cosine similarity among all vector pairs in the set.

Let {vl+1,j | j = 1, 2, . . . ,m} be a set of capsule vectors at

layer l + 1, we derive Lemma 1:

Lemma 1: For any i, j ∈ {1, 2, . . . ,m}, if W is orthogonal,

the cosine similarity between vl+1,i and vl+1,j remains

unchanged after multiplication by W .

Sec. 3.4.1 discusses the selection of targets for orthogo-

nalization, while Sec. 3.4.2 details the method.

3.4.1 Orthogonalization of Weight Matrices

The goal of orthogonalization is to maintain low simi-

larity among higher-level capsules. Following Sec. 3.3, we

represent higher-level capsules into matrix multiplication:
Vl+1 = g(Sl) = g(CV ) = g[(C ×WV )Ul] (3)

As the activation function g in CapsNet preserves the

capsule vector’s direction [30], in line with Lemma 1,

ensuring orthogonality of C and WV can maintain low

similarity. However, orthogonalizing C directly is hard, so

we delve deeper into its calculation process in Eq. (4):

C = α-Entmax(QKT /
√
d) = α-Entmax(WQUlUl

TWK
T /

√
d) (4)

Since d is a constant, it requires no additional analysis.

The impact of UlUl
T on orthogonalizing C is mitigated

by pruning, which removes capsules with short lengths

and high cosine similarity. Consequently, the remaining

capsules were updated to approximate unit length and low

correlation, akin to a standard orthonormal basis. Thus,

UlUl
T gradually becomes more orthogonal as the network

trains, minimizing its impact on the orthogonality of C.

Although α-Entmax, a nonlinear function, may not preserve

the orthogonality of inputs, it renders C sparse. This

sparsity directs lower-level capsules effectively toward their

respective higher-level targets, which reduces interference

during routing, thus encouraging a relatively low similarity

among higher-level capsules.

Our above analysis indicates that orthogonalizing

WQ,WK , and WV is essential for maintaining low cosine

similarity among higher-level capsules. While C is not fully

orthogonalized, our experiments demonstrate considerable

improvements in both accuracy and parameter efficiency.

Figure 5. The computing process of HouseHolder method.

3.4.2 Householder Orthogonalization

Let W be the weight matrix requiring orthogonalization.

As shown in Fig. 5, the Householder orthogonal decomposi-

tion theorem is employed to formulate an endogenously op-

timizable orthogonal matrix. The essence of this approach

is in the following algebraic lemma [36]:

Lemma 2: Any orthogonal n × n matrix is the product of

at most n orthogonal Householder transformations.

Based on Lemma 2, an orthogonal matrix W ∈ R
d×d

can be formulated in Eq. (5):

W = H0H1 . . . Hd−1 (5)

Each Hi represents a Householder transformation, de-

fined as Hi = I − 2aia
T
i , where ai is a unit column

vector. We utilize a set of randomly generated column

vectors {bi|i = 0, . . . , d − 1} instead of ai to construct

Hi as detailed in Eq. (6). During training, bi is optimized

through gradient backpropagation. W inherently preserves

its orthogonality during training.

W =

d−1
∏

i=0

(

I − 2bib
T
i

∥bi∥2

)

(6)

Lemma 3: WQ, WK , and WV constructed using Equation

Eq. (6) are Orthogonal.

Following Eq. (6), WQ, WK , and WV could easily be

orthogonalized, where the proof is provided in supplement

material ??. Householder orthogonalization enables com-

putationally efficient transformation of arbitrary coefficient

matrices into orthogonal matrices without any additional

penalty terms in the loss function.

4. Experiments

4.1. Experimental Setup

Implementation Details and Datasets

OrthCaps is developed using PyTorch 1.12.1, running on

Python 3.9, and the training process is accelerated using
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Table 1. (a): OrthCaps-S ranks as the top or second best across five datasets, standing out as being resource-efficient with only 105.5K

parameters and 673.1M FLOPS. (b): OrthCaps-D shows competitive performance with fewer parameters and less computational cost.

Shallow Networks Param³ FLOPS[M]³ MNIST SVHN smallNORB CIFAR10

OrthCaps-S1 105.5K 673.1 99.68 96.26 98.30 86.84

Efficient-Caps 162.4K 631.1 99.58 93.12 97.46 81.51

CapsNet 8388K 803.8 99.52 91.36 95.42 68.72

Matrix-CapsNet with EM routing 450K 949.6 99.56 87.42 95.56 81.39

AR CapsNet 9.1M 2562.7 99.46 85.98 96.47 85.39

DA-CapsNet 7M* - 99.53* 94.82* 98.26* 85.47*

AA-CapsNet 6.6M* - 99.34* 91.23* 89.72* 79.41*

CapProNet - - 94.98 93.41 92.01 80.84

Baseline CNN 4.6M 1326.9 99.22 91.28 87.11 72.20

(a)

Deep Networks Param ³ FLOPS[M]³ CIFAR10 CIFAR100 MNIST FashionMNIST

OrthCaps-D1 574K 3345 90.56 70.56 99.59 94.60

AR-CapsNet(7 ensembled) 6.3M 16657.5 88.94 56.53 99.49 91.73

CapsNet(7 ensembled) 5.8M* 5137.4* 89.4* - - -

Inverted Dot-Product 1.4M 5340.9 84.98 57.32 99.35 92.85

RS-CapsNet 5.0M* - 89.81* 64.14* - 93.51*

DeepCaps 13.5M 2687 91.01 69.72 99.46 92.52

ResNet-18 11.7M 5578.8 95.10 77.60 99.29 93.32

VGG-16 147.3M 15143.1 93.57 73.10 99.21 92.21

(b)

four GTX-3090 GPUs. We adopt the margin loss as defined

in [30]. Observing minimal performance benefits in our

experiments, we decide to exclude the reconstruction loss.

Our model utilizes the AdamW optimizer with a cosine

annealing learning rate scheduler and a 5-cycle linear warm-

up. We set learning rate at 5e-3, weight decay at 5e-

4, and batchsize at 512. Experiments are conducted on

SVHN [22], smallNORB [18], CIFAR10, and MNIST [17]

for OrthCaps-S. OrthCaps-D is evaluated on CIFAR10,

CIFAR100 [15], Fashion-MNIST [39], and MNIST. We

resize SmallNORB from 96×96 to 64×64 and cropped it to

48× 48 like [30]. All other datasets retained original sizes.

For data augmentation, we adopt the methods outlined in

[8]. For reproducibility, we detailed hyperparameters and

setups in supplement material ??.

Comparison Baselines

For OrthCaps-S, we compare it with Efficient-Caps[21],

CapsNet[30], Matrix-CapsNet with EM routing[8],

AR-CapsNet[2], AA-CapsNet[25], DA-CapsNet[13],

CapProNet[41] and standard 7-layer CNN. We compare

OrthCaps-D with CapsNet (7 ensembles), AR-CapsNet (7

ensembles), RS-CapsNet[40], Inverted Dot-Product[35],

DeepCaps[27], ResNet-18[6], and VGG-16[32]. All

CapsNet variants use a backbone of 4 convolutional layers

and undergo training for 500 epochs, and results are derived

from running official codes with our hyperparameters.

4.2. Classification Performance Comparison

Tab. 1 illustrates the classification performance of

OrthCaps-S and OrthCaps-D, with model sizes denoted

1https://github.com/ornamentt/OrthCap.

by Param and computational demands represented as

FLOPS[M]. The Param and FLOPS[M] of each table are

tested on MNIST and CIFAR10, respectively. An asterisk

(*) signifies that no official code is available, so we refer to

the model performance stated in the original papers.

As shown in Tab. 1a, OrthCaps-S achieves superior

efficiency with merely 105.5K parameters, outperforming

CNN, CapsNet, and many variants. For instance, Efficient-

Caps, a state-of-the-art model on efficiency, has about 50%

more parameters. Furthermore, OrthCaps-S either outper-

forms or matches the performance of other models across

all four datasets. On the SVHN and CIFAR10, OrthCaps-

S achieves accuracies of 96.26% and 86.84%, respectively,

surpassing CapsNet which has 80 times more parameters.

With a computational demand of 673.1M FLOPS, it’s worth

noting that the slight increase in FLOPS compared with

Efficient-Caps is due to the additional computations from

the pruned capsule layer and orthogonal transformations.

Given the substantial decrease in parameter count and the

enhanced accuracy, this FLOPS trade-off is warranted.

For OrthCaps-D, as illustrated in Tab. 1b, it exhibits

competitive performance with fewer parameters on com-

plex datasets. Although convolution-based networks such

as ResNet-18 and VGG-16 perform well on CIFAR10 and

CIFAR100, OrthCaps-D offers competitive performance

using just 1.41% and 0.11% of their parameters as well

as 56% and 20.8% of their FLOPS, respectively. The

efficiency of OrthCaps becomes evident when compared

with DeepCaps. Although DeepCaps achieves a 91.01%

accuracy on CIFAR10, its parameter count of 13.42M is

23.4 times higher than OrthCaps-D. Both OrthCaps variants

maintain high performance with fewer parameters.

6042
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Table 2. Comparison of Orthogonal sparse attention routing and

dynamic routing algorithms. FPS is tested under MNIST dataset.

Variants FPS↑ MNIST CIFAR10

Attention routing & α-entmax & orthogonality 1639 99.68 86.84

Attention routing & softmax 1785 99.62 83.44

Dynamic routing & α-entmax & orthogonality 1232 99.51 70.01

Dynamic routing & softmax 1339 99.49 68.72

Table 3. CapsNets are compared with and without the pruning

layer, with the similarity threshold set to 0.7. Param[K] is tested

on MNIST.

Variant Param[K]³ MNIST CIFAR10

OrthCaps-S with pruning 105 99.68 86.84

OrthCaps-S 157 99.53 85.32

Capsnet with pruning 7492 99.51 71.08

Capsnet 8388 99.42 68.72

4.3. Ablation Study

4.3.1 Orthogonal Attention Routing

Through a cross-comparison of frames-per-second(FPS)

and accuracy on two datasets with different complexity,

as shown in Tab. 2, we compare attention routing with

dynamic routing[30] and sparse softmax with standard

softmax, respectively. Additionally, α is settled to 1.5 in

our experiments according to [24].

Attention routing consistently outperforms dynamic

routing in both classification accuracy and processing

speed, achieving a 25.8% speed enhancement on average.

Even with a faster softmax, dynamic routing only reaches

1339 FPS, indicating its inherent computational inefficien-

cies. Although α-entmax’s complexity and the additional

computational demands from orthogonality slightly reduce

processing speed, this trade-off is justified by a substantial

increase in accuracy and robustness. Our attention routing

combined with α-entmax and orthogonality balances per-

formance and computational efficiency.

4.3.2 Pruned Capsule Layer

Fig. 2 illustrates that by integrating the pruned layer,

the average capsule similarity decreases due to redundant

capsule elimination. Consequently, as the capsule count

reduces, the dimensions of the associated prediction matrix

diminish, thereby lowering the parameter count. This is

proved in Tab. 3, where the pruned OrthCaps-S reduces

parameters from 127K to 105K without sacrificing perfor-

mance. In fact, accuracy improves from 99.53% to 99.68%

and from 85.32% to 86.84% on MNIST and CIFAR10,

respectively. Similarly, applying pruning to CapsNet results

in higher accuracy with reduced parameters (7492K from

8388K). This shows our pruning method’s efficacy in

streamlining the model and enhancing performance.

Fig. 6 illustrates the necessity of incorporating pruning

with orthogonality. Capsule similarity is gauged with

Figure 6. Redundancy comparison between different pruning

strategies. (The more to the left, the better.) The x-axis shows

capsule similarity; the y-axis indicates capsule count percentage.

PCL, C3, and C28 mark the primary, third, and twenty-eighth

capsule layers. Solid lines (C3-Orth, C28-Orth) and dashed lines

represent pruning with and without orthogonality, respectively;

the dash-dot line indicates the absence of both pruning and

orthogonality. Tests are on OrthCaps-D with CIFAR10 dataset.

cosine similarity to measure the redundancy as mentioned

above. As the network goes deeper, the dashed line

(indicating pruning without orthogonality) shifts rightward,

suggesting an increase in capsule similarity. This shift

proves that non-orthogonal weight matrices reintroduce

redundancy. However, the solid line (indicating prun-

ing with orthogonality) shows consistently low capsule

similarity. Even at layer 28, considered quite deep for

CapsNets, the similarity remains low. This affirms the

efficacy of orthogonality in preserving capsule directions to

maintain low inter-capsule correlations. The black dash-dot

line denotes similarity without orthogonality and pruning,

exhibiting the highest redundancy, further evaluating the

effectiveness of our method.

4.4. Similarity Threshold

To find the optimal similarity threshold θ, we evaluated

the classification accuracy on three datasets and capsule

number after pruning (N) for thresholds ranging from 0.3

to 1.0. At θ = 1.0, the pruning layer becomes ineffective as

it targets capsules with similarities above one.

As Tab. 4 shows, the optimal accuracy occurs at θ = 0.7.

A threshold below 0.7 leads to excessive pruning, over-

reducing capsule numbers and causing feature loss, thus

impacting the accuracy. Notably, at θ = 0.4, all three

datasets show a marked accuracy drop, indicating a critical

point where key information is lost. CIFAR10 is the most

affected, likely due to its complex background and rich

features, making it more sensitive to excessive pruning.

Conversely, a higher θ weakens pruning effectiveness. As

redundant information accumulates, the classification cap-

sules become disrupted, slightly diminishing performance.

With overall consideration, we set θ into 0.7.
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Table 4. Comparison of different similarity thresholds. Num is the

number of capsules after pruning.

θ Num MNIST SVHN CIFAR10

0.3 58 38.25 18.96 10.25

0.4 116 43.60 24.87 11.03

0.5 303 90.09 86.12 63.35

0.6 676 97.46 94.66 81.50

0.7 952 99.68 96.26 86.79

0.8 1093 99.63 96.13 86.84

0.9 1139 99.61 95.96 86.41

1.0(without pruning) 1152 99.53 95.25 85.32

Table 5. Comparison of OrthCaps, CapsNet, OCNN and baseline

CNN under PGD attack. The CIFAR10 dataset is used without any

data augmentation. Our results are an average of 5 test runs.

Variants AT(s) ↑ QC[K] ↑ ACC ↑
OrthCaps 345.92 69K 23.52

CapsNet 198.93 48K 14.62

OCNN 136.7 46K -

baseline CNN 16.65 10K 0.35

4.5. Robustness to Adversarial Attacks

Capsule networks have demonstrated exceptional perfor-

mance in terms of robustness [8]. Considering OrthCaps as

it eliminates redundant capsules to suppress low L2-norm

capsules, which we consider as noise capsules [4]. It can

enhance better robustness against small perturbations. To

evaluate this, we conduct a robustness comparison between

OrthCaps, Capsule Networks, Orthogonal CNNs (OCNN)

and 7-layer CNNs with CIFAR10. We employ the Projected

Gradient Descent (PGD) white-box attack method [5],

setting the maximum iteration count at 40, step size at

0.01, and the maximum perturbation at 0.1. We assess the

robustness using three metrics: attack time (AT), model

query count (QC), and accuracy after attacks (ACC). As

shown in Tab. 5, OrthCaps outperforms in all three metrics.

4.6. Orthogonality

This experiment demonstrates the effectiveness of the

HouseHolder orthogonalization method and its advantages

over other methods. We define an orthogonality metric

O = ∥KTK − I∥. In Tab. 6a, the metric O decreases from

0.02 to 0.01 during training, showing the effectiveness of

the orthogonalization method. In Tab. 6b, we compare the

orthogonalization of weight matrices in attention routing,

and the results show that orthogonalizing all WQ, WK and

WV matrices achieves the best performance.

We further demonstrate Householder’s role as a reg-

ularization technique for neural networks. In Fig. 7,

our method achieves better orthogonality and loss decay

than OCNN [38]. The baseline ResNet18, without any

orthogonal regularization, is depicted by the blue line, while

the green and red lines stand for OCNN and our method,

respectively. The near-flat trajectory of the red line shows

Householder’s consistent orthogonality preservation across

Table 6. (a): The proof of orthogonality in weight matrices. (b):

Orthogonalizing all weight matrices performs best.

EPOCH SVHN O ³
1 83.75 0.0236

10 98.58 0.0215

100 99.42 0.0153

300 99.56 0.0120

(a)

Orthogonalization MNIST CIFAR10

None 99.62 84.25

WQ&WK 99.32 81.40

WV 99.47 83.33

WQ&WK&WV 99.68 86.84

(b)

Figure 7. Different Orthogonal regularization on MNIST dataset.

HouseHolder orthogonalization method reaches the best orthogo-

nality and loss decay.

the training. Furthermore, our method registers a smaller

loss than OCNN, due to its better training performance.

5. Conclusions and Future Work

This study has introduced a novel capsule network with

orthogonal sparse attention routing and pruning. Specif-

ically, Householder orthogonal decomposition is used to

ensure orthogonality in attention routing without additional

penalty terms. With pruning, orthogonalization and sparse

routing, OrthCaps minimizes capsule redundancies. Exper-

iments show that OrthCaps has lower parameters and re-

duces computational overhead, overcoming the challenges

of computational expense and redundancy in dynamic

routing. On image classification tasks, OrthCaps outper-

forms state-of-the-art methods and demonstrate improved

robustness. We look forward to future research in this area.
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