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Abstract

This paper introduces a novel top-down representation
approach for deformable image registration, which esti-
mates the deformation field by capturing various short-
and long-range flow features at different scale levels. As
a Hierarchical Vision Transformer (H-ViT), we propose a
dual self-attention and cross-attention mechanism that uses
high-level features in the deformation field to represent low-
level ones, enabling information streams in the deforma-
tion field across all voxel patch embeddings irrespective of
their spatial proximity. Since high-level features contain
abstract flow patterns, such patterns are expected to effec-
tively contribute to the representation of the deformation
field in lower scales. When the self-attention module uti-
lizes within-scale short-range patterns for representation,
the cross-attention modules dynamically look for the key to-
kens across different scales to further interact with the lo-
cal query voxel patches. Our method shows superior ac-
curacy and visual quality over the state-of-the-art registra-
tion methods in five publicly available datasets, highlight-
ing a substantial enhancement in the performance of med-
ical imaging registration. The project link is available at
https://mogvision.github.io/hvit.

1. Introduction

Image registration facilitates the comparison or integra-
tion of mono- or multi-modal visual data in the same field
of view. The image registration techniques are generally
split into rigid/affine and non-rigid/deformable categories.
Deformable image registration aims to find the underlying
non-linear mapping between a pair of images. The displace-
ment between a moving image and a target, commonly re-
garded as a continuous deformation field, can be modeled in
various ways that have introduced many methods. The pro-
gressive optimization for gradually estimating a deforma-

Figure 1. H-ViT has achieved state-of-the-art performance on five
publicly available databases (four reported above), thanks to the
integration of a dual attention mechanism. Under identical train-
ing conditions, our H-ViT consistently outperforms compared to
the state-of-the-art registration methods, yielding an average Dice
score ∼2.5% higher.

tion field demands substantial computational time. More-
over, modeling the deformation field often requires a higher
degree of freedom, which is difficult to fix and tune by con-
ventional algorithms with limited parameters. Either affine
or deformable registration finds numerous applications in
computer vision and medical image analysis, such as im-
age diagnosis [9, 57, 63], image-guided surgical naviga-
tion [43, 53], and has been under active research for several
decades.

Deformable registration techniques incorporating convo-
lutional neural networks (CNN) [5, 6, 17, 18, 20, 21, 24, 29,
30, 32, 50, 59, 62, 66, 73, 74] have demonstrated remark-
able advancements in terms of both inference time and ac-
curacy when compared to conventional methods [41], and
there has been a rapid growth of deep learning-based ap-
proaches in recent years. More recently, deformable image
registration methods have incorporated Vision Transform-
ers (ViTs) into their architecture to address the limitations
associated with the constrained receptive fields often en-
countered in CNN-based approaches [8, 10–12, 72]. De-
spite the advances in Transformer-based registration tech-
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niques, they encounter challenges in the accurate represen-
tation of deformation fields.

In this paper, we introduce H-ViT as a novel hierarchi-
cal top-down representation method for effectively captur-
ing the deformation field. Deformation fields exhibit flow
patterns at various scale levels in the deformation domain.
These patterns can offer valuable insights for reconstruct-
ing and estimating the deformation field, especially those
laid in the high-level flow feature maps, which contain more
abstract flow information (Fig. 2). Consequently, the inclu-
sion of these patterns contributes to a more comprehensive
and accurate representation of the deformation field. In our
proposed top-down representation paradigm, we incorpo-
rate both short- and long-range encoding mechanisms. The
former pertains to employing self-attentions akin to those in
conventional Transformers, which excel at capturing short-
range patterns within a specific scale level. The latter is a
hierarchical cross-attention mechanism tailored to capture
long-range flow patterns spanning across the deformation
pyramid. To our knowledge, this is the first study that intro-
duces a hierarchical dual-attention system for predicting the
deformation field. H-ViT achieved state-of-the-art perfor-
mance in deformable image registration across five publicly
available MRI databases (Fig. 1). The key contributions of
this study are summarized as follows:
• We propose an innovative top-down representation ap-

proach using a hybrid Transformer-CNN architecture.
Our H-ViT method introduces a dual attention mecha-
nism that strategically captures a wide spectrum of long-
and short-range flow feature patterns within and between
various layers.

• We overcome the problem of less accurate estimation of
a deformation field in medical imaging by facilitating the
stream of deformation information between layers, which
provides richer flow patterns for an accurate representa-
tion of the deformation field.

• We extensively compared our unsupervised method in an
identical training and inference setting with both CNN-
based and Transformer-based methods on five publicly
available datasets to demonstrate the superiority of the
proposed H-ViT.

2. Related Work
Deformable image registration techniques are typically

classified into two categories: supervised [19, 31, 47, 51,
70] and unsupervised methods [5, 8, 10, 11, 20, 32, 35,
73, 74, 77]. In supervised learning, the advantage lies in
leveraging extrinsic information, such as label maps, dur-
ing the training process. In contrast, unsupervised meth-
ods primarily focus on registration via uncovering intrinsic
data properties. Given the high expenses associated with
label collection, there is a growing interest in unsupervised
registration methods. In the seminal work by Balakrishnan

Figure 2. H-ViT with a dual attention mechanism called self-
attention and cross-attention that operates in the deformation field.
Given current feature map Sh, the queries q(Sh)

n interact with lo-
cal key and value tokens k(Sh)

i in the self-attention stage, allowing
the capture of short-range information within a given scale level.
The same queries are further interacted with key and value tokens,
k
(2)
j & k

(1)
m , in higher levels of the flow feature maps, hence al-

lowing a wide spectrum of long-range flow information between
the given scale level and its higher feature maps in a hierarchical
way. The hierarchical cross-attention enhances the flow stream,
handles variable-sized input visual data, and improves translation
invariance.

et al. [5], a formal framework for learning-based registra-
tion methods is introduced that takes the moving and target
images as input, stacks them, and feeds them into a train-
able neural network to extract the deformation field. Subse-
quently, a spatial transformer is employed to apply the ob-
tained displacement to the moving image, resulting in the
transformed or wrapped image. Thus far, many techniques
have been developed for each component mentioned above.
Studies [13, 47, 48, 55, 67] enhance deformable regulariz-
ers, while works [15, 16, 21, 45, 52, 60] explore novel loss
functions in deformable image registration.

The majority of studies are focused on deep neural
network architecture, including CNN-based methods [6,
16, 32, 61, 62, 74], Transformer-based methods [8, 10–
12, 28, 38, 46, 56, 72], and diffusion methods [33, 44]. De-
spite the massive success of CNN-based networks in image
deformable registration, these methods exhibit inadequate
field-of-view, limited generalization capabilities, and insuf-
ficient valuable information in the representation of the de-
formation field [11, 28, 38, 56]. Consequently, recent stud-
ies have shifted towards incorporating Transformers within
their architectures. The self-attention module in Transform-
ers addresses the limitations of the CNN paradigm, particu-
larly in capturing long-range information within the defor-
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mation field. However, this study uncovers that the self-
attention mechanism alone is not adequate for accurately
capturing the deformation field. Thus far, a range of ViTs
featuring multiscale cross-attention architectures have been
proposed for tasks such as classification, segmentation, and
object detection [7, 14, 22, 26, 65, 76]. Zhou et al. [75]
developed global attention in the bottleneck for the seg-
mentation task. FasterViT [23] provides global information
propagation through the implementation of a windowing
approach and hierarchical attention. HiViT [71] removes
the local inter-unit operations and keeps only the global at-
tention between tokens through several spatial merge op-
erations and MLP layers. In deformable image registra-
tion, Chen et al. [12] computed the attention between the
tokens of moving and target images. As mentioned earlier,
this study demonstrates that incorporating self-attention at a
particular scale level reveals deficiencies in accurately rep-
resenting deformation fields. This inclination highlights the
necessity for a sufficient patch representation to effectively
capture long-range information within Transformer-based
architectures. Moreover, a considerable portion of informa-
tion regarding flow patterns resides in high-level features,
frequently overlooked when reconstructing the flow feature
maps at lower levels.
3. Methodology
3.1. Architecture

Let IM and IT denote a moving and a target image, re-
spectively, defined over n spatial dimensions Ω ⊂ Rn (in
this study, n = 3). The goal is to establish a spatial trans-
formation that maps the grids of the moving image into the
target ones, i.e., ϕM→T : ΩM → ΩT . Following the sta-
tionary velocity field approach [3, 35, 36], deformation field
ϕ (also called flow field) is parameterized through the ordi-
nary differential equation: ∂ϕ(t)

∂t = ν
(
ϕ(t)
)
, where t ∈ [0, 1]

and ϕ(0) is the identity transformation (ϕ(0) = Id). The de-
sired deformation field ϕ(1) is obtained by integrating the
stationary velocity field ν. With considering a spatially
smooth velocity field ν, the recent equation is a diffeomor-
phic deformation, computed via scaling and squaring [2].
Diffeomorphic registration provides a differentiable and in-
vertible solution that preserves topology, so it is widely used
in deformable image registration [5, 21, 47]. ϕ(1) is fed into
a spatial transformation function1 to deform the moving im-
age space to the target image space and vice versa, i.e.,

IM→T = IM ◦ ϕM→T (p), ∀p ∈ Ω (1)

and
IT→M = IT ◦ ϕT→M (p), ∀p ∈ Ω (2)

where I ◦ ϕ denotes ‘I warped by ϕ’. We introduce H-ViT

1Grid sampler in PyTorch: nn.functional.grid sample

to represent the deformation field as ϕ = Φθ(M,T ) with
learnable parameters θ.

The framework of our approach is illustrated in
Fig. 3. The moving and target images are stacked
and fed into a CNN-based backbone like FPN [37, 68]
to generate a set of S feature maps in the deforma-
tion field. The CNN-based backbone is comprised of
S = min

(
log2(

H
h ), log2(

W
w ), log2(

D
d )
)

convolutional lay-
ers2 with fs feature number at stage s, s ∈ {1, 2, · · · , S}.
fs is formed by 32 × 2⌈s/2⌉, s ∈ {1, 2, · · · , S}, where ⌈.⌉
denotes a floor function. Within this set, Sh high-level fea-
ture maps (Sh ≤ S) are considered as input for the H-
ViT’s dual-attention unit. Each feature map is then mapped
into fe features by a convolutional layer, forming a feature
representation {ϕ(s)}Sh

s=1, where ϕ(1) denotes the highest-
level feature map. The embedding features are then fed into
a dual-attention mechanism (detailed in the following sec-
tion) for encoding short- and long-range flow information,
providing a comprehensive representation of the deforma-
tion field for the input CNN-based layers. Utilizing the es-
timated deformation field and a grid sampler, we warp the
to-be-registered input MRIs in both directions via Eq. (1)
and Eq. (2), enabling the model to compute similarity loss
of the corresponding mono-modal images:

L̄sim =
1

2

(
Lsim(LM , LT , ϕM→T )

+ Lsim(LT , LM , ϕT→M )
)
, (3)

where Lsim measures the similarity score between its two
inputs. To prevent producing a discontinuous deformation
field, the spatial gradient u3 is often smoothed by a reg-
ularization term: Lsmooth = 1

2 ||∇u||2. The parameters of
the H-ViT network θ are optimized via minimization of the
functions defined in Eq. (3) and backpropagation:

Ltot. = L̄sim + λsmoothLsmooth, (4)

where λsmooth is a pre-determined regularization hyperpa-
rameter, which is set to 1.
3.2. Deformation field representation by a dual-

attention approach

The Sh feature maps {ϕ(s)}Sh
s=1, extracted by the CNN

network, are input into the H-ViT block (Fig. 3). We di-
vide the feature maps into h×w×d non-overlapping voxel
patches, i.e. X(s) = {x(s)

1 , . . . ,x
(s)
Ns

|x(s) ∈ Rh×w×d×fe},
s ∈ {1, . . . , Sh}; Ns denotes the number of voxel patches
at the ℓ-th scale level, and x

(s)
i is the vector representation

of the i-th voxel patch at the s-th layer. Fig. 4 explains how
2Let the dimension of an input MRI be represented by H × W × D,

where H , W , and D represent the height, width, and depth of MRI, re-
spectively. Likewise, h, w, and d represent the height, width, and depth of
voxel patches, respectively.

3ϕ = Id+ u
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Figure 3. Overview of the proposed H-ViT architecture. Input moving and target MRIs are stacked and processed through a CNN backbone
to form a translation-invariant pyramid-like representation of the deformation field. The top Sh feature maps from the CNN backbone are
selected and mapped into fe channels before being input into the dual-attention mechanism. The dual-attention block utilizes a sequence
of self-attention and cross-attention blocks to encode short- and long-range flow information. The resultant deformation field is employed
as input for a grid sampler, which then warps the moving MRI to produce the warped MRI.

the attention modules of H-ViT are hierarchically applied to
input feature maps from the CNN-based backbone. H-ViT
incorporates two attention mechanisms: i) self-attention,
which focuses on capturing an attention map within the
current feature map (short-range), and ii) cross-attention,
which explores attention maps between interlayer patch em-
beddings, particularly those situated in higher-level feature
layers. Abstract patterns in high-level features tend to be re-
peated within a specific scale/layer or across various scale
levels. The hierarchy-based cross-attention module can rec-
ognize those patterns that span a larger region of the vi-
sual data. Incorporating distant patches from various lay-
ers in attention mechanisms also enables the propagation
of flow patterns across all patch embeddings, regardless of
their spatial proximity. This strategy facilitates the efficient
dissemination of essential flow information across the entire
visual data, which is particularly beneficial when dealing
with large-scale 3D visual data like MRI.

Self-attention module: Self-attention in H-ViT re-
sembles the traditional Transformers’ self-attention [39,
64]. It computes attention scores among all voxel patch
embeddings within the designated scale level, capturing
short-range dependencies4. H-ViT’s self-attention projects
X(s) ∈ RNs×h×w×d×fe into query, key and value via
three matrices W

(s)
Q ∈ Rfe×fq , W

(s)
K ∈ Rfe×fk , and

4Throughout this study, the term ‘long-range’ refers to the relationship
between voxel patch embeddings across different scale levels.

W
(s)
V ∈ Rfe×fv , respectively:

Q(s) = X(s)W
(s)
Q ,K(s) = X(s)W

(s)
K ,V(s) = X(s)W

(s)
V ,

s = 1, . . . , Sh. (5)

Then self-attention Aself is computed via:

Aself

(
X(s)

)
= attention

(
Q(s),K(s),V(s)

)
= softmax

(
Q(s)K(s),⊤√

fq

)
V(s),

s = 1, . . . , Sh, (6)

where ⊤ denotes the transpose operation. As shown in
Fig. 4, the output of the self-attention block serves as the in-
put to the hierarchical cross-attention blocks. These blocks
investigate the attention map between the voxel patch em-
beddings at layer s and those on higher feature scales.

Cross-attention module: The cross-attention module is
a long-range-based attention mechanism designed to inves-
tigate the extended relationships between voxel patch em-
beddings across different scales. Since deformed patterns
tend to repeat their features across several feature levels,
it is tempting to capture such features to provide a com-
prehensive representation of the given scale level’s patches.
Hence, we extract key and value tokens at various scales to
enable further interactions with local query tokens. While
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Figure 4. H-ViT’s attention mechanism at scale s consists of two
key components: 1) A self-attention layer responsible for calculat-
ing attention maps within the input resolution. 2) ‘s − 1’ hierar-
chical cross-attention layers for the computation of attention maps
between s feature maps.

the self-attention unit focuses solely on local voxel patches
within the input dimension, the cross-attention examines the
connections between the same local queries and key voxel
patches at different scales. If X1 represents the output of the
self-attention layer (that serves as the input for the computa-
tion of the cross-attention), the cross-attention layer Across

for the ℓ-th layer is computed through:

Across

(
X1,X

(ℓ)
)
= attention

(
Q1,K

(ℓ),V(ℓ)
)

= softmax

(
Q1K

(ℓ),⊤√
fq

)
V(ℓ),

ℓ ∈ {s− 1, . . . , 1}. (7)

Note that the highest-level feature map, i.e., ϕ1, contains
no long-range cross-attention. Eq. (7) is applied recursively
across all possible values of l, yielding the long-range at-
tention map for the respective layer:

Xs =
∏

ℓ=<s−1>

Across

(
Xs−ℓ,X

(ℓ)
)
, (8)

where X0 is the input feature map into the cross-attention
module at the given layer s, i.e., Aself

(
X(s)

)
. After each

multi-head self- and cross-attention layer, an MLP block,
functioning as a feed-forward network (FFN), is applied to
the voxel patch embeddings, as shown in Fig. 4. The MLP
block consists of two linear transformations [4] combined
with dropout layers, followed by ReLU non-linear activa-
tion functions [1].

4. Experiments
Datasets and metrics: The H-ViT method is employed

in the analysis of five popular T1 MRI databases, including
OASIS [25, 42], IXI5, ADNI [27], LPBA [54], and Mind-
boggle [34]. Detailed information regarding the datasets
and their preparation procedures are presented in Sec. A
of the Supplementary Material. For quantitative compar-
isons on the OASIS dataset, Dice scores, the 95th percentile
Hausdorff distance (HD95), and the standard deviation of
the logarithm of the Jacobian determinant (SDlogJ) of the
displacement field were computed via 2021 Learn2Reg6.
For the other datasets, we computed the Dice scores of cor-
tical and subcortical brain structures and the percentage of
voxels with a non-positive Jacobian determinant (Supple-
mentary Sec. B).

State-of-the-art deformable registration techniques:
We conducted an extensive performance comparison of our
method against a wide range of CNN- and Transformer-
based models, including VoxelMorph [6], MIDIR [49], Cy-
cleMorph [32], ViT-V-Net [8], and TransMorph [10]. It
is noteworthy that this study includes both versions of the
TransMorph technique, one utilizing a cubic B-spline trans-
formation model (denoted by TransMorph-Bspl) and the
other employing Bayesian learning (TransMorph-Bayes).
Additionally, we compared H-ViT with other state-of-the-
art Transformer-based networks that are designed for var-
ious applications. These networks included PVT [64] and
CoTr [69], which employ a hybrid Transformer-CNN ar-
chitecture, as well as nnFormer [75], which relies on a pure
Transformer-based architecture. The architectures of these
methods were adapted to handle 3D deformation fields, re-
placed with the CNN backbone of VoxelMorph7. We pre-
served the fundamental elements of VoxelMorph, including
the spatial transformation function, loss function, and net-
work training procedures. We also kept all methods’ config-
urations identical as they recommended, reported in Sec. C
in Supplementary Material. The configuration details of H-
ViT are also reported in Sec. C.1 in Supplementary.

Training details: We ensured the uniformity of the train-
ing settings, which included maintaining identical config-
urations for the optimizer and its hyperparameters, batch
size, loss functions, and the number of epochs. Train-
ing was conducted on two datasets IXI and OASIS, fol-
lowed by testing across five diverse datasets. We employed
NVIDIA A100 GPUs with 80GB VRAM for running the
experiments. Sec. C in Supplementary provides more de-
tails about the experiment settings. Due to the page limit,
we present a condensed version of the results below, with
the complete set of results and accompanying visualizations

5https://brain-development.org/ixi-dataset/
6https://learn2reg.grand-challenge.org/
7https : / / github . com / junyuchen245 / TransMorph _

Transformer_for_Medical_Image_Registration
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Method Attention Dice ↑ HD95 ↓ SDlogJ ↓
Mechanism

VoxelMorph [6] – 0.847±0.014 1.546±0.306 0.133±0.021
DFI-NFF [40] – 0.827±0.013 1.722±0.318 0.121±0.015
LapIRN [47] – 0.861±0.015 1.514±0.337 0.072±0.007
ConvexAdam [58] – 0.846±0.016 1.500±0.304 0.067±0.005
TransMorph [10] Self-Att. 0.862±0.014 1.431±0.282 0.128±0.021
Proposed H-ViT Self-Att. + Cross-Att. 0.876±0.014 1.301±0.264 0.539±0.069

Table 1. Inference evaluation results for various registration methods, including H-ViT, on the OASIS dataset with 35 anatomical structures
in inter-patient registration. Bold numbers represent the highest scores, while italicized numbers indicate the second-highest scores.

Method Attention Inter-Patient Registration Patient-to-Atlas Registration
Mechanism Dice ↑ |JΦ| ≤ 0 (%) ↓ Dice ↑ |JΦ| ≤ 0 (%) ↓

Affine 0.494±0.050 – 0.445±0.055 –
VoxelMorph [6] – 0.750±0.106 1.013±0.285 0.734±0.111 0.997±0.197
MIDIR [49] – 0.735±0.093 0.295±0.188 0.722±0.096 0.247±0.107
CycleMorph [32] – 0.750±0.101 1.022±0.293 0.736±0.105 0.992±0.215
CoTr [69] Self-Att. 0.736±0.112 0.702±0.290 0.717±0.116 0.678±0.205
nnFormer [75] Self-Att.+Global-Att. 0.727±0.101 1.284±0.349 0.718±0.097 1.282±0.256
PVT [64] Self-Att. 0.696±0.116 1.868±0.398 0.690±0.124 1.736±0.248
ViT-V-Net [8] Self-Att. 0.772±0.093 1.022±0.289 0.749±0.102 1.033±0.208
TransMorph-Bayes [10] Self-Att. 0.790±0.081 1.136±0.377 0.772±0.082 1.078±0.236
TransMorph-Bspl [10] Self-Att. 0.793±0.075 <0.001 0.778±0.080 <0.001
Proposed H-ViT Self-Att. + Cross-Att. 0.810±0.073 0.525±0.209 0.797±0.075 0.565±0.161

Table 2. Quantitative evaluation results for the registration methods on the IXI dataset for 30 anatomical structures over 115 random pairs
for inter-patient and 150 pairs for patient-to-atlas registrations.

available in supplement Sec. C.
4.1. Main results

In accordance with [25], the OASIS experiment was uti-
lized for inter-patient registration, incorporating a total of
451 brain T1 MRI scans, wherein 394, 19, and 38 scans
were allocated for training, validation, and testing, respec-
tively. Tab. 1 reports the numerical results, where H-ViT
has the highest Dice score. For the other four datasets, we
employed pre-trained models from methods trained on the
IXI training set under identical conditions. Tab. 2 details
the results of the methods on the IXI dataset, where our
method yields the highest score compared to others with
a margin of +0.017 in patient-to-patient registration and
+0.019 in patient-to-atlas registration. While TransMorph-
Bspl achieved the best non-zero Jacobian determinant score,
H-ViT also attained a score of around 0.5%, which is within
an acceptable range.

The superior performance of our method is also evident
in the other datasets. For ADNI (Tab. 3), H-ViT demon-
strates a Dice score of approximately +0.03 higher than
the second-best performing techniques in both patient-to-
patient and patient-to-atlas registration scenarios. Exam-

ple results of the methods are depicted in Fig. 5, with H-
ViT demonstrating more accurate warping of the moving
MRI compared to other techniques, particularly in frontal
gyrus and in temporal, indicated by the blue and the orange
rectangles, respectively. H-ViT replicated the results ob-
served in the ADNI dataset on LPBA (Tab. 4) and Mind-
boggle (Tab. 6), achieving higher Dice scores of +0.034 and
+0.031 in inter-patient registration compared to the second-
best technique, respectively. Similarly, H-ViT demonstrated
a Dice performance increase of +0.028 and +0.032 in the
patient-to-atlas registration. Detailed results for all meth-
ods, including Dice scores per anatomical structure and ad-
ditional visualization results, are provided in the Supple-
mentary Material in Sec. D.
4.2. Ablation study on the H-ViT model

Dual-Attention: Tab. 5 reports the performance of
the H-ViT model under various scenarios, both with and
without self-attention blocks, and for different numbers
of cross-attention units. While the self-attention unit en-
hances the performance of the CNN backbone, the cross-
attention blocks further leverage this improvement, result-
ing in enhanced warped outcomes. The importance of

11518



Figure 5. Example coronal slice from the ADNI dataset and outcomes (from top to bottom: MRI, segmentation, difference in segmentation
between ground truth and segmented results, and the deformed grid) of different registration methods, with corresponding Dice scores
below the segmentation results. In the third row, red highlights signify segmentation disparities between ground truth and segmented
results, while the black ones represent accurate segmentation (optimal with fewer red pixels).

Method Inter-Patient Patient-to-Atlas
Dice ↑ Dice ↑

Affine 0.531±0.082 0.477±0.052
VoxelMorph [6] 0.692±0.214 0.646±0.226
MIDIR [49] 0.666±0.220 0.635±0.227
CycleMorph [32] 0.687±0.217 0.655±0.225
ViT-V-Net [8] 0.727±0.210 0.686±0.219
TransMorph-Bspl [10] 0.730±0.208 0.702±0.213
Proposed H-ViT 0.760±0.203 0.730±0.210

Table 3. The averaged Dice score results for ADNI registration for
45 anatomical structures over 150 random pairs for inter-patient
and 150 pairs for patient-to-atlas registrations. Presented are the
outcomes of the six techniques exhibiting the highest Dice scores.
The percentage of folded voxels for the reported techniques is be-
low 1.5%. A detailed table containing all methods is reported in
Supplementary Material in Sec. D.2.

cross-attention units is comparable to that of self-attention
units, with both contributing to a Dice score of approxi-
mately 0.80. This can be observed by comparing H-ViT
with self-attention only (without cross-attention) to H-ViT
with three cross-attention units but without self-attention.
An increase in the number of cross-attention units leads to
an improvement in the Dice score, signifying that the defor-
mation field benefits from the flow of higher-level features
into its representation. From a computational standpoint,
the cross-attention units do not significantly impact model

Method Inter-Patient Patient-to-Atlas
Dice ↑ Dice ↑

Affine 0.561±0.018 0.543±0.017
CycleMorph [32] 0.654±0.017 0.645±0.016
nnFormer [75] 0.626±0.018 0.631±0.016
PVT [64] 0.637±0.016 0.642±0.016
ViT-V-Net [8] 0.658±0.017 0.650±0.017
TransMorph-Bspl [10] 0.670±0.018 0.666±0.016
Proposed H-ViT 0.704±0.016 0.694±0.015

Table 4. The averaged Dice score results for LPBA registration for
56 anatomical structures over 120 random pairs for inter-patient
and 117 pairs for patient-to-atlas registrations. The percentage of
folded voxels for the reported techniques is below 0.2%. The de-
tailed results are reported in Supplementary Material in Sec. D.4.

loading. The number of FLOPs increases from 1.7X in H-
ViT without cross-attention to 2.2X for H-ViT with three
cross-attention blocks. This trend is similarly reflected in
the number of trainable parameters, with H-ViT without
cross-attention containing 17.87M parameters compared to
21.23M for H-ViT with three cross-attention blocks.

H-ViT parameters: Tab. 7 presents the impact of var-
ious parameters of H-ViT on the IXI registration. In this
experiment, we employed a small version of H-ViT with a
reduced number of training steps, as described in Supple-
mentary Sec. C.1. Tab. 7 indicates that an increased num-
ber of heads contributes to improved performance. Simi-
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Method CNN Self-Attention Cross-Attention Dice ↑ |JΦ| ≤ 0 Params. Max. Mem. FLOPs
Backbone (#) (%) ↓ (#M) (GB)

H-ViT ✓ ✗ ✗ 0.785±0.081 0.442±0.210 16.14 5.96 1.0X
H-ViT ✓ ✓ ✗ 0.801±0.072 0.205±0.130 17.87 15.50 1.7X
H-ViT ✓ ✓ 1 0.803±0.072 0.216±0.133 19.55 22.60 1.9X
H-ViT ✓ ✓ 2 0.806±0.073 0.437±0.188 20.68 22.60 2.1X
H-ViT ✓ ✓ 3 0.810±0.073 0.525±0.209 21.23 22.60 2.2X
H-ViT ✓ ✗ 3 0.802±0.075 0.531±0.238 19.35 22.46 2.0X

Table 5. Ablation study on the dual-attention mechanism of H-ViT on the IXI dataset. The symbol ’X’ denotes the number of FLOPs for
H-ViT with only the CNN backbone that is 803.5G for an MRI scan with a size of 160× 192× 224.

Method Inter-Patient Patient-to-Atlas
Dice ↑ Dice ↑

Affine 0.537±0.041 0.534±0.034
VoxelMorph [6] 0.674±0.197 0.666±0.201
CycleMorph [32] 0.679±0.194 0.671±0.199
CoTr [69] 0.633±0.214 0.630±0.218
ViT-V-Net [8] 0.700±0.186 0.695±0.187
TransMorph-Bspl [10] 0.699±0.181 0.695±0.183
Proposed H-ViT 0.731±0.170 0.726±0.173

Table 6. The averaged Dice score results for Mindboggle registra-
tion with 41 anatomical structures over 111 random pairs for inter-
patient and 222 pairs for patient-to-atlas registrations. The per-
centage of folded voxels for the reported techniques is below 1.0%.
The detailed results are reported in Supplementary in Sec. D.5.

Parameter Dice ↑ |JΦ| ≤ 0 (%) ↓
Number of Heads
8 0.801±0.072 0.201±0.130
64 0.805±0.072 0.211±0.132

Depth
1 0.803±0.073 0.201±0.132
4 0.805±0.071 0.222±0.135

Voxel Patch Size
2× 2× 2 0.803±0.073 0.201±0.132
6× 6× 6 0.804±0.073 0.207±0.132

Drop rate
0 0.803±0.073 0.201±0.132
0.2 0.801±0.073 0.179±0.128

Table 7. Ablation study on parameters of a small H-ViT for the IXI
registration. The detailed results are reported in Supplementary
Material in Tab. 9.

larly, elevating the depth enhances the performance of the
smaller H-ViT model. Considering the scores for the voxel
size experiment, opting for voxel patches of size 2 is advis-
able while using a drop rate is not advisable.

4.3. Discussion and Conclusion

This paper introduced H-ViT as a novel approach for reg-
istering medical imaging data. H-ViT benefits from a dual-
attention mechanism, consisting of self-attention and cross-
attention. Self-attention operates by interacting with local
voxel patches, facilitating the capture of short-range flow
information at a specific scale level. Cross-attentions draw
voxel patches from higher-level feature levels, enabling the
utilization of a broad spectrum of long-range flow informa-
tion across scale levels in a hierarchical manner. The cross-
attention mechanism enhances various facets of the repre-
sentation of the deformable field, including:
• Abstract patterns and information flow: The hierarchi-

cal cross-attention module enables the recognition of
complex flow patterns, facilitating the flow information
stream across all scale levels in the deformation field, ir-
respective of their spatial proximity (Tab. 5).

• Translation invariance: In contrast to traditional Trans-
formers that primarily depend on local patch embeddings,
utilizing long-range flow patches in the cross-attention
mechanism enables a greater level of translation invari-
ance. This approach emphasizes significant features and
patterns within distinct layers of flow without being lim-
ited by their specific layer positions.

• Dealing with MRI scans of varying sizes: The cross-
attention mechanism in H-ViT guarantees the capture of
relevant deformed patterns across diverse flow feature
maps, irrespective of the deformation field dimension.

Broader impacts: The proposed H-ViT can be used as an
effective network to enhance image representation in any
conventional CNN and ViTs.
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