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Figure 1. Generating Multi-View Illusions. We propose a method for generating optical illusions from an off-the-shelf text-to-image

diffusion model. We create images that match different prompts after undergoing a transformation. Our approach supports a variety of

transformations, including flips, rotations, skews, color inversions, and jigsaw rearrangements. All images are hand selected. For random

samples, please see Fig. 8 and Appendix D. For easier viewing, please see our webpage for animated versions of these illusions.

Abstract

We address the problem of synthesizing multi-view opti-

cal illusions: images that change appearance upon a trans-

formation, such as a flip or rotation. We propose a simple,

zero-shot method for obtaining these illusions from off-the-

shelf text-to-image diffusion models. During the reverse dif-

fusion process, we estimate the noise from different views

of a noisy image, and then combine these noise estimates

together and denoise the image. A theoretical analysis sug-
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gests that this method works precisely for views that can

be written as orthogonal transformations, of which permu-

tations are a subset. This leads to the idea of a visual

anagram—an image that changes appearance under some

rearrangement of pixels. This includes rotations and flips,

but also more exotic pixel permutations such as a jigsaw

rearrangement. Our approach also naturally extends to il-

lusions with more than two views. We provide both quali-

tative and quantitative results demonstrating the effective-

ness and flexibility of our method. Please see our project

webpage for additional visualizations and results: https:

//dangeng.github.io/visual_anagrams/

1. Introduction

Images that change their appearance under a transforma-

tion, such as a rotation or a flip, have long fascinated stu-

dents of perception, from Salvador Dalı́ to M. C. Escher.

The appeal of these multi-view optical illusions lies partly

in the challenge of arranging visual elements such that

they may be understood in multiple different ways. Creat-

ing these illusions requires accurately modeling—and then

subverting—visual perception.

In this paper, we propose a simple, zero-shot method

for creating multi-view illusions with off-the-shelf text-

to-image diffusion models. In contrast to most previous

work on computationally generating optical illusions [3–

5, 10, 12, 15, 18, 20, 28, 31, 32, 38], our method does

not require an explicit model of human perception. Rather,

our approach builds on work that suggests generative mod-

els may process optical illusions in a way similar to hu-

mans [14, 23, 29]. In this way, our method is similar to

recent work that uses diffusion models to create optical il-

lusions by Burgert et al. [2] and Tancik [42].

Our method can generate many types of classic illusions,

such as images that change appearance when flipped or ro-

tated (Fig. 1), as well as a new class of illusions which we

term visual anagrams. These are images that change ap-

pearance under a permutation of their pixels. Image flips

and rotations are a subset of these, as they can both be ex-

pressed as a permutation of pixels, but we also consider

more exotic permutations. For example, we generate jigsaw

puzzles that can be solved in two different ways, which we

call “polymorphic jigsaws.” In addition, we successfully ap-

ply our approach to generating illusions with three and four

views (Fig. 1).

Our method works by using a diffusion model to denoise

an image from multiple views, obtaining multiple noise es-

timates. These noise estimates are then combined to form a

single noise estimate which is used to perform a step in the

reverse diffusion process. However, we show that care must

be taken in choosing these views. For one, the transforma-

tion must keep the statistics of the noise intact, as the dif-

fusion model is trained under the assumption of i.i.d. Gaus-

sian noise. We provide an analysis of these conditions and

give an exact specification of the class of transformations

supported. Our contributions are as follows:

• We present a simple yet effective method for generating

multi-view optical illusions using diffusion models.

• We derive a precise description of the set of views that

our method supports and provide empirical evidence that

these views work.

• We consider practical design decisions, crucial to opti-

mizing the quality of generated illusions, and report abla-

tions on our choices.

• We provide quantitative and qualitative results, showcas-

ing both the efficacy and flexibility of our method.

2. Related Work

Diffusion Models. Diffusion models [6, 17, 22, 35–37,

39–41] are a class of powerful generative models that itera-

tively convert a sample from a noise distribution to a sample

from some data distribution. These models work by esti-

mating the noise in a noisy sample, and removing the esti-

mated noise following some update rule such as DDPM [22]

or DDIM [40]. A prominent application of diffusion models

has been text-conditioned image synthesis [24, 30, 36, 37].

In addition to a noisy image and a timestep, these models

take a language model embedding of a text prompt as condi-

tioning. Our approach is closely related to recent works that

experiment with composing energy-based models and dif-

fusion models [7–9, 13, 26, 27]. These approaches [9, 27]

have shown that noise estimates from multiple conditional

distributions can be combined together to obtain samples

from compositions of the learned distributions. Our method

uses a similar approach, and we apply it to the problem of

multi-view illusion generation.

Computational Optical Illusions. Optical illusions serve

as a testbed for understanding both human and machine per-

ception [14, 19, 23, 29, 45]. We focus on generating illu-

sions computationally, an area which has primarily relied

on models of how our brains process external stimuli. Free-

man et al. [12] create the illusion of constant motion in a de-

sired direction by locally applying a filter with continuously

shifting phase, relying on the observation that local phase-

shifts are interpreted as global movement. Oliva et al. [31]

propose a method to make “hybrid images,” which change

appearance depending on the distance they are viewed from.

This method takes advantage of the multiscale nature of hu-

man perception by blending high frequencies of one image

with low frequencies from another. Chu et al. [5] camou-

flage objects in a scene through re-texturing, with additional

constraints on luminance as to preserve salient features of

the object, and other work camouflages objects from multi-

ple viewpoints in 3D scenes [18, 32]. Recently, Chandra et

al. [3] design color-constancy, size constancy, and face
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perception illusions by differentiating through a Bayesian

model of human vision. Our method likewise generates il-

lusions, but does not depend on an explicit model of human

perception. Instead, our method works by leveraging visual

priors in diffusion models learned implicitly through data.

This aligns with observations [14, 23, 29] that generative

models process illusions similarly to humans, and predict

the same ambiguities. From this perspective, we can view

our method as leveraging generative, rather than discrimina-

tive, models to synthesize adversarial examples [16] against

humans [11].

Illusions with Diffusion Models. Very recently, artists

and researchers have taken steps that show the potential

of using diffusion models to create illusions. An artist un-

der the pseudonym MrUgleh [43] repurposed a model fine-

tuned for generating QR codes [25, 47] to create images

whose global structure subtly matches a given template im-

age. In contrast, we study multi-view illusions that can be

created zero-shot from off-the-shelf diffusion models, and

our illusions are specified via text rather than images. Burg-

ert et al. [2] use score distillation sampling (SDS) [33, 44]

to create images that align with different prompts from dif-

ferent views. While in principle this approach supports a

superset of our views, the use of SDS results in significantly

lower quality results, and the need for explicit optimization

leads to long sampling times. Our method is most similar to

a proof-of-concept by Tancik [42], which creates rotation

illusions by sampling from a latent diffusion model [36]

while alternating noise estimates between different views

and prompts. While our technical approach is similar, by

contrast we systematically study multi-view illusions, both

by experimentally evaluating many different types of illu-

sions and by providing a theoretical analysis of which views

are (and are not) supported. In doing so, we go beyond just

rotation views. We also make a number of improvements

that result in qualitatively and quantitatively better illusions,

such as by identifying a source of artifacts from latent dif-

fusion, and by adding support for an arbitrary number of

views. To our knowledge, we are the first to systematically

evaluate illusions generated by these approaches.

3. Method

Our goal is to produce multi-view optical illusions using

a pretrained diffusion model. That is, we seek to synthe-

size images that change appearance or identity when trans-

formed, such as when flipped or rotated.

3.1. Text-conditioned Diffusion Models

Diffusion models [22, 39, 41] take i.i.d. Gaussian noise,

xT , and iteratively denoise it to produce a sample, x0,

from some data distribution. These models are parame-

terized by a neural network which estimates the noise in
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Figure 2. Algorithm Overview. Our method works by simul-

taneously denoising multiple views of an image. Given a noisy

image xt, we compute noise estimates, εit, conditioned on differ-

ent prompts, after applying views vi. We then apply the inverse

view v
−1

i
to align estimates, average the estimates, and perform a

reverse diffusion step. The final output is an optical illusion.

some intermediate, partially denoised data point xt, denoted

as εθ(xt, y, t), where y is some conditioning such as text

prompts and t is the timestep in the diffusion process. The

estimated noise is then used in an update rule [22, 40], from

which xt−1 is computed from xt.

To condition the diffusion model on another input, such

as a text prompt, a common approach is to use classifier-free

guidance [21]. With this method, unconditional noise esti-

mates (usually obtained by passing the null text prompt as

conditioning) and conditional noise estimates are combined

together:

εCFG
t = εθ(xt, t,∅) + γ(εθ(xt, t, y)− εθ(xt, t,∅)). (1)

Here, ∅ denotes the embedding of the empty string and γ
is a parameter that controls the strength of the guidance.

Classifier-free guidance acts to sharpen the distribution of

generated images to produce higher quality results. It also

enables negative prompting [1], in which the empty text

prompt embedding, ∅, is replaced by a text prompt that we

would like to discourage the model from generating.

3.2. Parallel Denoising

We produce multi-view illusions by using a diffusion model

to simultaneously denoise multiple views of an image. Con-

cretely, we take a set of N prompts, yi, each associated

with a view function vi(·), which applies a transformation

to an image. These transformations may be, for example,

the identity function, an image flip, or a permutation of pix-

els. Then given a diffusion model, εθ(·), and a partially

denoised image, xt, we combine noise estimates from dif-

ferent views into a single noise estimate by averaging:

ε̃t =
1

N

∑

i

v−1

i (εθ(vi(xt), yi, t)) . (2)

Effectively, we use each view vi to transform the noisy im-

age xt, estimate the noise in the transformed images, and

then apply v−1

i to the estimates in order to transform them

back to the original view. Taking an average of these noise
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estimates gives us our combined noise estimate, which we

can then use with our choice of diffusion sampler. We note

that this technique of combining noise estimates is similar to

previous work on compositionality [7–9, 13, 26, 27], where

the idea is studied in further detail. In order to incorpo-

rate classifier-free guidance we simply replace the estimates

εθ(vi(xt), yi, t) with their classifier-free estimates, εCFG
t .

3.3. Conditions on Views

One straightforward condition for the views is that they

must be invertible. But diffusion models also implicitly im-

pose other conditions on the views vi(·). We describe two

such conditions below. We find that if these conditions are

not satisfied, the denoising process produces poor results.

Linearity. The diffusion model, εθ, acts on noisy images,

xt. That is, specifically images of the form:

xt = wsignal
t x0

︸︷︷︸

signal

+wnoise
t ε

︸︷︷︸

noise

. (3)

The exact values of wsignal
t and wnoise

t depend on model im-

plementation details such as the variance schedule, but are

unimportant for our work, so we omit them for clarity. What

is important is that xt is a linear combination of pure sig-

nal, x0, and pure noise, ε, for some specific wsignal
t and

wnoise
t . Therefore our view vi must take a noisy image xt

and transform it into a new noisy image vi(xt) that is also

a linear combination of pure signal and pure noise with the

same weighting. This can be achieved by requiring vi to be

a linear transformation, of the form

vi(xt) = Aixt, (4)

for some matrix Ai, and some flattened noisy image xt.

By linearity, we are effectively applying the view vi to the

signal and the noise separately:

vi(xt) = Ai(w
signal
t x0 + wnoise

t ε) (5)

= wsignal
t Aix0

︸ ︷︷ ︸

new signal

+wnoise
t Aiε

︸︷︷︸

new noise

. (6)

This results in a linear combination of transformed signal,

Aix0, and transformed noise, Aiε, weighted with the cor-

rect scaling factors. For further discussion, please see Ap-

pendix H.

Statistical Consistency. In addition to expecting a linear

combination of signal and noise at a specific weighting, the

diffusion model also expects the noise to have a precise dis-

tribution. In particular, most diffusion networks are trained

with ε ∼ N (0, I). Therefore, we must ensure that our trans-

formed noise, Aiε, is likewise drawn from N (0, I). This is

true if and only if Ai is an orthogonal matrix. We pro-

vide a proof in Appendix I, but intuitively this fact reflects

the spherical symmetry of the standard Gaussian density.

Orthogonal transformations, being generalizations of rota-

tions and flips to higher dimensions, preserve this spheri-

cally symmetric density. Note that these are rotations in the

pixel values as opposed to spatial rotations.

3.4. Views Considered

The vast majority of orthogonal transformations applied to

an image will not correspond to an intuitive image trans-

formation. However, a number of these transformations

do. Below, we enumerate the orthogonal transformations

which we consider, all of which can be seen in the illusions

in Fig. 1 unless otherwise specified.

Identity. The simplest transformation we consider is the

identity transformation. Using this view allows us to op-

timize the untransformed image to align with a chosen

prompt.

Standard Image Manipulations. We also consider spa-

tial rotations of an image, which can be viewed as permuta-

tions of pixels. This works because permutations are in turn

orthogonal. However, caution must be exercised when ap-

plying a rotation view, as common anti-aliasing operations

such as bilinear sampling will modify the statistics of the

noise. We discuss this further in Sec. 4.4. Spatial reflec-

tions are also permutations of pixels. As such we can use

these views to generate illusions. Finally, we implement an

approximation to skewing by rolling columns of pixels by

different displacements.

General Permutations. We have already considered the

special cases of spatial rotation, reflection, and skews but

we can also consider other permutations. For example, we

can divide an image into jigsaw pieces and rearrange these

pieces to generate jigsaw puzzles with two solutions—what

we call “polymorphic” jigsaw puzzles. Implementation

details can be found in Appendix F.

We also consider the extreme case of sampling a com-

pletely random permutation of pixels and treating it as our

view. Additionally, we can reduce the complexity of this by

considering permutations of square patches, rather than

pixels. Examples of these illusions can be found in Fig. 6

and are discussed in Sec. 4.3.

Finally, we consider rotating a circle within an image

while leaving the rest of the image stationary, which we

term inner rotations. Note that the permutations we con-

sider are certainly not exhaustive, and many clever transfor-

mations exist which we do not study.

Color Inversion. Negation is an orthogonal transform; it

is intuitively a 180 degree rotation generalized to higher di-

mensions. This allows us to generate illusions that change

appearance upon color inversion, assuming pixel values are

centered at 0 (e.g., in the range [-1, 1]).
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Figure 3. Latent-Based Artifacts. Manipulating the location

of latent codes does not change the orientation of the blocks for

which they encode. Therefore, when using latent diffusion mod-

els we see artifacts as shown above, in which straight lines are

thatched under a rotation.

Arbitrary Orthogonal Transformations. An arbitrary

rotation of an image in pixel space is uninterpretable. Nev-

ertheless, we demonstrate that our method works for these

transformations as well. While these “illusions” are in-

scrutable to the human eye, they serve as confirmation that

any orthogonal transformation works as a view with our

method. These can be found in Fig. 7 and are discussed

in Sec. 4.3.

3.5. Design Decisions

Beyond the core method, we also consider various design

decisions aimed at maximizing illusion quality.

Pixel Diffusion Model. Previous work [42] performed

multi-view denoising using Stable Diffusion [36], a latent

diffusion model. However, the latent representation effec-

tively encodes patches of pixels. This leads to artifacts un-

der rotations or flips, where the location of latents change,

but the content and orientation of these blocks do not.

We show a qualitative example of this in Fig. 3, in which

the model is forced to generate thatched lines to produce

straight lines under a 90◦ rotation.

To ameliorate this issue, we implement our method using

a pixel-based diffusion model, DeepFloyd IF [24]. Deep-

Floyd denoises directly on pixels, effectively side-stepping

the problem of orientation in latent code blocks.

Combining Noise Estimates. In addition to taking a

mean of noise estimates from different views, we also con-

sider alternating through them by timestep, using the esti-

mate

ε̃t = v−1

t mod N (εθ(vt mod N (xt), t, y)) . (7)

This is the reduction strategy used by [42], but we show in

ablations in Sec. 4.2 that it performs worse than averaging.

Negative Prompting. We experiment with negative

prompting [1] in the 2-view case by using one view’s

prompt as a negative for the other view, and vice versa.

This encourages the model to hide the other view’s prompt

for a given view. For a discussion, please see the ablations

in Sec. 4.2.

Table 1. Quantitative Results. We report the alignment score, A,

and the concealment score, C, as well as quantiles of these scores.

For a discussion, please see Sec. 4.1.

Prompt Pair Method A ↑ A0.9 ↑ A0.95 ↑ C ↑ C0.9 ↑ C0.95 ↑

CIFAR

Burgert et al. [2] 0.225 0.253 0.260 0.501 0.526 0.537

Tancik [42] 0.278 0.310 0.316 0.595 0.692 0.712

Ours 0.287 0.321 0.327 0.624 0.717 0.739

Ours

Burgert et al. [2] 0.233 0.270 0.283 0.501 0.526 0.538

Tancik [42] 0.256 0.294 0.309 0.545 0.621 0.655

Ours 0.275 0.315 0.326 0.574 0.668 0.694

Table 2. Ablations. We ablate negative prompting, reduction

methods, and guidance scales on our dataset.

Ablation A ↑ A0.9 ↑ A0.95 ↑ C ↑ C0.9 ↑ C0.95 ↑

Negative Prompting 0.24 0.27 0.276 0.576 0.659 0.683

No Negative Prompting 0.255 0.285 0.295 0.567 0.643 0.679

Alternating Reduction 0.252 0.286 0.292 0.560 0.639 0.664

Mean Reduction 0.255 0.285 0.295 0.567 0.643 0.679

γ = 3.0 0.239 0.271 0.285 0.537 0.610 0.629

γ = 7.0 0.255 0.285 0.295 0.567 0.643 0.679

γ = 10.0 0.259 0.290 0.297 0.576 0.664 0.702

4. Results

We provide quantitative and qualitative results, and quan-

titative ablations. If not specified, qualitative results have

been hand picked for quality. For random samples please

see Fig. 8 and Appendix D. All implementation details can

be found in Appendix A.

4.1. Quantitative Results

Metrics. We use CLIP [34] to measure how well views

align with the desired prompts. We consider two metrics

derived from a score matrix S ∈ R
N×N , defined as

Sij = φimg(vi(x))
Tφtext(pj), (8)

where φimg and φtext are the CLIP visual and textual en-

coders respectively, returning a unit-norm vector embed-

ding. x is our generated illusion, and vi are our views

with associated prompts pi. A higher dot product indicates

higher similarity between the image and text.

The first metric we consider is min diag(S), which intu-

itively measures the worst alignment of all the views. We

term this metric A, the alignment score. However, this

metric does not account for the possibility of seeing prompt

pi in view vj for i %= j. This is an occasional failure case

of our method and to quantify this we propose a second

derived metric which we term C, the concealment score,

computed as
1

N
tr(softmax(S/τ)), (9)

where τ is the temperature parameter of CLIP. In computing

this metric we average both directions of the softmax, so

that this metric measures how well CLIP can classify a view

24158



Burgert et al. Tancik Ours

OursCIFAR

Unflipped Unflipped

F
li
p

p
e
d

F
li
p

p
e
d

Figure 4. Flip View CLIP Score Distribution. We visualize

trade-offs between flipped and unflipped views by plotting the dis-

tribution of CLIP scores on the datasets. Note that the quality of

the flipped image is as good as the unflipped image, with parity

indicated by the dashed line.

as one of the N prompts and vice versa.

Dataset. To evaluate our method and baselines we com-

pile two datasets of prompt pairs for 2-view illusions. One

dataset uses the 10 classes from CIFAR-10 and contains a

prompt per pair of classes, for a total of 45 prompt pairs.

We refer to this as CIFAR. The other dataset we compile

by hand, with the process documented in Appendix B. This

dataset consists of 50 prompt pairs, which we refer to as

Ours.

Baselines. We use two baselines that generate illusions

using off-the-shelf diffusion models. One, which we denote

“Burgert et al. [2],” uses Score Distillation Sampling. The

other, which we denote “Tancik [42],” is an earlier version

of our method, with differences discussed in more detail

in Sec. 2

Results. We show results comparing our method to base-

lines on both datasets in Tab. 1 using vertical flips. We use

vertical flips because it is a transformation supported by our

method as well as the baselines. We use 10 samples per

prompt, for a total of 450 and 500 samples for the CIFAR

dataset and our dataset respectively. It is hard to perform a

fair comparison with more samples because the Burgert et

al. method uses SDS, which is quite slow1. Because we are

particularly interested in the “best-case” performance, we

also report quantiles of metrics, which we denote as A0.9

for the 90th percentile, for example. As can be seen, our

method performs consistently better than the baselines, in

both the alignment score and the concealment score.

In order to give a clearer understanding of trade-offs

when optimizing two views, we show density plots which

plot the CLIP scores of each of the two views of an illusion

in Fig. 4. As can be seen, we do better than the baselines

1Sampling just 10 images per prompt already takes more than a week

of GPU-hours.
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Figure 5. Qualitative Comparisons. We compare illusions gen-

erated by baselines to our illusions. We show examples from both

our prompt dataset and the CIFAR prompt dataset.

on average and in the best-case. Moreover, flipping during

denoising does not hurt performance. The quality of the

flipped images is as high as the unflipped images.

4.2. Ablations

We ablate out the noise estimate reduction strategy, negative

prompting, and the guidance scale in Tab. 2. We use our

dataset, with 10 samples for each prompt for a total of 500

illusions.

Reduction Strategy. We find that mean reduction does

better than alternating. Our hypothesis is that alternating

the noise estimates results in “thrashing,” causing poor con-

vergence. Moreover, we find that the alternating strategy

gives poor results on illusions with more than 2 views, as

each view has fewer denoising steps. Qualitative examples

of this can be found in Appendix G.

Negative Prompting. When using negative prompting,

care must be taken to omit any overlap between the negative

and positive prompt. For example, given the two prompts

"oil painting of a dog" and "oil painting

of a cat", using one prompt as the negative for the other

would simultaneously encourage and discourage the style

"oil painting". Rather, the negative prompts should

be "a cat" and "a dog" respectively. We find that neg-

ative prompting can improve the concealment score, indi-
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Figure 6. Permutation Illusions. We synthesize images whose

appearance changes upon permutation of patches. Even in the dif-

ficult case of a 64 × 64 grid of patches, in which every pixel is

effectively shuffled, we are able to generate meaningful images.

cating that it is working as intended. But this comes at the

cost of worse alignment score. This is because the neg-

ative and positive prompt may have fundamental similari-

ties. For example, using "a cat" as the negative prompt

for the prompt "an oil painting of a dog" may

discourage the model from synthesizing anything remotely

cat-like—such as fur, four legs, or a tail—even if it helps in

producing a dog. For this reason we opt not to use negative

prompting with our method.

Guidance Scale. We also ablate out various guidance

scales, γ, for our method. We find that a higher guidance

scale tends to do better. This is presumably because a higher

guidance scale results in a sharper sampling distribution.

4.3. Qualitative Results

We show qualitative results in Fig. 1, Fig. 5, Fig. 6, and

Fig. 7. Again, random samples may be found in Fig. 8

and Appendix D. Additional qualitative samples can be

found in Appendix C. Overall, we find that our method

can produce very high quality optical illusions for a wide

range of views. Interestingly, our method often finds

clever ways of reusing elements from one view for another,

such as in the "waterfalls"/"rabbit"/"teddy

bear" three-view illusion in Fig. 1, in which the nose of

the teddy bear is the eye of the rabbit, and a rock on the

waterfalls.

Baselines. We provide qualitative comparisons of our

method to baselines in Fig. 5, where we pick the best im-

ages out of 100 samples for each method. As can be seen,
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Figure 7. Orthogonal Illusions. We show that our method works,

even when the view is a randomly sampled orthogonal transfor-

mation A. While these “illusions” are incomprehensible to hu-

man perception, they serve as a confirmation for our mathematical

analysis.

images generated using our method match the prompts in

both views equally well and are of higher quality.

Permutations. Pixel and patch permutations, being a sub-

set of orthogonal transformations, should work with our

method. We show that this is indeed the case in Fig. 6,

where we have results on patch grids of various sizes under

randomly sampled permutations. The 64× 64 case is quite

hard, yet our method is able to generate images that satisfy

the constraint, albeit at lower quality.

Arbitrary Orthogonal Transformations. As discussed

in Sec. 3.3, our method works for any orthogonal transfor-

mation. So far, we have shown illusions based on a sub-

set of orthogonal views that correspond to intuitive image

transformations. In Fig. 7, we show “illusions” using an

arbitrary orthogonal transformation as a view. We use Sta-

ble Diffusion [36] and sample a random orthogonal matrix

A ∈ R
16384×16384 by projecting an i.i.d. random Gaus-

sian matrix with an SVD. These dimensions correspond to

the size of the Stable Diffusion latent space. We note that

this is an incredibly hard and unnatural transformation of an

image, and results are accordingly of lower quality, but our

method is still able to produce reasonable images.

Random Samples. We show random samples for selected

prompts in Fig. 8. As can be seen, these random samples,

while not as good as those in Fig. 1, are still very high qual-

ity. Some failure cases can be seen where the model prefers

one prompt over another. We add further discussion and

present more random samples in Appendix D.

4.4. Failures

We highlight three interesting failure cases of our method

in Fig. 9.

Independent Synthesis. The first of these cases involves

the model synthesizing prompts separately, without com-

bining elements of the two to form an illusion. Empiri-

cally, this happens surprisingly rarely, especially given that

it seems to be such an easy shortcut solution. We hypothe-

size that this is because the diffusion model is biased toward

centering its content, resulting in far more images with con-

tent that is integrated and centered as opposed to separate

and off-center.
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Figure 8. Random Samples. We show random samples, along with their corresponding view, for selected prompts. For more random

samples please see Appendix D. For best quality, view digitally and zoom-in.

Noise Shift. Using views that preserve noise statistics is

critical to our method’s success. For example, we attempted

to recreate the “Dress” illusion [46], in which a dress can be

seen as either “blue and black” or “white and gold.” We used

simple white balancing as our view, in which pixel values

were scaled by a constant factor. While this transformation

is linear, it does not preserve the statistics of Gaussian noise.

As a result, we see artifacts in the forms of spots, which we

hypothesize is the result of the model interpreting the scaled

Gaussian noise as signal and actively denoising peaks in the

scaled noise.

Correlated Noise. While our method supports rotations

as transformations, as demonstrated with the “3-view,” “4-

view,” and “Inner Rotation” illusions in Fig. 1, care must be

taken that the rotation does not introduce correlations in the

noise, such as through anti-aliasing. For example, bilinear

sampling introduces significant correlations in the noise, as

it is a linear combination of four adjacent pixels. There-

fore, seemingly innocuous rotations may result in divergent

samples if transformations are not carefully kept correlation

free, as shown with the 45 degree bilinear rotation in Fig. 9.

5. Limitations and Conclusions

We present a method to produce compelling and diverse op-

tical illusions. Our method is simple and straightforward to

implement, and additionally amenable to theoretical anal-

ysis. We prove that our method works for a broad set of

transformations, and qualitatively show that it can gener-

ate a wide array of optical illusions. However, at the same

time many possible illusions and transformations are still

an oil painting of a bowl of fruit
an oil painting of a monkey

View: Vertical Flip
Failure: Independent Synthesis

a photo of a black and blue dress
a photo of a white and gold dress

View: White Balancing
Failure: Noise Shift

a sketch of an elephant
a sketch of a mouse

View: Rotate Inner Circle 45 Degrees (Bilinear)
Failure: Correlated Noise

Figure 9. Failures. We highlight three interesting failure cases,

which are discussed in Sec. 4.4.

not possible using our method, such as color constancy il-

lusions, homographies, stretches, and more generally non-

volume-preserving deformations. We leave implementation

of these views for future work. Moreover, our method does

not consistently produce perfect illusions. This may be a

symptom of the difficulty of producing good illusions, but

may indicate future work to be done to improve consistency.
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