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Figure 1. We pit image comparison metrics, used to quantify the performance of lighting estimation algorithms, against human perception.
When asked which render looks most plausible, our controlled psychophysical study reveals that humans preference contradicts image
metrics in the vast majority of cases. This paper questions the current practice of employing image quality metrics for evaluating lighting
estimation algorithms when used for the task of virtual object insertion: can we do better by considering human perception?

Abstract

Progress in lighting estimation is tracked by computing
existing image quality assessment (IQA) metrics on images
from standard datasets. While this may appear to be a rea-
sonable approach, we demonstrate that doing so does not
correlate to human preference when the estimated lighting
is used to relight a virtual scene into a real photograph. To
study this, we design a controlled psychophysical experi-
ment where human observers must choose their preference
amongst rendered scenes lit using a set of lighting estimation
algorithms selected from the recent literature, and use it to
analyse how these algorithms perform according to human
perception. Then, we demonstrate that none of the most
popular IQA metrics from the literature, taken individually,
correctly represent human perception. Finally, we show that
by learning a combination of existing IQA metrics, we can
more accurately represent human preference. This provides
a new perceptual framework to help evaluate future light-
ing estimation algorithms. To encourage future research,
all (anonymised) perceptual data and code are available at
https://lvsn.github.io/PerceptionMetric/.

1. Introduction

Light fashions the appearance of everything we see. From
the warm and glowing golden hour to the coldness of neon
tubes, lighting determines how scenes look and how we per-
ceive them [35]. This wide variety in illumination conditions
creates a challenge for computer vision algorithms attempt-
ing to estimate lighting from images. How can it be robustly
estimated from images when conditions are so different?
Luckily, large lighting datasets [3, 13] and learning-based
approaches [7, 13, 18] have enabled significant progress over
the past decade. Nowadays, automatic lighting estimation
methods allow artists to plausibly relight virtual objects and
composite them into real images with ever-increasing ease.

As with many computer vision tasks, progress in lighting
estimation is tracked by computing existing image qual-
ity assessment (IQA) metrics on standard datasets. Since
lighting representations differ (e.g., environment maps [13],
parametric lights [14, 57], spherical harmonics [15], spher-
ical Gaussians [26], etc.), it is common practice to render
a virtual object with the estimated lighting, and compare it
with a render of the same virtual object lit with the ground
truth. A variety of existing IQA metrics—ranging from
classical approaches (e.g., RMSE and SSIM [52]) to those
designed to mimic certain aspects of human perception (e.g.,
LPIPS [58])—have been used for this purpose.
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Whilst this way of quantifying performance appears rea-
sonable, it is unclear whether doing so follows human pref-
erence. After all, once a virtual object is relit and inserted
into an image, perfectly matching ground truth lighting may
not be needed to achieve plausible results. In a practical
scenario, one does not have access to the ground truth and
must judge the realism of a relighting result solely based on
its appearance. For example, consider the images shown in
fig. 1. When asked to choose which of the two images looks
most realistic, humans prefer the left one. However, IQA
metrics establish that the right one most closely matches the
ground truth (not shown). In this work, we question the va-
lidity of using IQA metrics for evaluating lighting estimation
algorithms: beyond the selected examples of fig. 1, do IQA
metrics generalise and agree with human perception? Or is
another approach necessary?

In contrast to common belief, we show that this strategy of
employing existing IQA metrics for determining whether an
approach outperforms previous work does not reflect human
preference. To do so, we perform a controlled psychophys-
ical study where a set of lighting estimation approaches,
selected from the recent literature, are pitted against each
other by asking observers to judge the accuracy and plausi-
bility of virtual object insertion results. Our perceptual data
reveals that no single IQA metric agrees with human percep-
tion across all situations. Finally, we show that a learned
combination of the same IQA metrics, trained on our percep-
tual data, achieves results that match human preference.

We summarise our contributions as follows. First, we
perform a psychophysical study comparing recent lighting
estimation methods by asking observers to judge scenes
rendered with lighting estimates. Second, we evaluate the
agreement between commonly-used IQA metrics and our
perceptual data. In particular, we find that most IQA met-
rics do not corroborate human perception. Third, instead
of considering IQA metrics individually, we show that by
combining them in a learned fashion, we can more accurately
mimic human perception for the evaluation of illumination
conditions. This provides a new framework for evaluating
future illumination estimation algorithms in a way that more
closely matches human perception.

2. Related work
Lighting estimation. Outdoor illumination estimation tra-
ditionally relied on manual identification of features such as
sky, ground shadows, and surface shading [24], or optimising
lighting and reflectance interchangeably [23]. Deep learn-
ing replaced these manual features with implicitly learned
representations, where two predominant categories emerge.
The first category utilises parametric representations for illu-
mination estimation, such as spherical harmonics [15] and
spherical Gaussians [14, 26, 27, 53] for indoor, and sky mod-
els for outdoor scenarios [18, 57]. While these methods

are easily editable, they often fail to produce a plausible
environment, limiting its realism. The second category en-
compasses environment map prediction models [13, 25, 50].
These models predict the complete scene field of view as
a 360◦ environment map. While yielding high-quality and
realistic outputs, these works are complex to train and lack
editability. Recent research has sought to integrate these
categories [8, 54], employing a two-stage approach which
first predicts a parametric lighting representation and then
uses it to condition environment map generation.
Image quality assessment (IQA) metrics. IQA has been
an ongoing research topic for more than 20 years [52]. It
particularly flourished with the appearance of mobile phone
cameras and their ubiquitous presence in our current daily
lives. IQA metrics can be divided into three types: Full-
Reference, Reduced-Reference, and No-Reference. Whilst
Reduced-Reference metrics such as FID [17] and Incep-
tion Score [43], or No-Reference-based metrics such as
BRISQUE [32], NIQE [33], UNIQUE [59], HyperIQA [45],
and [12] show promising applications, the interest of our
work lies in comparing images using a Reference-based met-
ric. Domain-specific IQA metrics were also proposed, such
as DISTS [9, 10] for textures; in the remainder of the doc-
ument, we will focus on generic scene-level metrics. Orig-
inally, IQA metrics were mostly based on either physical
[16, 19] or perceptual [29, 32, 33, 44, 52, 55] priors, but
recently these priors are usually learned by using deep learn-
ing approaches from some type of observer data (e.g., mean
opinion scores) [2, 40, 45, 58].

A parallel line of research to the development of IQA
metrics is the study of their applicability to specific scenarios.
In colour constancy [49], authors found that observers did
not prefer the image with the smallest angular error against
a white reference, but instead the one with a slightly bluish
tint—the so-called blue bias [37]. Similarly, [56] showed
that no IQA metric correlated well with the observers’ choice
in colour gamut mapping.
Lighting perception. Humans were shown to perceive
lighting direction accurately on both synthetic and real stim-
uli [21, 39]. [39] demonstrated that human accuracy in light-
ing direction is correlated to the degree of collimation of the
light source, explaining humans’ high sensitivity to lighting
position outdoors. However, humans have more difficulty
detecting lighting inconsistencies as the scene complexity
increases [28, 41, 46]. According to [4, 36, 47], observers
mainly use cast shadows and highlights to determine the
direction and intensity of light sources. [36] confirms that
humans use geometry to estimate the lighting direction and
that a globally convex shape increases their accuracy. [1, 31]
reveal that the perception of gloss is modulated by the com-
plex interaction between the object geometry and the light
field, affecting multiple parameters of specular reflections
(size, contrast, sharpness, and depth). We use these works as
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Task 1: Three renders of {matte, glossy} spheres are presented. Select the one that resembles the
most the centre one by pressing the left or right arrow on the keyboard.

Task 2: Two images of {matte, glossy} spheres are presented, select the
one that seems the most realistic by pressing on the left or right arrow on
the keyboard.
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Figure 2. Example of the accuracy (task 1; left) and plausibility (task 2; right) tasks, for the diffuse (top) and glossy (bottom) material,
assigned to the observers during the experiment. The question asked to the observers is written above each example.

inspiration to design our tasks and stimuli to bridge the gap
between these human perception insights and IQA metrics
commonly used to measure visual resemblance.

3. Psychophysical experiment
In this section, we briefly describe our psychophysical ex-
periment, which was approved by the U. Laval institutional
Ethics Review Board, file #2023-308.

3.1. Tasks

We devise two tasks to evaluate how humans perceive light-
ing accuracy and plausibility, as illustrated in fig. 2.
Task 1. Fig. 2 (left) presents each observer with three
images of a sphere on a ground plane: one lit with reference
ground truth lighting (middle) and two with estimated light-
ing (left and right). The observer is then asked to choose
which of the two renders resembles the reference the most.
This task studies how much observers are able to match light-
ing to a reference—in a sense, this is similar to what we ask
IQA metrics to do. This will enable us, later on in sec. 5,
to evaluate whether existing metrics perform similarly to
humans at the same task.
Task 2. Fig. 2 (right) presents each observer with two im-
ages of a virtual scene (sphere on a plane) embedded within
the background image from which lighting was estimated.
The observer is then asked to select the most realistic of the
two images. As opposed to task 1, no render with ground
truth lighting is shown for this task. This task studies how
observers judge the virtual objects in context, without having
to rely on a reference.

To better distinguish the factors impacting human percep-
tion of lighting, we formulate four variants for each of those
two tasks. The first two variants separate indoor and outdoor

scenes, as both cases are generally addressed differently in
the literature. The last two variants use different materials
applied to the virtual object: one diffuse and one glossy. The
goal is to bring the observer to focus on the low and high
frequencies aspects of lighting, respectively.

3.2. Stimuli

Virtual objects. To avoid potential issues with composit-
ing errors, mismatching semantics and/or geometry, social
biases of observers, etc., the virtual objects rendered are
a simple sphere lying on a plane [36]. The sphere is seen
closely (task 1, fig. 2 left) and farther away (task 2, fig. 2
right). The sphere is positioned farther away in task 2 to
allow the observers to see the background, as the sphere
and plane fill the render in task 1. The Disney Principled
BRDF [5] is used for both diffuse (roughness 1.0 and spec-
ularity 0.0) and glossy (roughness 0.1 and specularity 1.0)
materials, with an albedo of 0.18 in both cases. The images
are generated with the Cycles physically-based rendering
engine, and then reexposed and tonemapped with γ = 2.4
to be displayed on the monitor.
Lighting estimation methods. We include recent
learning-based lighting estimation methods for both the in-
and outdoor scenarios, including the current state-of-the-
art by Weber et al. [54] (indoor), competitive GAN-based
methods EverLight [8] (indoor and outdoor) and StyleLight
[50] (indoor), and approaches predicting parametric lights:
Gardner et al. [14] (indoor) and Zhang et al. [57] (outdoor).
We also include Khan et al. [20] as an example of a simpler,
non-learning technique, since it estimates the lighting by
projecting the input image onto a sphere and then mirroring
it to generate an environment map. See fig. 3 for examples
of lighting estimated by the selected methods.
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GT indoor Weber [54] EverLight [8] StyleLight [50] Gardner [14] Khan [20] GT outdoor EverLight [8] Zhang [57] Khan [20]
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Figure 3. Example of the stimuli produced for a scene by each of the lighting estimation methods (columns), for the different tasks and
experiments (rows). The last row corresponds to the estimated lighting (projected to an equirectangular format) by each of the methods and
used for the renders. The “GT” columns correspond to the ground truth—note that it is not used in task 2 and shown here only for reference.

Input scenes. To ensure the diversity of the selected
scenes, we compute the first-order spherical harmonics coef-
ficients and cluster them using k-means, with k = 25. We
select the 25 panoramas closest to each cluster centre. Fi-
nally, we extract a perspective image of limited field of view
from each HDR panorama in our datasets by simulating a
camera taking a picture within the environment.

3.3. Experimental setup

Hardware. The experiment was conducted in a controlled
lab setting to ensure the uniformity of the data collected.
It was carried out in a matte black room with a standard
keyboard placed on a desk. The monitor was set to sRGB
and was the only light source in the room. The observers
were seated ≈70 cm away from the monitor, which results in
a 11.5◦/17◦ visual angle per image for task 1/2 respectively.
Procedure. Two distinct independent two-alternative
forced choice (2AFC) tasks are given to the observers se-
quentially. The pairs of all combinations of the stimuli pro-
duced by the lighting estimation methods (5 indoor and 3
outdoor) for the 25 different scenes are presented to the
observers. Thus, a total of 250 images (10 method combi-
nations × 25 scenes) for the indoor case and 75 images (3
method combinations × 25 scenes) for the outdoor case are
used. The order and the placement (left or right) of each
method are randomised to reduce potential biases.
Participants. A total of 49 unique observers (33M/16F,
ages ranging from 24–63) with normal or corrected-to-
normal vision participated in the study. All the observers

were tested for colour blindness using the Ishihara test. Not
all observers participated in all experiments, resulting in
indoor experiments performed by 30/31 observers for the
diffuse/glossy versions respectively and outdoor experiments
by 12 observers. Participants were allowed to do each ex-
periment at most once. None of the authors took part in the
study. Each experiment takes ∼25min for the indoor and
∼5min for the outdoor cases. No time restriction is imposed
to avoid inducing stress and bias.

4. Evaluating lighting estimation methods with
perceptual data

In this section, we evaluate state-of-the-art lighting estima-
tion methods in light of our perceptual data acquired in sec. 3.
We begin by describing our statistical analysis approach, then
highlight several key observations in the subsequent analysis.

4.1. Data processing

Since observers were asked to select an image produced by
a particular lighting estimation method, we assign, for each
method, a 1 if its result was selected and a 0 otherwise. For
each of the individual experiments, the resulting z-scores
for the lighting estimation methods are computed according
to the Thurstone Case V Law of Comparative Judgement
model [48] and are shown in fig. 4. This method receives
as input a matrix C ∈ RN×N of paired comparison data,
where element Ci,j indicates how many times method i was
preferred over method j, and outputs a scaling z-score for
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Figure 4. Thurstone Case V Law of Comparative Judgement (z-scores) for all the observers as a function of the different lighting estimation
methods (bars), for the different materials (rows) and tasks (columns). A positive score indicates that observers generally prefer the stimuli
rendered with the lighting estimation method, and not preferred when the score is negative. The scores of all the methods for an experiment
sum to 0. The brackets above indicate pairs of methods for which the perceptual difference is statistically significant. Error bars correspond
to 95% confidence interval.

all N methods compared. This z-score is defined such that
a higher value indicates higher observer preference, with a
sum over all methods of 0 (so methods that are consistently
not preferred get a negative value). We compute the z-score
individually for all images from a scene (set of stimuli im-
ages produced by all N lighting estimation methods with the
same scene given as input). The mean across all scenes is
then taken to describe the performance of each method in a
specific experiment.

The uncertainties, illustrated as error bars in fig. 4, cor-
respond to the 95% confidence interval using Montag’s
method [34]. These confirm that the number of participants
is sufficient, as statistical significance is reached (indicated
by the horizontal brackets) for most of the experiments.
However, the uncertainty is higher for the outdoor exper-
iments, as it is only proportional to the number of observers.
We also compute Fleiss’ κ [11] and Kuder-Richardson-20
(KR20) [22] between the data of each observers to demon-
strate the agreement and consistency, respectively, in the
supplementary material, which confirm that the number of
participants for the outdoor experiment is sufficient.

4.2. Observations

At first glance, fig. 4 reveals that the observers’ judgement
varies across tasks and materials. This suggests that judging
the accuracy (task 1) vs plausibility (task 2) of lighting are
cognitively different tasks. Therefore, humans likely focus
on different cues when looking at images. We now highlight
several key observations emanating from fig. 4. See the
supplemental for more lighting estimation methods rankings.

Solely predicting light sources in parametric format is
insufficient. First, we observe that methods focusing
exclusively on predicting light sources in parametric format
(Gardner et al. [14] indoors and Zhang et al. [57] outdoors)
do perform well when matching diffuse renders to ground
truth (task 1, diffuse), but are otherwise disliked by observers
when the scene contains glossy objects.

Methods should predict a combination of HDR lighting
and plausible textures. Overall, Weber et al. [54] seems
to be the preferred method across all indoor experiments. It
combines HDR lighting estimation that is similarly accurate
to that of Gardner et al. [14] (task 1, diffuse) with plausible
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textures closely matching the ground truth (task 1, glossy).
Results from task 2 also reveal that its composites are consis-
tently judged to be plausibly blended with their surroundings.
Both EverLight [8] and StyleLight [50] are GAN-based ap-
proaches that aim at predicting HDR lighting and textures as
well. Whilst they do succeed at predicting visually pleasing
textures that create believable reflections on glossy materials,
their drop in performance when diffuse materials are used
indicates that they seem to struggle at generating accurate
(task 1, diffuse) and plausible (task 2, diffuse) HDR lighting.
These results indicate that accurate HDR lighting estimation
is important in the diffuse spheres experiments, and that
plausible textures seem more important for glossy objects.
Matching ground truth lighting matters less when judg-
ing the plausibility of composites. The older method of
Khan et al. [20] is generally expected to perform less well
than more recent methods since it creates distorted, implau-
sible LDR textures. Indeed, results from task 1 show that
its lighting estimates do not perceptually match the ground
truth, especially in the case of glossy materials. However,
when considering the plausibility of composited objects in
the absence of a reference (task 2), the trend is reversed:
the simple method of [20] yields results on par with those
of [54] (indoors) and [8] (outdoors, glossy). Surprisingly,
it even outperforms all the recent methods in one scenario
(outdoors, diffuse)! This suggests that, even if the predicted
lighting is perceived to be inaccurate (task 1), the accuracy
is not a priority for the observers when judging the realism
of inserted virtual objects.

5. Measuring the agreement between IQA met-
rics and perceptual data

In this section, we pit existing metrics against our perceptual
data to determine the degree to which they agree about light-
ing perception. In particular, we consider Full-Reference
metrics (RGB angular error [16], PSNR [19], RMSE,
si-RMSE, SSIM [52], VIF [44], ∆E [55], LPIPS [58],
PieAPP [40], FLIP [2], HDR-VDP3 [30]) as they are
the standard in the community for lighting estimation
method evaluation. We also include No-Reference met-
rics (BRISQUE [32], NIQE [33], UNIQUE [59], Hyper-
IQA [45]) to evaluate whether they better match human
perception. All metrics are computed on the tonemapped
stimuli (as seen by the observers, c.f. sec. 3.2) except HDR-
VDP3 which uses HDR renders (before gamma correction).

5.1. Agreement score

We aim to study if our collected perceptual data agrees with
the results given by the metrics. To do so, we define an agree-
ment score between a metric (or observer) and a hypothetical
perfect observer. Larger values of this agreement score will
mean a higher agreement with the perfect observer.

Let φ(i)
a,b be the binary choice of observer i ∈ {1, . . . , n}

between stimuli a and b, representing the output of two
different lighting estimation methods for the same scene:

φ
(i)
a,b

∆
=

{
1 if a was selected over b,
0 otherwise.

(1)

Note that this relation is symmetric, i.e., φb,a = 1 − φa,b

but we slightly abuse notation and write φa,b for both cases.
The proportion at which all n observers select each stimulus
is computed as the mean φa,b = 1

n

∑n
i=1 φ

(i)
a,b. We are

interested in the comparisons where most of the observers
selected a, so all values of φa,b < 0.5 (i.e. when b is the most
selected) are set to 0. The agreement score ω(i) between
observer i and the mean choice of all observers φa,b is

ω(i) =

∑
(a,b) φa,b φ

(i)
a,b∑

(a,b) φa,b

. (2)

Finally, the expected observer agreement ω = 1
n

∑n
i=1 ω

(i)

is the mean agreement over all observers.
A hypothetical perfect observer is defined as an observer

who makes the exact same choices as the average observer.
In this case, ω(i) = 1 and is the upper-bound score. Con-
versely, a random observer is defined as an observer who
would randomly select images. Since pairs of images are
presented, its agreement score is ω(i) = 0.5. We removed
all data from individual observers with an agreement score
ω(i) < 0.5 in at least one experiment (5 individuals in our
study) since they likely have misunderstood the task.

We also define the agreement score for each IQA metric.
For this, we recompute eq. (2) by replacing observer choices
φ with the ones made by metrics. Note that metrics choose
the best image by selecting the image most (dis)similar to
ground truth, even though observers do not always have
access to it (e.g., task 2).

5.2. Observations

The agreement scores for each IQA metric are shown along-
side the expected observer agreement in fig. 5 for all ex-
periments. The grey lines correspond to the perfect (upper)
and random (lower) observers. The orange/blue lines cor-
respond to the expected observer agreement score for the
indoor/outdoor experiments, respectively. A higher metric
agreement score indicates that it tends to select the same
stimuli as the observers.

Note that metrics generally select the same images irre-
spective of the task since the geometry, material and lighting
in the renders are the same. However, perceptual results are
task-dependent (c.f. sec. 4.2), which suggests that humans
and metrics use different processes when evaluating lighting
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Figure 5. Agreement between the observer scores and the metric scores (columns) for all the lighting estimation methods (indoor: orange
bars; outdoor: blue bars), for the different types of experiments (rows). The lower horizontal grey line is set at chance level (∼0.5) and the
higher one corresponds to the perfect observer (set at 1.0). The orange (indoor) and blue (outdoor) lines correspond to the expected observer
agreement score (for task 2, diffuse, blue and orange lines are overlapped). The stars indicate methods that have an agreement score equal or
superior to the expected observer. “Ours” and “Ours Holdout” refer to our learned metric combination, see sec. 6 for more details. The
No-Reference IQA metrics are indicated by asterisks.

in different images, shown by the difference in agreement
with the metrics and humans in fig. 5.
Metrics tend to perform well on task 1 with diffuse ma-
terials. The stars on fig. 5 indicate the metrics with agree-
ment scores equal or superior to the expected observer, in-
dicating that they agree with human perception. This oc-
curs only with si-RMSE, SSIM, LPIPS, and FLIP for task 1
diffuse (indoor), and PSNR, RMSE, si-RMSE, SSIM, and
LPIPS for task 1 diffuse (outdoor). Thus, these metrics may
indeed be appropriate for these specific tasks, where ob-
servers are asked to match objects with diffuse appearance.
Metrics do not agree with human perception for lighting
estimation for the rest of the tasks. Fig. 5 shows that IQA
metrics do not usually agree with observers. In many cases,
especially for task 1 glossy and task 2 diffuse and glossy,
metrics even perform on par with a random observer. Our
study demonstrates that we should not rely on such metrics,
in the general case, for evaluating lighting estimation algo-
rithms as they do not accurately reflect human judgement.

5.3. Correlation

We computed Spearman’s ρ and Kendall’s τ statistical tests
to measure the correlation between the binary observers’
choices and the estimated metric choices, obtained from
fitting a logistic curve as recommended by [51]. Tab. 1
shows the best two metrics for each indoor experiment.

Our metric always obtains the highest correlation scores,

Table 1. Correlation scores of our metric and the next best metric
(excluding “Ours Holdout“) for Spearman’s ρ and Kendall’s τ tests,
for all indoor experiments.

Task Material Metric Spearman’s ρ Kendall’s τ

Task 1 Diffuse Ours 0.689 0.572
LPIPS 0.529 0.440

Glossy Ours 0.724 0.601
RGB Ang. Err. 0.226 0.187

Task 2 Diffuse Ours 0.711 0.593
BRISQUE 0.145 0.121

Glossy Ours 0.753 0.628
HyperIQA 0.371 0.308

matching the perception data best and corroborating the
analysis from the agreement scores in fig. 5. We note there
is still room for improvement since scores are lower than
0.8, which is the threshold typically considered as reliable
by those tests, thus paving the way for future work.

Overall, no metric can accurately judge the lighting esti-
mation in all contexts, either on accuracy (task 1) or plau-
sibility (task 2), for all materials (diffuse or glossy), in all
domains (indoor and outdoor).

6. Learning a metric combination
In this section, we propose to learn task-specific functions
which map existing IQA metrics to perceptual data. This is
similar to [6] who employed such a strategy for detecting
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localised distortions in images. The insight is that these
metrics each look for slightly different cues within the image,
which provides a signal that a simple learner can leverage.
Here, we learn four different functions, one for each of
the experiments (two tasks and two materials, indoor and
outdoor are considered jointly).

6.1. Formulation and training

We seek a function fe : R2 7→ R for experiment e ∈
{1, . . . , 4} which maps a pair of input images Ia, Ib to a per-
ception score φa,b (as in eq. (1)), such that fe(Ia, Ib) ≈ φa,b:

fe(Ia, Ib) ≡ ψe({ℓk(I1, I∗)− ℓk(I2, I
∗)}Kk=1) , (3)

where I∗ is the ground truth image and ℓk, k ∈ {1, . . . K} is
the set of allK = 15 metrics from sec. 5. ψe is implemented
using an SVR (ϵ-Support Vector Regression [38]), with ϵ =
0.1 and C = 1. As shown in eq. (3), the SVR takes as input
the set of differences between allK metrics scores computed
on the images and their corresponding GT. The SVR was
selected as the best variant amongst a set of simple learners
(see the supplementary material for more details).

To train ψe, we split our perceptual data into 20 train-
ing and 5 validation scenes and consider the comparisons
without replacement between 5/3 indoor/outdoor methods
(yielding 10/6 combinations), respectively. Considering per-
mutations of the input combinations to make ψe agnostic to
the order of the input images, the resulting dataset contains
640 and 160 data points for training and validation.

We report the results of our metric on our validation set in
fig. 5, where our proposed metric dominates all other metrics.
This demonstrates that existing metrics do capture valuable
information and that, while a single metric does not accu-
rately match perception in all cases, a learned combination
of them can approximate it much more precisely.

6.2. Generalisation to other methods

We evaluate the generalisation capabilities of our learned
metric on other lighting estimation methods in two ways.
First, we hold out all perception data of one of the methods
(Khan et al. [20] was selected arbitrarily) and retrained ψe

on the remaining methods. Once the metric is trained, we
test it on the unseen (Khan) data, and show results in the
“Ours Holdout” column of fig. 5. This is done only for the
indoor data as outdoor data is too scarce for such analysis.

Second, we run another psychophysical study with 6 ob-
servers using the same methodology as in sec. 3, but employ-
ing different indoor lighting estimation methods. This time,
we use a re-implementation of EverLight [8] at 1024× 2048
resolution, Weber et al. [54] (used previously but never
in paired comparison with the new methods), Garon et
al. [15], a Stable Diffusion model trained for image out-
painting [42], and a simple baseline where the environment
map has constant colour equal to the mean colour of the

input image. Our metric, trained on all the data points ob-
tained in the main user study, obtains an agreement score for
the diffuse/glossy experiment of 0.786/0.856 for task 1 and
0.787/0.889 for task 2. These agreement scores are supe-
rior to what the best standard metrics in sec. 5—VIF, NIQE,
RGB Ang. Err., BRISQUE—can provide (0.670/0.809 and
0.686/0.691), which validate the generalisation of our pro-
posed metric. The agreement scores of the best standard
metrics are often outliers, with metrics on average perform-
ing around chance level.

By releasing all data and code publicly, we hope this
learned metric combination will serve as guide for future
work in lighting estimation by providing a way to validate
its performance in a perceptually meaningful manner.

7. Discussion
This paper explores a new perceptual evaluation framework
for lighting estimation algorithms when used for relighting
virtual objects into photographs. To do so, it presents a con-
trolled psychophysical study which compares several light-
ing estimation methods from the recent literature by asking
observers to judge scenes rendered with lighting estimates.
It then demonstrates that image quality assessment (IQA)
metrics typically used to quantitatively evaluate lighting esti-
mation methods seldom coincide with human perception.

Our analysis emanating from this study provides some
key insights. Most importantly, human perception is depen-
dent on the task at hand. While IQA metrics generate al-
most identical results for both our tasks, observer behaviour
changes according to whether they must match lighting to
a reference, or judge the plausibility of virtual objects in
context of a background image. Both scenarios should be
considered when evaluating future methods.

To help future lighting estimation approaches in evalu-
ating their performance in a perceptually meaningful way,
we propose a learned metric combination which is shown,
through generalisation experiments, to accurately predict
observers preference on images from unseen methods.

Despite the novel insights our analysis provides and our
proposed learned metric combination, understanding the
link between human perception and lighting estimation al-
gorithms is still largely uncharted—our paper is but a first
step. Further analysis of how specific algorithmic design
choices (e.g., choice of lighting representation) affect human
perception is an important future direction to explore. It is
our hope that this work will pave the way for significant
research into effective methods for evaluating the lighting
estimation problem, methods that will be more tightly tied
to human perception.
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Europe” and by the Departament de Recerca i Universitats from Generalitat
de Catalunya with reference 2021SGR01499.
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