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Abstract

This study addresses the challenge of performing vi-
sual localization in demanding conditions such as night-
time scenarios, adverse weather, and seasonal changes.
While many prior studies have focused on improving image
matching performance to facilitate reliable dense keypoint
matching between images, existing methods often heavily
rely on predefined feature points on a reconstructed 3D
model. Consequently, they tend to overlook unobserved
keypoints during the matching process. Therefore, dense
keypoint matches are not fully exploited, leading to a no-
table reduction in accuracy, particularly in noisy scenes.
To tackle this issue, we propose a novel localization method
that extracts reliable semi-dense 2D-3D matching points
based on dense keypoint matches. This approach involves
regressing semi-dense 2D keypoints into 3D scene coor-
dinates using a point inference network. The network
utilizes both geometric and visual cues to effectively in-
fer 3D coordinates for unobserved keypoints from the ob-
served ones. The abundance of matching information sig-
nificantly enhances the accuracy of camera pose estima-
tion, even in scenarios involving noisy or sparse 3D mod-
els. Comprehensive evaluations demonstrate that the pro-
posed method outperforms other methods in challenging
scenes and achieves competitive results in large-scale vi-
sual localization benchmarks. The code will be available at
https://github.com/TruongKhang/DeViLoc.

1. Introduction
Visual localization is the process of determining the 6 de-
grees of freedom (DoF) camera pose for a given query
image within a known scene. This fundamental task in
computer vision is critical for applications such as robot
navigation [33] and virtual or augmented reality [35, 37].
Most leading studies primarily employ a structure-based
approach [8, 41, 43, 47, 68], consistently exhibiting high
localization performance across diverse challenging condi-
tions [31, 42, 54, 58].

Traditionally, structure-based methods heavily rely on
feature matching (FM) [11, 46, 51, 55, 64]. These methods
establish sparse correspondences between 3D points and
2D pixel-level keypoints in images, followed by estimating
camera poses using RANSAC-based Perspective-n-Point
(PnP). The recent advancements in FM-based methods [41,
42, 53] have shown outstanding performance across various
benchmarks, particularly in large-scale scenes. However,
despite these achievements, FM-based methods encounter
substantial challenges in practical scenarios, including deal-
ing with complex lighting conditions, seasonal variations,
and changes in perspectives.

Addressing these challenges necessitates a more ro-
bust and informative feature-matching approach incor-
porating detailed 3D points. Current methods, includ-
ing those achieving semi-dense 2D-2D correspondences
through detector-free image matching [15, 24, 53], are lim-
ited by relying solely on matched sparse features. This
limitation persists when considering semi-dense matches,
which only account for keypoints observed in a 3D model,
neglecting valuable information from unobserved key-
points. Furthermore, FM-based methods demand a detailed
3D point cloud map for accurate localization. Continuously
refining 3D feature points for new image inputs is time-
intensive, and in some scenarios, localization must be per-
formed with a noisy or sparse 3D point cloud. Overreliance
on predetermined 2D and 3D points in the database can lead
to a degradation in pose accuracy, especially in noisy cases
with texture-less surfaces or repetitive patterns.

Recent studies introduce scene coordinate regression
(SCR) methods [6, 8, 30, 56], aiming to achieve dense 2D-
3D correspondences. Unlike FM-based approaches, SCR
methods use an implicit representation of scenes as a learn-
able function, predicting the dense 3D scene coordinates of
a query image. SCR methods excel in compact and sta-
ble settings, eliminating the need for storing 3D models;
however, they face challenges in dynamic environments and
adapting to new viewpoints, limiting their applicability in
large-scale scenes. Therefore, there is a need for an alter-
native method capable of finding dense and accurate 2D-3D
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Figure 1. The comparison of the 2D-3D correspondence finding process in our method (DeViLoc) and an existing method (HLoc [41]).
HLoc heavily relies on a robust 3D point cloud but discards many detected 2D keypoints (depicted in green) during the 2D-3D matching
process. In contrast, our method efficiently handles a noisy point cloud through the point inference process of PIN. PIN transforms the
entire set of 2D-2D matches into 2D-3D matches. Our method then produces numerous accurate 2D-3D matches across multiple views
using a confidence-based aggregation module. These abundant matches significantly enhance localization performance, particularly in
scenarios characterized by noisy or sparse 3D point clouds.

correspondences for visual localization.

Therefore, this study proposes a novel FM-based
method, semi-Dense Visual Localization (DeViLoc), aim-
ing to predict dense 2D-3D correspondences for robust
and accurate localization. In contrast to existing FM-
based methods relying solely on pre-existing 3D points, our
method directly converts semi-dense 2D-2D matches into
2D-3D matches. This abundant 2D-3D match information
significantly enhances the precision of camera pose estima-
tion, even when dealing with noisy or sparse 3D models.

This method comprises two main components: 1) the
Point Inference Network (PIN) and 2) the Confidence-based
Point Aggregation (CPA) module. PIN plays a crucial role
in our method by converting semi-dense 2D-2D matches
into 2D-3D matches. It achieves this by directly regress-
ing all 2D keypoints, both observed and unobserved, into
3D scene coordinates. The process involves encoding scene
geometry from observed points into latent vectors and prop-
agating 3D information to unobserved positions through at-
tention layers. Next, the CPA module aggregates 2D-3D
matches from multiple query-reference pairs, identifying
consistent and highly confident 3D points corresponding to
the same 2D keypoints in multiple matching views. This
step effectively removes outliers from dense matches, and
the filtered 2D-3D matches expedite RANSAC-based pose
estimation. Ultimately, DeViLoc significantly increases the
number of accurate 2D-3D matches for localization.

Fig. 1 illustrates the 2D-3D matching process of our
method and an existing one (HLoc+LoFTR [41, 53]). The
existing method, despite having a dense and precise 3D
model, rejects many important points during 2D-3D es-
timation. In contrast, our method confidently transforms
2D-2D matches into 2D-3D matches, generating numerous
matches even in the presence of noisy 3D input and night-

time conditions. Consequently, the method yields robust
and accurate localization results based on dense matching
information, especially in challenging conditions like night-
time scenarios, adverse weather, and seasonal changes.

This paper makes the following contributions:
• We propose a novel visual localization method that lever-

ages rich matching information by directly converting
semi-dense 2D-2D matches into 2D-3D matches. This
method significantly improves the accuracy of camera
pose estimation, particularly in scenarios with noisy or
sparse 3D models.

• We introduce a network architecture, Point Inference Net-
work (PIN), designed to directly regress 2D keypoints
into 3D points. This network effectively exploits geo-
metric and visual connections between unobserved and
observed keypoints, ensuring accurate estimation of 3D
information along with associated uncertainties.

• We conducted a comprehensive evaluation of our method
across diverse datasets. The results indicate that our pro-
posed approach outperforms other state-of-the-art meth-
ods in challenging scenes and achieves competitive per-
formance in large-scale visual localization benchmarks.
The source code is publicly available.

2. Related Works

Visual localization, which involves estimating camera poses
from visual inputs, has been a subject of study for decades
[8, 28, 31, 39, 49, 54]. Early approaches [1, 49, 59] primar-
ily relied on an image retrieval strategy to directly estimate
camera poses from the most similar images in database.
This approach is intuitive and efficient, but its performance
is significantly influenced by the density of images in the
database. To overcome this limitation, an alternative ap-
proach learns a neural network to directly predict absolute
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camera poses from the input images [26, 27, 61].
Many studies [8, 9, 11, 25, 41, 47, 51, 54, 55, 68] have

shifted their focus towards structure-based approach due to
its stability and scalability in diverse scenes. The structure-
based methods estimate camera pose by establishing a set of
2D-3D correspondences between image pixels and 3D co-
ordinates of the scene. Leveraging this precise correspon-
dence set, a camera pose can be accurately computed us-
ing a PnP solver [22, 29, 40] within a RANSAC paradigm
[3, 4, 21]. The structure-based methods can be broadly cat-
egorized into two main groups: feature matching (FM) and
scene coordinate regression (SCR).

Feature Matching. FM-based methods [11, 31, 41, 46,
51] initially reconstruct a 3D model of the environment
from database images using Structure-from-Motion (SfM)
[50, 63]. Each 3D point in the model is associated with one
or several feature descriptors for localization. When a lo-
calization request for a query image is made, these methods
detect a set of 2D keypoints along with their descriptors and
proceed to match them with the 3D points. Several works
generate the 2D-3D matches by examining all points in the
3D model [31, 44]; however, they face difficulty when deal-
ing with large scenes.

To address this challenge, recent studies [41, 57, 64]
have introduced a coarse-to-fine strategy. They initially
identify a set of reference images in a database through im-
age retrieval. They then establish 2D-3D matches based on
2D-2D matches between the query and reference images.
Subsequent works have focused on enhancing the perfor-
mance of image matching by incorporating transformers
[15, 24, 42, 53] or semantic information [65]. These ap-
proaches produce robust and accurate 2D-2D matches, con-
tributing to the robust construction of 3D model and the
accurate generation of 2D-3D matches during the localiza-
tion step. Consequently, FM-based methods have achieved
state-of-the-art performance.

However, these methods exhibit inflexibility due to heav-
ily relying on high-fidelity point cloud reconstruction. This
time-consuming step is not suitable for online applications
such as SLAM or robot navigation, where the 3D point
cloud is constructed on-the-fly from a sequence of images.
In this situation, the point cloud might be noisy or in-
complete, thus degrading localization performance. Fur-
thermore, existing FM-based methods only utilize observed
3D points in the database to generate 2D-3D matches, dis-
carding numerous unrelated 2D-2D matches. This process
might compromise the performance in the presence of noisy
3D inputs. On the other hand, our proposed framework aims
to adapt to various kinds of 3D inputs and predict semi-
dense 2D-3D correspondences.

Scene Coordinate Regression. In contrast to the ex-
plicit utilization of 3D models seen in FM-based methods,
SCR [6, 8, 9, 13, 14, 52, 60] employs an implicit repre-

sentation of scenes in a form of a machine learning model.
This model predicts dense 3D scene coordinates for an in-
put query image. While SCR-based methods offer a concise
representation of scenes, they encounter challenges when
adapting to large-scale scenes, novel scenes, or challeng-
ing conditions. Several approaches have been proposed to
address these challenges by predicting a scene part-by-part
[7, 30] or employing a coarse-to-fine prediction [56, 66].
However, these methods still exhibit lower performance
compared to FM-based methods.

Drawing inspiration from SCR, our method aims to pre-
dict 3D coordinates for all keypoints in the query im-
age, identified using a detector-free image-matching model.
However, in contrast to the dense prediction in SCR, our
semi-dense approach reduces the possibility of incorrect 3D
prediction by focusing only on regions of interest between
the query and reference images. Consequently, our method
achieves more accurate performance than SCR-based meth-
ods in outdoor scenes.

3D Scene Representation. FM-based methods [24, 41,
42, 53] have proven to be effective, but they come with a
drawback of requiring substantial storage capacity to store
both the 3D coordinates and the associated visual features
[41, 42]. Consequently, recent studies [10, 12, 16, 38,
67, 70] have shifted their focus toward discovering more
space-efficient representations of the scene. For example,
NeuMap [57] proposed encoding a 3D point cloud into a
set of latent codes and then regressing 3D coordinates based
on these codes. While these methods successfully reduce
storage demands, they discard crucial scene information,
thereby limiting their performance. In contrast, this study
focuses on improving performance when dealing with chal-
lenging point cloud inputs.

3. Proposed Method
We follow the coarse-to-fine localization paradigm [41] that
first retrieves a set of reference images via image retrieval,
and then estimates a camera pose by finding 2D-3D cor-
respondences between image pixels and 3D coordinates of
the scene. The proposed method aims to address the task
of 2D-3D prediction, while applying image retrieval and a
PnP pose solver, similar to [41].

3.1. Overview

Given a query image Iq and a set of reference images
{Ir,1...Ir,Nv} retrieved from a database, our method estab-
lishes a set of 2D-3D correspondences M = {(ki, pi)},
where ki is a 2D keypoint in the query image and pi rep-
resents the corresponding 3D coordinate. Fig. 2 describes
the overall architecture of the proposed method, DeViLoc.
For each pair of query Iq and reference Ir, DeViLoc first
extracts local 2D-2D feature correspondences {(kqi , kri )}
using an image-matching network. Here, we employed a
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Figure 2. Overview of DeViLoc. First, a feature matcher is employed to detect 2D-2D matches for each pair of query-reference images.
Subsequently, the PIN module infers a set of 3D coordinates for all detected 2D keypoints based on the observed data in the reference
image. Finally, the CPA module integrates all 2D-3D matches obtained across all query-reference pairs.

detector-free image-matching model [24] to produce semi-
dense correspondences.

The Point Inference Network (PIN) then converts de-
tected 2D keypoints of the reference image into 3D points
(Section 3.2). It takes reference image Ir with known cam-
era parameters, along with a sparse set of observed 3D
points as inputs, and predicts a set of 3D scene coordinates,
{pi}, corresponding to all keypoints {kri }. Based on pre-
dicted 3D points {pi} and 2D-2D matches {(kqi , kri )}, we
could produce dense 2D-3D matches, {(kqi , pi)}, for the
query image. The basic concept of PIN is inspired by depth
completion [62, 69], where a dense depth map is recon-
structed from a sparse set of observed depth measurements
and an input image. However, unlike depth completion, PIN
aims to infer a discrete set of depth points, leading to re-
duced computational costs. Due to this discrete depth pre-
diction, PIN utilizes attention [19] and MLP layers without
the need for complex CNNs, as commonly found in conven-
tional depth completion methods.

Next, the Confidence-based Point Aggregation (CPA)
module integrates all 2D-3D matches from multiple query-
reference image pairs (Section 3.3). CPA integrates 2D-3D
matches with small distances of keypoints into a represen-
tative match. It effectively removes outliers by considering
the confidence information of each match during the inte-
gration process.

3.2. Point Inference Network

For reference image Ir, let Or = {ori } be the set of 3D
points observed from the constructed 3D model. PIN pre-
dicts 3D points P r = {pri } corresponding to detected 2D
keypoints Kr = {kri } as:

P r = PIN(Kr, Or, F r) (1)

where Kr ∈ RNr
points×2, Or ∈ RNo

points×3, and F r is a
feature map extracted from image Ir using convolutional

networks (F r ∈ Rh×w×c). We directly utilized the output
features of the image-matching network [24] as F r.

The method begins with a preprocessing step where key-
points Kr and observed 3D points Or are transformed into
the same camera-coordinate system using the known cam-
era parameters. Subsequently, we decompose the observed
3D points into observed keypoints Ko ∈ RNo

points×2 and
depth values Do ∈ RNo

points×1. The PIN network then aims
to estimate depths Dr for reference keypoints Kr, utilizing
observed keypoints Ko, observed depths Do, and the fea-
ture map F r. The network architecture of PIN is illustrated
in Fig. 3, comprising two fundamental steps to leverage
both spatial information and visual similarity for depth es-
timation: geometric guidance and visual guidance.

To implement geometric guidance, we initially employ
two MLP-based encoders to learn embeddings for all 2D
keypoint coordinates {Kr,Ko}, as well as for the observed
depths, Do. Additionally, we encode scene geometry from
the observed depths by utilizing a self-attention layer.

Do
emb = DepthEnc(Do) (2)

[Kr
emb,K

o
emb] = KeypointEnc([Kr,Ko]) (3)

The relative position between the observed and unobserved
keypoints serves as a primary geometric cue for propagating
depth information from observed to unobserved positions.
Therefore, we represent the observed positions with latent
codes, P o

lc, combined from keypoint embeddings Ko
emb and

depth features Do
emb. These latent codes are then passed

into a cross-attention layer to generate latent codes P r
lc re-

lated to reference keypoints Kr
emb:

P r
lc = CrsAtt(Kr

emb, P
o
lc) (4)

In Eq. 4, Kr
emb is the query, and P o

lc represents the key and
value for the cross-attention function, CrsAtt(.).

The geometric guidance mentioned above may lack ro-
bustness in estimating accurate depths due to the sparsity of
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Figure 3. Point Inference Network (PIN). The network begins by learning embeddings for all keypoints (Ko
emb,K

r
emb) and observed

depths (Do
emb). Subsequently, attention layers are employed for both geometric and visual guidance. Finally, the learned latent codes

(P r
lc) are utilized to perform regression for the 3D points along with confidence values.

observed data points. Therefore, we also incorporate visual
features for more detailed guidance. Considering the fea-
ture map F r in Eq. 1, we utilize a bilinear grid sampling to
extract sets of visual features V r and V o for both Kr and
Ko. These visual features are appended to the latent codes,
P r
lc and P o

lc. Subsequently, we employ multiple self/cross-
attention layers to facilitate visual guidance:

P r
lc = Concat(P r

lc, V
r), P o

lc = Concat(P o
lc, V

o) (5)
P o
lc = SelfAtt(P o

lc), P
r
final = CrsAtt(P r

lc, P
o
lc) (6)

After learning the final latent features, P r
final, correspond-

ing to reference keypoints Kr, we use two MLP-based net-
works to predict the depths and confidences:

Dr = MLP(P r
final), Cr = MLP([P r

final, D
r]) (7a,b)

Finally, the 3D scene coordinates for the reference key-
points are estimated as follows:

P r = (T−1)cam→scene(D
r[K̂r, 1]T ) (8)

where T−1 transforms the 3D points from camera-
coordinate to scene-coordinate system. The confidences Cr

represent the uncertainty associated with the predicted 3D
coordinates, P r.

3.3. Confidence-based Point Aggregation

PIN produced the 2D-3D correspondences, (Kq, P ) =
{(kqi , pi)}, along with their associated confidence val-
ues Cr = {ci} for every query-reference pair
(Iq, Ir). Subsequently, we aggregated the 2D-3D matches
{(kqi , pi)n}

i=1. . . Nm

n=1. . . Nv
across Nv sets of matches, with Nm

being the number of matches per set. The goal of CPA is
to eliminate outliers from the aggregated matches and de-
termine the final matches that exhibit high confidence and
consistency. To accomplish this, we started by discarding
matches with low confidence through a threshold τ . Next,
we grouped adjacent matches using a keypoint quantization

step. If the coordinates of two keypoints are closer than s
pixels, these keypoints are assigned to the same group. This
process is represented by a function Qs, where s denotes
the quantization size (s ∈ {2, 4} in our experiments). Once
matches within the same group were identified, we merged
them using a confidence-based averaging operation.

Let kj be a quantized keypoint, the formulas for the ag-
gregated 3D point paggj and the corresponding confidence
caggj can be written as follows:

paggj =

∑
i,n 1(Qs(k

n
i ) = kj)c

n
i p

n
i∑

i,n 1(Qs(kni ) = kj)cni
(9)

caggj =

∑
i,n 1(Qs(k

n
i ) = kj)c

n
i

Nkj

(10)

Here, 1(Qs(k
n
i ) = kj) is a binary indicator, and Nkj

=∑
i,n 1(Qs(k

n
i ) = kj) represents the number of keypoints

quantized into kj .

3.4. Loss Functions

In summary, the proposed approach generates a set of 2D-
3D matches, denoted as M = {(kj , paggj , caggj )}, for query
image Iq . Utilizing ground-truth camera matrices (Cq, T q)
and available depth information Dq = {dqj}, we define
two functions, incorporating point-matching loss and con-
fidence loss, to train the proposed network.

Point-matching loss. We computed the ground-truth 3D
coordinates {pgtj } for the keypoints {kj} using the depths
{dqj} and camera matrices (Cq, T q). Then, we employed
the L1 function to calculate the loss between the ground-
truth 3D points and predicted 3D points:

Lq
point =

1

|M |
∑
j

||paggj − pgtj || (11)

Confidence loss. To train the confidences, we projected
the 3D points {paggj } onto the image plane and assigned a
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Methods 7scenes (indoor) Cambridge landmarks (outdoor)
Chess Fire Heads Office Pumpkin Kitchen Stairs Court King’s Hospital Shop St. Mary’s

D

HSCNet [30] 2/0.7 2/0.9 1/0.9 3/0.8 4/1.0 4/1.2 3/0.8 28/0.2 18/0.3 19/0.3 6/0.3 9/0.3
DSAC++ [6] 2/0.5 2/0.9 1/0.8 3/0.7 4/1.1 4/1.1 9/2.6 40/0.2 18/0.3 20/0.3 6/0.3 13/0.4
DSAC* [8] 2/1.10 2/1.24 1/1.82 3/1.15 4/1.34 4/1.68 3/1.16 49/0.3 15/0.3 21/0.4 5/0.3 13/0.4
SANet [66] 3/0.88 3/1.08 2/1.48 3/1.00 5/1.32 4/1.40 16/4.59 328/1.95 32/0.54 32/0.53 10/0.47 16/0.57
DSM [56] 2/0.68 2/0.80 1/0.80 3/0.78 4/1.11 3/1.11 4/1.16 43/0.19 19/0.35 23/0.38 6/0.30 11/0.34

S

AS [47] 3/0.87 2/1.01 1/0.82 4/1.15 7/1.69 5/1.72 4/1.01 24/0.13 13/0.22 20/0.36 4/0.21 8/0.25
InLoc [55] 3/1.05 3/1.07 2/1.16 3/1.05 5/1.55 4/1.31 9/2.47 - - - - -
PixLoc [43] 2/0.80 2/0.73 1/0.82 3/0.82 4/1.21 3/1.20 5/1.30 30/0.14 14/0.24 16/0.32 5/0.23 10/0.34
HLoc[SP+SG] 2/0.84 2/0.93 1/0.74 3/0.92 5/1.27 4/1.40 5/1.47 16/0.11 12/0.20 15/0.30 4/0.20 7/0.21
HLoc[LoFTR] 3/0.93 2/0.87 1/0.73 4/1.02 5/1.24 5/1.48 6/1.47 19/0.11 16/0.26 16/0.29 4/0.21 9/0.26

SD

NeuMap [57] 2/0.81 3/1.11 2/1.17 3/0.98 4/1.11 4/1.33 4/1.12 6/0.10 14/0.19 19/0.36 6/0.25 17/0.53
DeViLoc (Ours) 2/0.78 2/0.74 1/0.65 3/0.82 4/1.02 3/1.19 4/1.12 18/0.11 12/0.21 13/0.28 4/0.18 7/0.23

Table 1. Evaluation on 7scenes and Cambridge landmarks. The metrics are the median translation (cm) and rotation (o) errors. The
SCR-based methods highlighted in red were trained per scene. The best and second-best results are marked in bold and cyan. DeViLoc
outperforms the other methods in overall, despite being trained only on MegaDepth.

label to each point based on pixel error. If the error between
the projected 2D point and the query keypoint kj is less
than θ pixels (θ = 8 in our experiments), the correspond-
ing confidence caggj is labeled as lj = 1, and vice versa.
Consequently, the confidence loss, denoted as Lq

conf , is es-
tablished through the binary cross-entropy function:

Lq
conf =

1

|M |
∑
j

(lj log c
agg
j +(1−lj) log(1−caggj )) (12)

The final loss results from the combination of these two loss
terms:

Lq = Lq
point + λ ∗ Lq

conf (13)

Here, λ was set to 0.25 in our experiments.

4. Experiments
4.1. Implementation Details

We conducted experiments on various datasets, including
7scenes [52], Cambridge [27], Aachen Day-Night [45, 48],
RobotCar Seasons [36, 48], and Extended CMU Seasons
[2, 58].

Detailed pipeline. To demonstrate the adaptability of
the proposed method to noisy and sparse 3D inputs, we uti-
lized 3D point clouds generated through SIFT-based SfM
in COLMAP [34, 50]. These 3D point clouds are con-
sistently available across all datasets. We employed Den-
seVLad [59], NetVLad [1], or CosPlace [5] to retrieve the
top-k reference images. Subsequently, the proposed frame-
work was applied to predict 2D-3D matches from these in-
puts. During the prediction, we utilized the efficient feature-
matching model, TopicFM [24], to generate semi-dense 2D-
2D matches. Finally, the camera pose was computed from
the 2D-3D matches using PnP functions in COLMAP.

Training. Our network was trained on MegaDepth [32],
comprising outdoor scenes from various locations. The
trained model was directly used for evaluation across all
datasets, eliminating the need for finetuning or retraining.

4.2. Evaluation on Cambridge and 7scenes

We conducted a comparative analysis of our method
(DeViLoc) against various state-of-the-art structure-based
methods. Based on the characteristics outlined in the related
works (Section 2), we primarily organized these methods
into three categories: dense (D), sparse (S), and semi-dense
(SD) methods. In this classification, SCR-based methods
like HSCNet [30], SANet [66], DSAC* [8], DSAC++ [6],
and DSM [56] were placed in the dense group (D) due to
their strategy of making dense 2D-3D predictions. Con-
versely, methods such as Active Search [47], InLoc [55],
and HLoc[SP+SG] [18, 41, 42] executed a sparse matching
process between 2D keypoints and the 3D point cloud, clas-
sifying them in the sparse group (S). Despite PixLoc [43]
not directly detecting 2D keypoints in the query image, its
effective utilization of 3D points from a sparse point cloud
to find corresponding 2D positions in the query image led
us to categorize PixLoc in group S as well. In contrast to
both groups (D and S), our method predicts 3D coordinates
for all detected keypoints without any point rejection. To
the best of our knowledge, NeuMap [57] is the most sim-
ilar work to ours. Therefore, we assigned DeViLoc and
NeuMap to the semi-dense group (SD).

We compared the estimated camera poses of all methods
to the ground-truth poses, calculating translation (in cm)
and rotation (in degrees) errors [27] and presenting the me-
dian errors for each scene in Table 1. The results highlight
the effectiveness of dense methods, following the SCR ap-
proach, in indoor scenes. This success is attributed to their
scene-specific training (e.g., HSCNet, DSAC++, DSAC*)
or training on extensive indoor datasets (e.g., DSM, trained
on ScanNet [17]). However, these dense methods face
challenges in generalizing to outdoor scenes in Cambridge.
In contrast, despite being trained on outdoor scenes, our
method demonstrates superior performance compared to the
dense methods on the 7scenes dataset. The method secures
first-place rankings in three scenes (Fire, Heads, Pumpkin)
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Methods Aachen Day-Night RobotCar-Seasons Extended CMU-Seasons
Day Night Day-all Night-all Urban Suburban Park

D ESAC [7] 42.6 / 59.6 / 75.5 6.1 / 10.2 / 18.4 - - - - -

S

AS [47] 85.3 / 92.2 / 97.9 39.8 / 49.0 / 64.3 50.9 / 80.2 / 96.6 6.9 / 15.6 / 31.7 81.0 / 87.3 / 92.4 62.6 / 70.9 / 81.0 45.5 / 51.6 / 62.0
D2Net [20] 84.8 / 92.6 / 97.5 84.7 / 90.8 / 96.9 54.5 / 80.0 / 95.3 20.4 / 40.1 / 55.0 94.0 / 97.7 / 99.1 93.0 / 95.7 / 98.3 89.2 / 93.2 / 95.0
S2DNet [23] 84.5 / 90.3 / 95.3 74.5 / 82.7 / 94.9 53.9 / 80.6 / 95.8 14.5 / 40.2 / 69.7 - - -
HLoc[SP] [18, 41] 80.5 / 87.4 / 94.2 68.4 / 77.6 / 88.8 53.1 / 79.1 / 95.5 7.2 / 17.4 / 34.4 89.5 / 94.2 / 97.9 76.5 / 82.7 / 92.7 57.4 / 64.4 / 80.4
PixLoc [43] 64.3 / 69.3 / 77.4 51.0 / 55.1 / 67.3 52.7 / 77.5 / 93.9 12.0 / 20.7 / 45.4 88.3 / 90.4 / 93.7 79.6 / 81.1 / 85.2 61.0 / 62.5 / 69.4
HLoc[SP+SG] 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100. 56.9 / 81.7 / 98.1 33.3 / 65.9 / 88.8 95.5 / 98.6 / 99.3 90.9 / 94.2 / 97.1 85.7 / 89.0 / 91.6
LBR [64] 88.3 / 95.6 / 98.8 84.7 / 93.9 / 100. 56.7 / 81.7 / 98.2 24.9 / 62.3 / 86.1 - - -
HLoc+PixLoc 84.7 / 94.2 / 98.8 81.6 / 93.9 / 100. 56.9 / 82.0 / 98.1 34.9 / 67.7 / 89.5 96.9 / 98.9 / 99.3 93.3 / 95.4 / 97.1 87.0 / 89.5 / 91.6
HLoc[TopicFM][24] 88.8 / 94.7 / 97.9 86.7 / 92.9 / 100. - - - - -

SD

NeuMap [57] 80.8 / 90.9 / 95.6 48.0 / 67.3 / 87.8 - - - - -
DeViLoc (Ours) 87.4 / 94.8 / 98.2 87.8 / 93.9 / 100. 56.9 / 81.8 / 98.0 31.3 / 68.9 / 92.4 95.7 / 98.4 / 99.2 97.1 / 98.3 / 99.4 92.1 / 95.1 / 96.3

Table 2. Evaluated results on the long-term benchmark [48] using the recall metrics at thresholds of {(25cm, 2o), (50cm, 5o), (5m, 10o)}.
We compare with various complex baselines that integrate robust FM models into HLoc [41] or use PixLoc to refine HLoc’s poses. Our
method achieves state-of-the-art performance, especially in the highly challenging localization in the CMU dataset (marked in bold red).

and second-place ranking in one scene (Kitchen). It also
outperforms dense methods on the Cambridge dataset.

In comparison to methods in group S, DeViLoc con-
sistently delivers superior performance. Among these,
HLoc[SP+SG] is the only method achieving competitive
results with our approach on the Cambridge dataset. No-
tably, HLoc employs a complex pipeline involving re-
triangulating SIFT-based point clouds using robust local
features and matches detected by SuperPoint (SP) [18] and
SuperGlue (SG) [42]. In contrast, our method directly em-
ploys the noisy SIFT-based inputs and generally outper-
forms HLoc on both the 7scenes and Cambridge datasets.

4.3. Evaluation on large-scale challenging scenes

We compared DeViLoc with several contemporary image-
matching methods including D2Net [20], SP+SG [18, 42],
and TopicFM [24], which are frequently incorporated into
the HLoc pipeline as robust feature matchers. When us-
ing these methods, HLoc requires the extraction of new lo-
cal features and matches from the database to recalculate
the 3D point clouds. Furthermore, we also compared DeV-
iLoc to other methods such as PixLoc [43], ESAC [7], and
NeuMap [57], which are not based on the HLoc pipeline.
Table 2 presents the results of all these methods.

Aachen. DeViLoc performed comparably with recent
FM-based baselines. Additionally, when compared to
HLoc[TopicFM], which utilized the same feature matcher,
our method exhibited an overall superior performance,
demonstrating the effectiveness of the proposed pipeline.

RobotCar. As illustrated in Table 2, our method sur-
passed other methods and demonstrated competitive perfor-
mance compared to HLoc[SP+SG] for the day-time queries.
Particularly noteworthy is that DeViLoc significantly out-
performed HLoc[SP+SG] for the night-time queries. It is
important to highlight that both SP and SG were trained
using multiple datasets, while DeViLoc was exclusively
trained on MegaDepth [32].

CMU. Our method significantly outperformed the state-

of-the-art pipeline HLoc[SP+SG] with a large margin.
Compared to the complex pipeline HLoc+PixLoc, which
uses PixLoc to refine the estimated poses of HLoc[SP+SG],
DeViLoc improved accuracy by up to 5.1% on the scene
“Park”. This demonstrates the effectiveness and stability of
our approach in difficult localization conditions.

4.4. Ablation Study

Evaluating the performance with noisy and sparse in-
puts. To assess how effectively DeViLoc handles noisy
and sparse inputs, we conducted an experiment using the
Aachen Day-Night dataset. Our pipeline utilized 3D point
cloud inputs generated by different image-matching mod-
els, including SIFT, SP+SG, and LoFTR. As illustrated in
Fig. 4, the 3D point cloud generated by SIFT exhibits sig-
nificantly more noise and sparsity compared to those pro-
duced by the SP+SG and LoFTR models. The results for
each input model are presented in Table 3. We observe that
the precise and dense 3D inputs from SP+SG or LoFTR
only slightly improve performance. This highlights the
adaptability of our approach in handling various types of
3D inputs, proving effective even in the presence of noisy
and sparse data.

Visualization of semi-dense matching. Fig. 5 illus-
trates the detected 2D keypoints and the corresponding 3D
points produced by DeViLoc. We visualized multiple pairs
of query and reference views. Despite a higher number of
detected keypoints compared to the observed keypoints (es-
pecially in reference view 1), our method is capable of ef-
fectively estimating 3D points along with their uncertain-
ties. Notably, points in the sky or near-edge regions of
the scene tend to exhibit lower confidence. Ultimately, our
method yields a significant number of 2D-3D matches after
the point aggregation step, substantially improving perfor-
mance, particularly in challenging scenes.

Effectiveness of proposed modules. We implemented
three models to measure the contributions of the proposed
modules, PIN (Section 3.2) and CPA (Section 3.3):
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Figure 4. Comparison between point clouds built from traditional
FM (SIFT [34]), sparse FM (SP+SG [18, 42]), and detector-free
FM (LoFTR [53]). DeViLoc can handle well the noisy SIFT-based
input to achieve competitive performance compared to the precise
(SP+SG) or dense (LoFTR) inputs (shown in Table 3).

Models Day Night
(0.25m,2o) / (0.5m,5o) / (5.0m,10o)

DeViLoc[half-SIFT] 87.5 / 94.1 / 97.9 86.7 / 92.9 / 100.
DeViLoc[SIFT] 87.4 / 94.8 / 98.2 87.8 / 93.9 / 100.
DeViLoc[SP+SG] 87.3 / 95.3 / 98.3 88.8 / 92.9 / 100.
DeViLoc[LoFTR] 87.9 / 94.7 / 98.2 88.8 / 92.9 / 100.

Table 3. Ablation study of DeViLoc on Aachen Day-Night when
using different point cloud inputs.

• Model-A: This model executes the standard 2D-3D
matching process without utilizing the PIN and CPA
modules, akin to existing pipelines like HLoc [41].

• Model-B: This model only integrates the PIN module,
generating semi-dense matches. All these matches are di-
rectly fed into the PnP solver for pose estimation.

• Model-C: This model combines both PIN and CPA, in-
cluding the entire process of the proposed method.

Table 4 presents the results of pose estimation using AUC
with thresholds of {2o, 5o, 10o} [42]. The findings indicate
that the proposed modules (Model-B and Model-C) signif-
icantly enhance performance as compared to the baseline
(Model-A). Notably, these modules do not impose a sub-
stantial runtime burden, requiring only about 100ms to gen-
erate a more extensive set of 2D-3D matches, ultimately en-
hancing overall performance.

Impact of the top-k reference images. Table 4 shows
that employing more reference images can enhance perfor-
mance. However, this improvement comes at the expense of
significantly increased runtime and the number of matches.

Using different feature matcher. We evaluated the per-
formance by substituting the detector-free TopicFM [24]
with the detector-based SP+SG. The AUC metrics did not
decrease significantly, as indicated in Table 4.

5. Conclusions and Limitations
This study introduces a robust structure-based framework
for visual localization that minimizes reliance on the pre-

Figure 5. Illustration of 2D-3D correspondences estimated by
DeViLoc for several pairs of images. The observed 2D keypoints
are marked in black, while the reference keypoints are represented
in orange (low confidence) or green (high confidence).

Model AUC Time #P #M(2o/5o/10o) (s) ×106

A[SIFT] (A ⇔ HLoc) 72.4 / 85.5 / 91.1 0.49 11.6 42
A[SP+SG] 72.8 / 86.4 / 92.2 0.53 11.6 54
A[LoFTR] 74.7 / 87.7 / 93.2 0.51 11.6 297
B (A+PIN) 78.8 / 90.0/ 94.7 0.56 15.9 4743
C (A+PIN+CPA)⇔DeViLoc 79.6 / 90.5 / 94.9 0.57 15.9 4246
C (TopicFM→SP+SG) 78.2 / 89.9 / 94.7 1.02 17.6 993
DeViLoc (top-5) 81.0 / 91.4 / 95.5 0.90 15.9 7668
DeViLoc (top-10) 82.6 / 92.2 / 96.0 1.92 15.9 13970

Table 4. Effectiveness of the proposed PIN and CPA (top), impact
of the feature matcher (middle), and ablation of the top-k image
retrieval (bottom) on MegaDepth [32]. The top-3 retrieval is used
by default. Except for Model-A, the others were tested with SIFT
inputs. P is the model parameters and M is the 2D-3D matches.

cise reconstruction of 3D point clouds. Our approach ex-
hibits stable performance even when confronted with sparse
and noisy 3D inputs. To achieve this, we present two novel
modules: the Point Inference Network and the Confidence-
based Point Aggregation. Consequently, the method gen-
erates numerous 2D-3D correspondences, leading to sig-
nificant enhancements in challenging conditions, including
textureless scenes, large-scale environments, and variations
in weather and seasons. However, the computational effi-
ciency of our proposed method has limitations. The runtime
experiences a slowdown as the number of matching pairs
between query and reference images increases. Addressing
this limitation will be a focus of our future work.
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[3] Daniel Barath and Jiřı́ Matas. Graph-cut ransac. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 6733–6741, 2018. 3

[4] Daniel Barath, Jana Noskova, Maksym Ivashechkin, and Jiri
Matas. Magsac++, a fast, reliable and accurate robust estima-
tor. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1304–1312, 2020. 3

[5] Gabriele Berton, Carlo Masone, and Barbara Caputo. Re-
thinking visual geo-localization for large-scale applications.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4878–4888, 2022. 6

[6] Eric Brachmann and Carsten Rother. Learning less is more-
6d camera localization via 3d surface regression. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 4654–4662, 2018. 1, 3, 6

[7] Eric Brachmann and Carsten Rother. Expert sample con-
sensus applied to camera re-localization. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
7524–7533, 2019. 3, 7

[8] Eric Brachmann and Carsten Rother. Visual camera re-
localization from rgb and rgb-d images using dsac. IEEE
transactions on pattern analysis and machine intelligence,
44(9):5847–5865, 2021. 1, 2, 3, 6

[9] Eric Brachmann, Alexander Krull, Sebastian Nowozin,
Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten
Rother. Dsac-differentiable ransac for camera localization.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6684–6692, 2017. 3

[10] Eric Brachmann, Tommaso Cavallari, and Victor Adrian
Prisacariu. Accelerated coordinate encoding: Learning to
relocalize in minutes using rgb and poses. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5044–5053, 2023. 3
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